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The precise tracking control problem for the robotic manipulator with flexible joints, subjected to system uncertainties and external
disturbances, is addressed. A novel control scheme is presented that does not use link velocity measurements and high-order
derivatives of the link states. The control scheme employs neural networks-based observers to estimate both motor velocity and
link velocity. By using the virtually applied torque, the link controller is designed based on rigid link dynamics, and the motor
controller is designed using the dynamic surface control technique. The proposed control scheme can guarantee that all the signals
in the closed-loop system are semiglobally uniformly ultimately bounded, and the tracking error eventually converges to a small
neighborhood around zero. The simulation results confirm our theoretical analysis, and a comparison study demonstrates the
advantages of the proposed control scheme compared to the standard DSC method.

1. Introduction

In recent years, robots have become standard collaborators
not only in factories, hospitals, and offices but also in peo-
ple’s homes, where they can play an important role in situa-
tions where a human cannot complete a task alone or needs
the help of another person [1]. Flexible joints are extensively
used in collaborative robots because, when a robotic manip-
ulator with flexible joints (RMFJ) encounters obstacles dur-
ing operation, the contact force between the RMFJ and
obstacles may be relatively slight, allowing the RMFJ to
stop immediately [2]. However, the introduction of joint
flexibility in the robot model considerably complicates the
equations of motion. The order of the related dynamics
becomes twice that of rigid robots, and the number of
degrees of freedom is larger than the number of control
inputs. Therefore, achieving precise trajectory tracking con-
trol for RMFJ is difficult. Moreover, severe nonlinearities,
coupling stemming from joint flexibility, structured and
unstructured dynamical uncertainties, physical limitations,
etc., are typical challenges that need to be addressed [3, 4].

To address the above problems, researchers have pro-
posed a variety of control strategies for the tracking control

of RMFJ including PD control [5], singular perturbation
control [6, 7], backstepping control [8–10], adaptive control
[11, 12], variable structure control [13, 14], intelligent con-
trol [15–18], and observer-based control [19, 20]. In partic-
ular, the backstepping technique is known as one of the
popular techniques for controlling RMFJ. However, the
backstepping technique has a drawback called the “explosion
of complexity,” which is caused by the repeated differentia-
tions of virtual controllers. Swaroop et al. [21] proposed a
dynamic surface control (DSC) technique to solve this prob-
lem by introducing a first-order filter at each step of the
traditional backstepping design. Many other useful research
results have been reported for the control problems of vari-
ous nonlinear real systems [22–24]. However, these proposed
DSC schemes do not consider the errors caused by the intro-
duction of filters, which may limit the performance of the
system. As an alternative to DSC, command filtered-based
control, proposed by Farrell et al. [25], can avoid the problem
of the “explosion of complexity.” An error compensation
mechanism can be constructed to compensate for filter
errors and achieve better system tracking performance. The
command-filtered technique has been successfully applied to
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RMFJ, and the desired control goals have been achieved by
Ling et al. [26].

We all know that RMFJ inevitably suffers from nonlinear
uncertainties due to unknown loads, inevitable friction,
and electric motor aging. When these uncertainties are not
addressed, the performance of the system will be seriously
affected. With the development of intelligent control, approx-
imating uncertain terms through neural networks (NNs) [16]
and fuzzy logic systems (FLSs) [27] has become an effective
control method for RMFJ. Shi et al. [18] propose a pattern-
based control scheme for constrained flexible joint manipu-
lators using the approximation and learning capabilities of
NNs. The output constraint problem is handled through sys-
tem transformation. Ling et al. [28] propose an adaptive fuzzy
DSC scheme for single-link flexible-joint robotic systems with
input saturation. The problem of input saturation is addressed
by choosing a smooth function for approximation, and FLSs
are used to approximate unknown continuous functions.

In addition to tracking issues, addressing the practical
limitations of nonlinear systems during operation is very
significant in applications. From a practical viewpoint, as
pointed out in [29], in practical robotic systems, all the gen-
eralized coordinates can be precisely measured by the encoder
for each joint. However, velocity measurements obtained
through tachometers are easily perturbed by noise. Moreover,
in today’s robotic applications, velocity sensors are frequently
omitted due to considerable reductions in production costs,
size, and weight of servo drives. Therefore, in order to align
with economic and/or practical constraints, designing control
strategies for robot dynamics based on nonlinear observers is
of interest.

It is worth noting that, in order to achieve good control
performance when designing the controller for RMFJ, it is
necessary to consider two aspects. On one hand, the char-
acteristics of the dynamic model need to be taken into
account, such as high-order dynamics, uncertainty, nonline-
arity, etc. On the other hand, practical limitations of the
actual control system for RMFJ must also be considered.
These limitations include immeasurable states, signal delays,
unmodeled dynamics, periodic disturbances, and various
constraints arising from physical limitations or security
issues, especially during repetitive movements [9].

In this paper, we address the precise tracking control
problem for RMFJ subjected to system uncertainties, external
disturbances, and without link velocity. It is worth noting
that there have been many excellent research results on this
issue. Due to the introduction of flexible joints, the order of
the RMFJ dynamics becomes twice that of rigid robots, and
the RMFJ dynamics can be divided into robot dynamics and
actuator dynamics. To solve the tracking control of flexible-
joint manipulators, the concept of “virtually applied torque”
is introduced [29]. The elastic force in robot dynamics is
treated as a virtually applied torque, allowing the robot
dynamics to be viewed as a conventional rigid robotic sys-
tem. Inspired by this work, in this paper, we present a novel
control scheme that does not require link velocity measure-
ments and high-order derivatives of the link states. The pro-
posed control scheme employs nonlinear observers to

estimate both the motor velocity and link velocity. By using
the concept of “virtually applied torque,” the link controller
is designed based on rigid link dynamics, and the motor
controller is designed using the DSC technique. NNs are
used to approximate the uncertainties and disturbances of
robot dynamics and motor dynamics. In comparison with
the standard DSC method, the main contributions of this
paper can be summarized in two parts as follows:

(1) A novel NNs-based tracking control scheme for
RMFJ, subjected to system uncertainties and external
disturbances, is proposed. The control scheme con-
sists of a rigid link controller and a motor controller.
DSC only acts on motor dynamics, reducing the
error accumulation caused by introducing first-order
filters.

(2) The proposed control scheme does not require link
velocity measurements and high-order derivatives of
the link states, such as acceleration and jerk. This
makes it more suitable for practical applications.

It is shown that the proposed control scheme can guar-
antee the semiglobal uniform ultimate boundedness of all
signals in the closed-loop system. A comparison is conducted
to further demonstrate the main contribution of our pro-
posed control scheme.

The rest of this paper is organized as follows: Section 2
presents the problem formulation and preliminaries, Section 3
states the control problems and the proposed solutions. Addi-
tionally, simulation results are shown in Section 4 to verify the
effectiveness and potential of the proposed control scheme.
Finally, Section 5 concludes with a summary of the obtained
results.

2. Model Description and Problem Formulation

In general, the nominal dynamic models of an n-link RMFJ
consist of robot dynamics and motor dynamics, which can be
described using the following forms [26].

D qlð Þ q̈l þ C ql; q̇lð Þq̇l þ G qlð Þ þ k ql − qrð Þ ¼ 0; ð1Þ

J q̈r − k ql − qrð Þ ¼ τ; ð2Þ

where ql 2 Rn denotes the link position, D qlð Þ 2 Rn×n is the
inertia matrix. C ql;ð q̇lÞ 2 Rn×n denotes the coriolis and cen-
tripetal forces, G qlð Þ 2 Rn is the gravity vector, qr 2 Rn

denotes the motor position, k represents the joint flexibility,
and J 2 Rn×n is the motor inertia. The control vector τ 2 Rn is
used as the torque input at each motor.

Property 1. The link inertia matrix D qlð Þ is symmetric, posi-
tive definite. Both D qlð Þ and D−1 qlð Þ are uniformly bounded
as follows: ∥D qlð Þ∥2 ≤MD and ∥D qlð Þ−1∥2 ≤MID. Since k is
a constant matrix, ∥D qlð Þ−1k∥2 ≤MDk, where MD, MID and
MDk are positive constants.
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The nominal values D qlð Þ, C ql;ð q̇lÞ, G qlð Þ, k, and J may
be different from the actual values D qlð Þ, C ql;ð q̇lÞ, G qlð Þ; k,
and J , respectively, due to model uncertainties and external
disturbances. If the robot and the motor are further per-
turbed by external disturbances, the actual dynamics of the
nominal RMFJ (1) and (2) can be expressed as follows:

D qlð Þ q̈l þ C ql; q̇lð Þq̇l þ G qlð Þ þ k ql − qrð Þ ¼ 0; ð3Þ

J q̈r − k ql − qrð Þ ¼ τ: ð4Þ

Assumption 1. Suppose that, for a given RMFJ, only the
nominal values D qlð Þ, C ql;ð q̇lÞ, G qlð Þ, k, and J are known,
but the actual values D qlð Þ, C ql;ð q̇lÞ, G qlð Þ; k, and J , includ-
ing the model uncertainties and external disturbances, are
unknown.

Assumption 2. The system states ql and qr are both available
for feedback.

Property 2. C ql;ð q̇lÞq̇l is bounded as follows: ∥C ql;ð
q̇lÞq̇l∥2 ≤MC , where MC is a positive constant.

Property 3. The matrix Ḋ qlð Þ−2C ql;ð q̇lÞ is skew-symmetric.

The actual dynamics of RMFJ (3) and (4) can be rewrit-
ten in the following formulation using the nominal model:

D qlð Þ q̈l þ C ql; q̇lð Þq̇l þ G qlð Þ þ k ql − qrð Þ þ El ¼ 0;

ð5Þ

J q̈r − k ql − qrð Þ þ Er ¼ τ; ð6Þ

where El ql;ð q̇l; qrÞ ¼ D qlð ÞD−1 qlð Þ C ql;ðÂ
q̇lÞq̇l þG qlð Þ þ

k ql − qrð Þþ τdl�− C ql;ð½ q̇lÞq̇l þG qlð Þþ k ql − qrð Þ� and
Er ql;ð qr; q̇r; τÞ ¼ JJ−1 −½ τ− k ql − qrð Þþ τdr�þ τþ½ k ql − qrð Þ�
denote the uncertainties of robot dynamics andmotor dynamics
of RMFJ, respectively, τdl and τdr are the external disturbances.

As a preliminary to the control design, if we define the
state space variables as x1 ¼ ql, x2 ¼ q̇l; x3 ¼ qr , and x4 ¼ q̇r ,
the RMFJ with uncertainty terms (5) and (6) is described as
follows:

ẋ1 ¼ x2; ð7Þ

D x1ð Þẋ2 þ C x1; x2ð Þx2 þ G x1ð Þ þ El ¼ k x3 − x1ð Þ; ð8Þ

ẋ3 ¼ x4; ð9Þ

Jẋ4 − k x1 − x3ð Þ þ Er ¼ τ: ð10Þ

For Assumption 1, the uncertainty terms El and Er cannot
be directly evaluated. In this paper, NNs will be employed
to observe the uncertainty terms. It has been previously rec-
ognized that any continuous function can be uniformly

approximated by a linear combination of Gaussians. Hence,
the following expressions exist as follows:

El xlð Þ ¼ WT
l ψ xlð Þ þϖl; ð11Þ

Er xrð Þ ¼ WT
r ψ xrð Þ þϖr; ð12Þ

where xl ¼ x1;ð x2; x3Þ and xr ¼ x1;ð x2; x3; τÞ are the input
vectors, W0 and Wr denote the optimal weights in the
approximate to ensure that the approximation error, and
ϖl and ϖr are as small as possible. ϖl and ϖr are bounded
approximation errors.

Remark 1. In recent years, NNs have undergone rapid devel-
opment, and many advanced NN models have been pro-
posed. This paper focuses on designing a new control
scheme using the concept of “virtually applied torque.” It
mainly demonstrates the development of controllers and
NN tuning laws within a framework. Therefore, a simple
RBF (radial basis function) NN model is chosen to approxi-
mate the unknown nonlinear system functions. In future
work, more advanced NN models will be explored to inves-
tigate new control algorithms.

Definition 1. (SGUUB) [30]: The solution x tð Þ of the system
is semiglobally uniformly ultimately bound (SGUUB) if for
any compact setΩ and all x t0ð Þ 2Ω, there exists an μ>0 and
T μ;ð x t0ð ÞÞ such that ∥x tð Þ ∥ ≤ μ for all t>t0þT .

In this paper, the trajectory tracking control problem for
RMFJ is investigated. The main objective of this research is to
ensure that the RMFJ tracking errors are semiglobally uni-
formly ultimately bounded (SGUUB), even in the presence of
system uncertainties, external disturbances, and the absence
of link velocity signals.

3. Control Design

3.1. Control Scheme. In this section, we first focus on the rigid
part (8) of RMFJ. By considering the elastic force k x3−ð x1Þ as
a virtually applied torque, this part can be treated as a con-
ventional rigid robotic system. It is important to note that,
compared to flexible robotic systems, there is a wealth of
research available on the design of controllers for rigid
robotic systems. Under Assumption 2, where the system
state x1 is available for feedback, the reference trajectory of
the motor x3d can be determined using the rigid control law
for RMFJ tracking. Subsequently, the motor controller can be
designed to track this trajectory.

Therefore, in this paper, a NNs-based tracking control
scheme is developed for RMFJ, considering system uncer-
tainties, external disturbances, and the absence of link veloc-
ity signals, by utilizing the concept of “virtually applied
torque.” The schematic diagram of the proposed control
scheme is shown in Figure 1. The control scheme employs
a nonlinear observer to estimate both the motor velocity and
link velocity. The link controller is designed based on rigid
link dynamics, while the motor controller is designed using
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the DSC technique. Additionally, the NNs are utilized to
approximate uncertainties and disturbances of robot dynam-
ics and motor dynamics.

Remark 2. A similar control scheme is used in literature [29],
but it adopts the backstepping method. To avoid the draw-
back of “explosion of complexity,” we utilize the DSC tech-
nique to design the motor controller.

Remark 3. A practical and effective controller for RMFJ is
designed in literature [2] based on motor state feedback and
the DSC technique. However, the use of too many first-order
filters can lead to accumulated errors in the system’s bound-
ary layer and reduce control accuracy. In this paper, by
employing the concept of “virtually applied torque,” we
only utilize the DSC technique to design the controller for
motor dynamics. This approach helps to reduce the error
accumulation caused by introducing first-order filters.

Since the link velocity is not available, nonlinear observers
are used to estimate both the motor velocity and link velocity.
In the development of the observers and the controllers, all
quantities with “^” represent estimated quantities. In addition,

quantities with “∼” represent estimation error vectors. The
position estimation error is given by x̃ ¼ x−bx .

The estimates bx1 and bx2 of the system state are defined as
follows:

bx1 ¼ bz1bx2 ¼ bz2 þ κlex1; ð13Þ

where x̃1 is the link position estimation error, and κl is a
positive constant.

The designed observer takes the form of

ḃz 1 ¼ bx2 þ H1x̃1
D x1ð Þḃz 2 þ C x1;bx2ð Þbx2 þ G x1ð Þ þ bEl bxlð Þ ¼ k x3 − x1ð Þ þH2x̃1;

ð14Þ

where bxl ¼ x1;ð bx2; x3Þ, H1 and H2 are observer gain matri-
ces. bEl bxlð Þ ¼ cWT

l ψ bxlð Þ and cW represent the current values
of the NNs weights as provided by the adaptive law.

Therefore, the link observer can be rewritten in terms ofbx1 and bx2 as follows:

ḃx 1 ¼ bx2 þ H1ex1
D x1ð Þ ḃx 2 − κlėx 1

� �
þ C x1;bx2ð Þbx2 þ G x1ð Þ þ cWT

l ψ bxlð Þ ¼ k x3 − x1ð Þ þH2ex1: ð15Þ

qld

Rigid link controller

NN1

Adaptation law

DSC controller

NN2

Adaptation law

Observer 1

Observer 2

x3

x3

x4

x1

k–1

x3d

x̂4

x̂3

x̂2

x̂1

x3

+

τ
Jx4 – k(x1 – x3) + Er = τ

D(x1)x2 + C(x1, x2) x2 + G(x1) + El = τl qld

qld

τl 

FIGURE 1: Block diagram of the control scheme.
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Considering ˙̃x 1 ¼ ẋ1− ḃx 1 ¼ x2−bx2−H1x̃1 ¼ x̃2−H1x̃1,
the link observer can be rewritten as follows:

ḃx 1 ¼ bx2 þ H1ex1
D x1ð Þḃx 2 þ C x1;bx2ð Þbx2 þ G x1ð Þ þ cWT

l ψ bxlð Þ
¼ k x3 − x1ð Þ þ D x1ð Þκlex2 þ H2 − D x1ð ÞκlH1ð Þex1:

ð16Þ

The error dynamics of the link observer is obtained from
(16) and (8) as follows:

ėx 1 ¼ ex2 − H1ex1
D x1ð Þėx 2 − C x1;bx2ð Þbx2 þ C x1; x2ð Þx2 þ fWT

l ψ bxlð Þ þ wl

¼ −D x1ð Þκlex2 − H2 − D x1ð ÞκlH1ð Þex1ÞκlH1Þex1;
ð17Þ

where W̃lT ¼ WT
l −

cWT
l , wl ¼ WT

l ψ xlð Þ−½ ψ bxlð Þ�þϖl.
Similar to the design of the link observer, the estimates bx3

and bx4 are defined as follows:

bx3 ¼ bz3bx4 ¼ bz4 þ κrex3; ð18Þ

where x̃3 is the motor position estimation error, and κr is a
positive constant.

The designed motor observer takes the form of:

ḃz 3 ¼ bx4 þ H3ex3
J ḃz 4 − k x1 − x3ð Þ þ cWT

r ψ bxrð Þ ¼ τ þ H4ex3; ð19Þ

where bxr ¼ x1;ð x3; bx4; τÞ, H3 and H4 are observer gain
matrix. bEr bxrð Þ ¼ cWT

r ψ bxrð Þ;cW represents the current values
of the NNs weights as provided by the adaptive law.

Therefore, the motor observer can be rewritten as fol-
lows:

ḃx 3 ¼ bx4 þ H3ex3
J ḃx 4 − κrėx 3

� �
− k x1 − x3ð Þ þ cWT

r ψ bxrð Þ ¼ τ þ H4ex3:
ð20Þ

Considering ˙̃x 3 ¼ ẋ3− ḃx 3 ¼ x4−bx4−H3x̃3 ¼ x̃4 −H3x̃3,
the motor observer can be rewritten as follows:

ḃx 3 ¼ bx4 þ H3ex3
Jḃx 4 − k x1 − x3ð Þ þ cWT

r ψ bxrð Þ ¼ τ þ H4ex3 þ Jκr ex4 − H3ex3ð Þ:
ð21Þ

The error dynamics of the motor observer is obtained
from (21) and (10).

ėx 3 ¼ ex4 − H3ex3
Jėx 4 þ fWT

r ψ bxrð Þ þ wr ¼ −H4ex3 − Jκr ex4 − H3ex3ð Þ;
ð22Þ

where W̃rT ¼ WT
r −

cWT
r , wr ¼ WT

r ψ xrð Þ−½ ψ bxrð Þ�þϖr .
The link dynamics is the rigid dynamic model, and we

take k x3−ð x1Þ as the control input of the rigid dynamic
model:

D x1ð Þẋ2 þ C x1; x2ð Þx2 þ G x1ð Þ þ El x1; x2; x3ð Þ ¼ τl:

ð23Þ

Considerable research has been conducted on controller
design for rigid robots. In this study, we opted for the widely
used computed torque method with NN compensation [31]
to design a controller for a rigid link. Since the link velocity is
not directly measurable, we utilized the estimated velocity
value instead of the actual velocity as follows:

τl ¼ D x1ð Þ q̈ld − KP x1 − qldð Þ − KD bx2 − q̇ldð Þ½ �
þ C x1;bx2ð Þbx2 þ G x1ð Þ þ cWT

l ψ bxlð Þ; ð24Þ

where KP is the position gain matrix and KD is the velocity
gain matrix.

We choose the adaptive law of cWl as follows:

ċW l ¼ −Flψ bxlð ÞexT2 − ηlFlcW l; ð25Þ

where Fl ¼ FT
l , is a positive constant matrix, ηl 2 R is a posi-

tive constant.
Based on the structure of (3), we design the desired

motor position vector to be:

x3d ¼ x1 þ k−1τl: ð26Þ

Considering the structural complexity of x3d , we design
the controller based DSC method for motor dynamics.

Let x3d pass through a first-order filter to obtain a new
variable x3f :

α3ẋ3f þ x3f ¼ x3d; x3f 0ð Þ ¼ x3d 0ð Þ; ð27Þ

where the time constant α3 is the design constant.
Step 1: define dynamic surface error S3 ¼ x3−x3f , whose

time derivative along (27) is given by

Ṡ3 ¼ x4 − x3d − x3f
À Á

=α3: ð28Þ

To stabilize S3, a virtual control law x4d is proposed as
follows:

x4d ¼ −η3S3 þ x3d − x3f
À Á

=α3; ð29Þ

where η3 2 R is a positive constant.
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Let x4d pass through a first-order filter to obtain a new
variable x4f :

α4ẋ4f þ x4f ¼ x4d; x4f 0ð Þ ¼ x4d 0ð Þ; ð30Þ

where the time constant α4 is the design constant.
Step 2: define dynamic surface error S4 ¼ x4−x4f , whose

time derivative along (30) and (21) is given by:

Ṡ4 ¼ bx4 − ẋ4f

¼ J−1 τ þ H4ex3 þ Jκr ex4 − H3ex3ð Þ þ k x1 − x3ð Þ − cWT
r ψ bx3ð Þ

h i
− x4d − x4f
À Á

=α4:

ð31Þ

A practical control law τ is proposed as follows:

τ ¼ −k x1 − x3ð Þ − H4ex3 − Jκr ex4 − H3ex3ð Þ
þcWT

r ψ bx3ð Þ þ J x4d − x4f
À Á

=α4 − η4S4
Â Ã

;
ð32Þ

where η4 2 R is a positive constant.
We choose the adaptive law of cWr as follows:

ċW r ¼ −Frψ bxrð ÞexT4 − ηrFrcWr; ð33Þ

where Fr ¼ FT
r , is a positive constant matrix, ηr 2 R is a

positive constant.

3.2. System Stability Analysis. Let

V ¼ Vol þ Vor þ Vcl þ Vcr; ð34Þ

as the Lyapunov function candidate, where Vol and Vor are,
respectively, Lyapunov functions of link observer and motor
observer, Vcl and Vcr are, respectively, Lyapunov functions of
link controller and actuator controller.

The purpose of link controller is to make e1 ¼ x1−qld;
e2 ¼ x2− q̇ld converge to zero. Because x2 cannot be mea-
sured directly, the link observer is designed to estimate x2. If
the link observer can be guaranteed to converge, and the
estimated link velocity bx2 can track the expected velocity
q̇ld , x1 can track the expected position qld , it can be proved
that the designed controller can guarantee the desired trajec-
tory tracking.

Define new error variables as: e2 ¼ x2− q̇ld ¼ bx2þ x̃2− q̇ld
and e02 ¼ bx2− q̇ld , that is, as long as e1; e02 converges, accurate
tracking can be achieved as follows:

ė1 ¼ ẋ1 − q̇ld ¼ x2 − q̇ld ¼ bx2 þ ex2 − q̇ld ¼ e02 þ ex2:
ð35Þ

Let e ¼ e1e02½ �T , and substituting (24) into (16), e can be
expressd as follows:

ė ¼ Aeþ γ exð Þ; ð36Þ

where A ¼ 0 I

−KP −KD

� �
, γ x̃ð Þ ¼ κl x̃2 − D−1 x1ð ÞH2ð½

− κlH1Þx̃1�.
Here we choose the appropriate matrix Ω to ensure that

the following equation holds:

ΩAþ ATΩ ¼ −Q; ð37Þ

where Q is a positive definite symmetric matrix.
Hence, we can define the following Lyapunov function of

link controller:

Vcl ¼
1
2
eTΩe: ð38Þ

Notice that there is an error x3f −x3d can be expressed as
follows by substituting (24) into (26):

r3 ¼ x3f − x3d

¼ x3f − x1 − k−1 D x1ð Þ q̈ld − KP x1 − qldð Þ − KD bx2 − q̇ldð Þð Þ
h

þ C x1;bx2ð Þbx2 þ G x1ð Þ þ cWT
l ψ bxlð Þ

i
:

ð39Þ

Notice that there is an error x4f −x4d can be expressed as
follows by substituting (39) into (29):

r4 ¼ x4f − x4d

¼ x4f þ η3S3 − x3d − x3f
À Á

=α3 ¼ x4f þ η3S3 þ r3=α3:

ð40Þ

Substituting (40) into (28), the derivative of S3 can be
expressed as follows:

Ṡ3 ¼ x4 − x3d − x3f
À Á

=α3 ¼ S4 þ x4f − x3d − x3f
À Á

=α3
¼ S4 þ r4 − η3S3:

ð41Þ

Substituting (32) into (31), the derivative of S4 can be
expressed as follows:

Ṡ4 ¼ bx4 − ẋ4f ¼ J−1 τ þ H4ex3 þ Jκr ex4 − H3ex3ð Þ½
þ k x1 − x3ð Þ − cWT

r ψ bxrð Þ�
− x4d − x4f
À Á

=α4 ¼ −η4S4 þ κrex4:
ð42Þ
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The derivative of r3 can be expressed as follows:

ṙ3 ¼ −
r3
α3

− Ξ3 e; S3; r3;cWT
l

� �
; ð43Þ

where Ξ3 e;ð S3; r3;cWT
l Þ ¼ ẋ1þ ẋT1

∂D
x1

q̈ld − KP x1 − qldð Þ−ð
h

KD bx2 − q̇ldð ÞÞþD x1ð Þ q⃛ld − KP ẋ1− q̇ldð Þ − KD ḃx 2− q̈ld
� �� �

þ

ẋT1
∂G
x1

þcWT
1 ψ̇ bxlð Þ þ ẋT1

∂Cbx1 þ ḃxT
2
∂Cbx2

� �bx2 þ C x1;ð bx2Þḃx 2�
The derivative of r4 can be expressed as follows:

ṙ4 ¼
r4
α4

− Ξ4 e; S3; S4; r3; r4;Qld;cWT
r

� �
; ð44Þ

where Qld ¼ qTld q̇Tld q̈Tld
Â Ã

T , Ξ4 e;ð S3; S4; r3; r4;Qld;cWT
r Þ ¼

−η3Ṡ3−
ṙ 3
α3
.

Hence, we can define the following Lyapunov function of
motor controller:

Vcr ¼
1
2

∑
4

i¼3
STi Si þ ∑

3

i¼2
rTiþ1riþ1

� �
: ð45Þ

Taking the time derivative of Vol and using (17) produce:

V̇ ol ¼ exT1 ėx 1 þ exT2D x1ð Þėx 2 þ
1
2
exT2 Ḋ x1ð Þex2 þ tr fWT

l F
−1
l
ḟW l

� �
¼ exT1 ex2 − H1ex1ð Þ þ exT2 C x1;bx2ð Þbx2 − C x1; x2ð Þx2 − fWT

l ψ bxlð Þ − wl

h
−D x1ð Þκlex2 − H2 − D x1ð ÞκlH1ð Þex1iþ 1

2
exT2 Ḋ x1ð Þex2 þ tr fWT

l F
−1
l
ḟW l

� �
:

ð46Þ

Using Property 3 and (25), and considering ˙̃W l ¼ −ċW l,
(46) can be simplified as follows:

V̇ ol ¼ −exT1H1ex1 − exT2 C x1;bx2ð Þ þ D x1ð Þκl½ �ex2 þ exT2 I − H2 þ D x1ð ÞκlH1½ �ex1
−exT2wl þ ηltr fWT

l
cWl

� �
:

ð47Þ

Taking the time derivative of Vor and using (22) produce:

V̇ or ¼ exT3 ex4 − H3ex3ð Þ þ exT4 −H4ex3 − Jκrex4 þ JκrH3ex3 − fWT
r ψ bxrð Þ − wr

� �
þ tr fWT

r FrḟW r

� �
:

ð48Þ

Using (33), and considering ˙̃W r ¼ −ċW r , (48) can be
simplified as follows:

V̇ or ¼ −exT3H3ex3 − exT4 Jκrex4 þ exT4 I − H4 þ JrH3ð Þex3
−exT4wr þ ηrtr fWT

r
cWr

� �
:

ð49Þ

Taking the time derivative of Vcl and using (36) produce:

V̇ cl ¼
1
2
ėTΩeþ eTΩė½ �

¼ 1
2

Aeþ γ exð Þð ÞTΩeþ eTΩ Aeþ γ exð Þð Þ½ �
¼ −eTQeþ eTΩγ exð Þ:

ð50Þ
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Taking the time derivative of Vcr and using (41)–(44)
produce:

V̇ cr ¼ ST3 S4 þ r4 − η3S3ð Þ þ ST4 −η4S4 þ κrex4ð Þ
þ∑

4

i¼2
rTiþ1 −

1
αiþ1

riþ1 þ Ξiþ1

� �
:

ð51Þ

Let H1 ¼ h1I;H3 ¼ h3I;H2 ¼ Iþκlh1D x1ð Þ; I 2 R3×3,
H4 ¼ Iþκrh3J .

Taking the time derivative of V and using (47)–(50)
produce:

V̇ ¼ V̇ ol þ V̇ or þ V̇ cl þ V̇ cr

¼ − exT1 h1ex1 − exT2 C x1;bx2ð Þ þ D x1ð Þκl½ �ex2 − exT2wl þ ηltr fWT
l
cWl

� �
− exT3 h3ex3 − exT4 Jrex4 − exT4wr þ ηrtr fWT

r
cWr

� �
− eTQeþ eTRγ exð Þ þ ST3 S4 þ r4 − η3S3ð Þ

þ ST4 −η4S4 þ κrex4ð Þ þ ∑
3

i¼2
rTiþ1 −riþ1=αiþ1 þ Ξiþ1ð Þ:

ð52Þ

Then we can obtain by using Young’s inequality:

V̇ ≤ −h1 ∥ ex1∥2 − κlMD −MCð Þ ∥ ex2∥2 − h3 ∥ ex3∥2 − λmin Jκrð Þ ∥ ex4∥2
− ηl ∥ fWl ∥2F −ηr ∥ fWr ∥2F −λmin Qð Þ ∥ e∥2 − η3 ∥ S3∥2 − η4 ∥ S4∥2 −

1
α3

∥ r3∥2

−
1
α4

∥ r4∥2 þ
∥ex2∥2
4

þ ∥wl∥2 þ
∥ex4∥2
4

þ ∥wr∥2 þ ηl ∥ fWl∥FWl;M þ ηr ∥ fWr∥FWr;M

þ λmax Ωð Þ ∥ e∥2 þ λmax Ωð Þ ∥ γ exð Þ∥2
4

þ ∥S3∥2

4
þ ∥S4∥2 þ

∥S3∥2

4
þ ∥r4∥2

þ κr ∥ S4∥2

4
þ κr ∥ ex4∥2 þ ∑

3

i¼2

∥riþ1∥2

4
þ ∥Ξiþ1∥2

� �
;

ð53Þ

where λmin ⋅ð Þ represents the minimum eigenvalue of matrix,
λmax ⋅ð Þ represents the maximum eigenvalue of matrix, and
Wl;M andWr;M are maximum eigenvalue of the weight matrix.

Using Property 1, the following inequality holds:

∥γ exð Þ∥2 ≤ ∥ex2∥2 þ κl ∥ ex2∥2 þMID ∥ ex1∥2½ �; ð54Þ

V̇ ≤ − h1 −
MIDλmax Ωð Þ

4

� �
∥ ex1∥2 − κlMD −MC −

1
4
−
λmax Ωð Þ 1þ κlð Þ

4

� �
∥ ex2∥2

−h3 ∥ ex3∥2 − λmin Jκrð Þ − 1
4
− κr

� �
∥ ex4∥2

−
3ηl
4

∥ fWl ∥2F −
3ηr
4

∥ fWr ∥2F − λmin Qð Þ − λmax Ωð Þ½ � ∥ e∥2

− η3 −
1
2

� �
∥ S3∥2 − η4 − 1 −

κr
4

� �
∥ S4∥2 −

1
α3

−
1
4

� �
∥ r3∥2 −

1
α4

−
1
4

� �
∥ r4∥2

þ ∥ wl∥2 þ ∥wr∥2 þ ∑
3

i¼2
∥ Ξiþ1∥2 þ ηlW2

l;M þ ηrW2
r;M:

ð55Þ
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Let h ∗
1 ¼ h1−

MIDλmax Ωð Þ
4 ; h ∗

2 ¼ κlMD−MC−
1
4−

λmax Ωð Þ 1þκlð Þ
4 ;

c ∗l ¼ λmin Qð Þ−λmax Ωð Þ; h ∗
3 ¼ h3; h ∗

4 ¼ λmin Jκrð Þ −½ κr�; η ∗
3 ¼

η3 −ð 1
2Þ; η ∗

4 ¼ η4 −ð 1−κr
4 Þ; 1

α ∗
3
¼ 1

α3
−

�
1
4Þ; 1

α ∗
4
¼ 1

α4
−

�
1
4Þ, and

they are all positive, and it follows that:

V̇ ≤ −∑
4

i¼1
h ∗
i ∥ exi∥2 − c ∗l

∥e∥2 − ∑
4

i¼3
η ∗
i ∥ Si∥2 − ∑

3

i¼2

∥ri∥2

α ∗
iþ1

−
3ηl
4

∥ fW l ∥2F −
3ηr
4

∥ fWr∥2F

þ ∥ wl∥2 þ ∥wr∥2 þ ∑
3

i¼2
∥ Ξiþ1∥2 þ ηlW2

l;M þ ηrW2
r;M ≤ −2ρV þ Υ ;

ð56Þ

where ρ 2 0;½ min h ∗
1 ;ð h ∗

2
MD

; h ∗
3 ;

h ∗
4

MJ
; η ∗

3 ; η
∗
4 ;

1
α ∗
3
; 1
α ∗
4
; c ∗1
λmax Ωð Þ ;

3η1λmin F1ð Þ
4 ; 3ηrλmin Frð Þ

4 Þ� and Υ ¼ ∥wl∥2þ∥wr∥2þ∑3
i¼2 ∥ Ξiþ1∥2þ

ηlW2
l;M þ ηrW2

r;M .
By selecting the appropriate parameters, we can make

ρ ≥ Υ=2μ, when V tð Þ ¼ μ, V̇ ≤ 0, V tð Þ ≤ μ is an invariant
set. Therefore,

0 ≤ V ≤ Υ=2ρþ V 0ð Þ − Υ½ �= 2ρe−2ρtð Þ: ð57Þ

The inequality (57) illustrates the results that the system
tracking errors, velocity observation errors, and NNs weights
estimation errors will converge to a ball with a small radius
determined by Υ and ρ, and then all the system states are
SGUUB.

4. Simulation Results

This section shows a comparison study between our pro-
posed scheme and the standard DSCmethod, to demonstrate
the main contribution of our proposed control scheme.

To evaluate the dynamic behavior of the proposed con-
trol scheme, consider the single-link robotic manipulator
with flexible joint [32]. The dynamic model is given by:

D q̈l þmglsin qlð Þ þ k ql − qrð Þ ¼ τdl

J q̈r − k ql − qrð Þ ¼ τ þ τdr:
ð58Þ

The nominal parameters are m ¼ 2 kg; l ¼ 1m;
k ¼ 10N ⋅m=rad, D ¼ 2 kg ⋅m2, and J ¼ 0:5 kg ⋅m2. The
initial states are set as ql 0ð Þ; q̇l 0ð Þ; qr 0ð Þ; q̇r 0ð Þ½ �T ¼ 0; 0; 0; 0½ �T .
The parameters of link observer are set as H1 ¼ 200; κl ¼
10; h1 ¼ 200;H2 ¼ Iþ κlh1D x1ð Þ. The parameters of motor
observer are set as H3 ¼ 200; κr ¼ 50; h3 ¼ 200;H4 ¼ I þ
κrh3J . The parameters of DSC controller are set as α3 ¼
0:001; α4 ¼ 0:001; η3 ¼ 100; η4 ¼ 200. The parameters of
adaptive law (25) are set as Fl ¼ 1200; ηl ¼ 0:0001: The
parameters of adaptive law (33) are set as Fr ¼
0:00001; ηr ¼ 0:0001:

First, suppose that the dynamic model of RMFJ adopts
the nominal parameters and the link velocity is not available,
the proposed control scheme is used for the tracking control
of the RMFJ and the desired trajectory is given by
qld ¼ sin tð Þ. Besides the proposed control scheme, the com-
parative studies are performed by using the standard DSC

controller, the parameters of the standard DSC controller
are set as α2 ¼ 0:01; α3 ¼ 0:01; α4 ¼ 0:01; η1 ¼ 5; η2 ¼ 45;
η3 ¼ 25; η4 ¼ 5, and the link velocity is available.

It is noting that if the input torque τ is directly used, it
will lead to algebraic loop problems. The method we adopt is
to pass τ through a low-pass filter to obtain τf . Because the
actuator has low-frequency characteristics, τf is approxi-
mately equal to τ in the low-frequency range. Therefore, in
the simulation, we use τf instead of τ.

The simulation results are shown in Figures 2–4. Figure 2
displays the system output trajectories (ql Pð Þ and ql Dð Þ) of
the proposed and standard DSC method, and the given ref-
erence signal qld . We can see that the proposed control
scheme and the DSC controller both achieve satisfactory
control performance from Figure 2. Figure 3 shows the
curves of tracking errors of both methods. Figure 4 shows
that the error of the link observer. These results show that all
the variables in the closed-loop system are bounded.

Figure 3 is a good illustration of the effectiveness of our
proposed control scheme, where we choose the performance
measure of maximum tracking error to compare the tracking
performance of the system. The maximum tracking errors of
these two methods in steady state are 0.0018 and 0.0191,
respectively. It is shown that the tracking errors converge
to a small neighborhood around the origin, and the tracking
error of the proposed control scheme is smaller than that of
the DSC controller. To further compare the tracking perfor-
mance of the two control schemes, the ITAE index is calcu-
lated. The ITAE index of the proposed control scheme is
0.0093, and the ITAE index of the standard DSC method
is 0.4513. It follows that the tracking performance of the
proposed control scheme is better.

Remark 4. It is worth noting that the DSC method does not
consider the errors caused by the introducing of first-order fil-
ters. In order to achieve precise control performance, in our
proposed control scheme, theDSC acts only onmotor dynamics,
reducing the error accumulation caused by first-orderfilters. The
simulation results, especially those in Figure 3, demonstrate the
main contribution of our proposed control scheme.

Next, in order to illustrate the robustness of the control
method, we made a change of 10% in the model nominal
parameters. The actual model parameters and the external
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disturbances are set as bm ¼ 1:1m, bl ¼ 1:1 l, bD ¼ 1:1D,bk ¼ 1:1 k, bJ ¼ 1:1 J , τdl ¼ 50 sin 8tð Þ, and τdr ¼ 100 sin 8tð Þ.
The simulation results are shown in Figures 5–8. Figure 5

displays the system output trajectories (ql Pð Þ and ql Dð Þ) of
the proposed and the standard DSC method, and the given
reference signal qld . In Figure 5, the link position of the DSC
controller shows an obvious vibration under the influence of
parameter uncertainty and external disturbances. It can be
observed from Figures 5–7 that even if the estimated parame-
ters have large deviations and RMFJ is subjected to large
external disturbance, the state observers can still accurately
estimate the velocities of the link and the motor. The pro-
posed control scheme in this paper can effectively achieve
accurate trajectory tracking of link and suppress vibration
of the flexible joints. The simulation results show that the
proposed control scheme is robustness to external distur-
bance and the parameter uncertainty.

5. Conclusions

This paper proposed a novel control scheme for RMFJ. The
issue associated with the tracking control of the RMFJ in the
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presence of system uncertainties and external disturbances is
solved. Meantime, the proposed control scheme does not
require link velocity measurements and high-order deriva-
tives of the link states. The control scheme employs the NNs-
based observers to estimate both motor velocity and link
velocity. By using the virtually applied torque, the link con-
troller is designed based on rigid link dynamics and the
motor controller is designed by using DSC technique. The
semiglobally uniformly ultimate boundedness of all signals
within the closed-loop system is guaranteed by using the
Lyapunov method. Numerical simulation results show that
system output tracking errors converge to a small neighbor-
hood around the origin. The standard DSC method is com-
pared with the proposed control scheme, showing that the
proposed control scheme can get better performance.
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