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Aiming at the problems of slow convergence speed and low tracking accuracy in attitude control and position tracking of quadrotor
unmanned aerial vehicles (UAVs). This paper combines the fractional-order calculus theory with the backstepping sliding mode
control algorithm, using the backstepping control to compensate for the nonlinearity of the system and the fractional-order theory
to eliminate the jitter brought about by the sliding mode control, and proposes a new fractional-order backstepping sliding mode
control strategy for the trajectory tracking control of the quadrotor UAV. The proposed fractional-order sliding mode surface
increases the control flexibility and improves the robustness and anti-interference ability of the system to some extent. The stability
analysis of the system is carried out using the Lyapunov stability theory, and the results prove the stability of the proposed
controller. Finally, the effectiveness and feasibility of the proposed method are verified by comparing it with the traditional
backstepping sliding mode controller. The simulation results show that the fractional-order reverse-step sliding mode control
algorithm proposed in this paper is significantly better than other control algorithms in terms of convergence speed and also has a
certain degree of superiority in terms of error elimination.

1. Introduction

In the past decade, the four-rotor unmanned aerial vehicle
(UAV) has attracted more and more attention due to its
simple mechanical structure, ability to vertical take-off and
landing and hover, and low cost, and it has become an
important aircraft. Its application range widely covers agri-
culture, industry, life, military, commerce, search and rescue,
and other fields, and it plays an important role in crop mon-
itoring, fertilization and spraying, aerial terrain survey,
power maintenance, cargo transportation, and other tasks
[1]. Trajectory tracking control is the basis of UAV to com-
plete specific tasks. However, the nonlinear characteristics
and uncertainties of UAV will seriously affect the control
response, flight stability, control accuracy, navigation, and
position estimation during flight. In view of the above pro-
blems, domestic and foreign scholars have conducted a lot of
research. At present, there are many effective control tech-
nologies for four-rotor UAV, such as PID control, adaptive
nonlinear control, feedback linearization control, model

predictive control, sliding mode control, and backstepping
control.

The backstepping method utilizes the dynamic model
and nonlinear characteristics of the system; the complex
nonlinear system is decomposed into subsystems that do
not exceed the system order, and then the Lyapunov function
and intermediate virtual control are designed for each sub-
system. Through iterative adjustment, the designed virtual
control quantity can gradually eliminate the nonlinear term
of the system, so as to obtain better control performance and
stability, which is an effective method to solve the control
problem of complex nonlinear systems. However, the back-
stepping method does not have good resistance to the uncer-
tainties and external interference in the model. The sliding
mode variable structure control has complete adaptability,
robustness, and fast convergence when the system parame-
ters are uncertain and external interference exists. Therefore,
it is usually combined with the backstepping control algo-
rithm to improve the anti-interference performance of the
system [2, 3]. The combination of sliding mode and back-
stepping control has been used to develop robust controllers
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for nonlinear systems [4]. Literature [5] proposes a four-
rotor UAV attitude stability control strategy based on the
integral backstepping control method, which improves the
stability and control accuracy of the nonlinear system in
the presence of externally disturbed torque. In literature [6],
a feedback linearization controller is proposed for quadrotors
with tiltable rotors to realize the trajectory tracking perfor-
mance of UAV in the presence of gust disturbance. Literature
[7] puts forward an improved reverse-step control method to
solve the problem that the classical reverse-step control
method has many control parameters and difficult parameter
adjustments. Aiming at the large tracking error of a class of
nonlinear fully driven and underdriven mechanical systems
with uncertainty, literature [8] introduces a high-gain design
parameter to construct a new reverse-step sliding mode cas-
cade active disturbance rejection control scheme, which
improves the tracking control accuracy of nonlinear systems.
Literature [9] modified the nonlinear dynamics model of the
eight-rotor coaxial UAV system and proposed an adaptive
reverse-step sliding mode control scheme for the underactu-
ated, fully actuated, and rotor thrust systems. A new adaptive
law was used in the proposed control scheme to obtain good
stability and tracking performance. Aiming at the problem of
low control accuracy of four-rotor UAV under gust interfer-
ence, literature [10] proposed a decentralized backstepping
control method and then optimized the controller parameters
through a differential evolution technique, effectively improv-
ing the robustness of the control system. Literature [11] pro-
poses a control method that combines reverse sliding mode
control and RBF neural network adaptive algorithm. The
approach characteristic of the RBF neural network is used
to compensate for the external interference, which effectively
reduces the trajectory tracking error and overshoot of the
UAV attitude system in the case of external interference tor-
que and improves the anti-interference ability of the system.
To solve the problem of slow position tracking convergence of
four-rotor UAV under model uncertainty and external dis-
turbance, an adaptive integral terminal sliding mode control
method was proposed in literature [12] to achieve trajectory
tracking performance of the system under known uncertainty
and bounded disturbance.

Although the sliding mode control has excellent control
performance against parameter uncertainty and external
interference, due to the discontinuity of the sliding mode
surface and the fast response of the controller, the control
quantity of the system will jitter rapidly near the sliding
mode surface, that is, the chattering phenomenon will occur.
In order to reduce buffeting, many methods have been stud-
ied, and one of the most common methods is to replace the
discontinuous sign function of sliding mode control with
saturation function, hyperbolic tangent function, or other
continuous function to reduce buffeting. Although this
change can weaken buffeting to some extent, it increases
tracking errors and reduces the robustness of the system,
and it also makes the system highly sensitive to unmodeled
dynamic models. Another method to solve the buffeting
problem is to combine the fractional-order theory with the
sliding mode control method in the design of the sliding

mode controller and propose a fractional-order sliding
mode control method.

Fractional calculus theory is a generalization and exten-
sion of the traditional integral calculus theory, which has the
characteristics of time memory and strong robustness. The
earliest research results of fractional calculus theory can
be traced back to 1695. With the in-depth progress of
research, the fractional calculus theory has been continu-
ously improved and applied more and more widely under
the efforts of many scholars. Some scholars have introduced
fractional calculus theory into controller design to make its
design method more flexible [13]. Fractional-order operators
have noninteger derivative and integral operations, which
can describe the dynamic characteristics of the system
more accurately. Compared with integer order, fractional-
order closed-loop characteristics have more obvious advan-
tages and are more conducive to improving the stability and
reliability of the controlled object [14, 15], so fractional-
order control methods are widely used. Podlubny [16] ana-
lyzed the theory of fractional calculus and did corresponding
experiments, changed the traditional PID control to a frac-
tional PID control strategy, and made the fractional calculus
theory achieve leapfrog development in the field of automatic
control. Literature [17] combined fractional-order theory
with sliding mode control theory to design a new
fractional-order sliding mode controller to eliminate the
influence of bounded disturbance and improve the robust-
ness of the system. Literature [18] proposes a class of intelli-
gent robust fractional-order sliding mode control for
nonlinear systems, which solves the buffeting problem by
replacing the symbolic function in sliding mode control
with a fuzzy controller. Literature [19] proposes a new
fractional-order nonlinear sliding surface. Based on the
fractional-order sliding surface, an adaptive interval 2 type
fuzzy compensator is used to estimate the uncertainty and
perturbation of the nonlinear system, further reducing
the chattering caused by the switching term and enhancing
the immunity of the system. Aiming at the problem that the
quadrotor slung-load system is easily affected by the swing
angle of the suspension load, a robust fractional-order sliding
mode control method is proposed in literature [20]. On this
basis, an antiswing controller is installed, which effectively
reduces the buffeting of the system and improves the con-
vergence accuracy of the system. Literature [21] proposes a
new fractional-order sliding mode controller for a fractional-
order quadrotor system, which reduces the overshoot and
response time of the system and improves the response
rate of the system. In literature [22], aiming at the problem
that ships cannot accurately track the expected course due to
the interference of uncertain factors during the navigation of
underdriven ships, a new fractional-order reaching law is
constructed by using fractional-order calculus operators
instead of integer order calculus operators, and a ship course
keeping controller based on fractional-order sliding mode is
designed. Thus, the rapidity and accuracy of the system
response are improved.

This paper combines the advantages of fractional calcu-
lus theory and backward sliding mode control algorithm;
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based on Caputo’s definition, a new fractional-order reverse-
step sliding mode control (FOBSMC) method is proposed to
control the four-rotor UAV. The controller can not only
track the desired flight path according to a certain accuracy
difference but also has a small adjustment time. The struc-
ture of this paper is as follows: The first section is about the
dynamics model analysis of the four-rotor UAV. The second
section is the explanation of relevant preparatory knowledge.
The third section is the design of the position subsystem and
attitude subsystem controller. Then, the Lyapunov stability
theory is used to prove the stability of the nonlinear control
method. The fourth section shows the MATLAB simulation
results of different flight paths of the four-rotor UAV. The
fifth section gives the conclusion.

2. Mathematical Modeling of UAVs

This paper mainly takes the 00X00 type UAV as the research
object and analyzes the forces and moments on the quad-
rotor through the earth coordinate system Oe and the body
coordinate system Ob in Figure 1. In order to meet the con-
straints of the four-rotor UAV, the maximum speed, atti-
tude, and dynamic system constraints of the UAV are
considered in the derivation of the mathematical model,
and some hypotheses are proposed for the structure.

Assumption 1. In this paper, the four-rotor UAV is regarded
as a rigid body.

Assumption 2. The center of mass of the quadrotor is located
at the origin of Ob.

Assumption 3. The lift produced by the propeller is propor-
tional to the square of the propeller speed.

The dynamics model of a typical four-rotor UAV can be
expressed by the following equation [23]:

ẍ ¼ cosϕ sin θ cosψ þ sinϕ sinψð ÞU1

m

ÿ ¼ cosϕ sin θ sinψ − sinϕ cosψð ÞU1

m

z̈ ¼ cosϕ cos θð ÞU1

m
− g

ϕ̈ ¼ θ̇ψ̇
Iy − Iz
À Á

Ix
þ Jr
Ix
θ̇ωr þ

U2

Ix

θ̈ ¼ϕ̇ψ̇
Iz − Ixð Þ
Iy

−
Jr
Iy
ϕ̇ωr þ

U3

Iy

ψ̈ ¼ϕ̇θ̇
Ix − Iy
À Á

Iz
þ U4

Iz
;

ð1Þ

where m is the total mass of the quadrotor, x; y; z, respec-
tively, represent the linear position of the UAV in the inertial
coordinate system. ϕ represents the roll angle about the
x axis, θ represents the pitch angle about the y axis, ψ repre-
sents the yaw angle about the zaxis. Jr is rotor inertia. Ix; Iy; Iz
is the moment of inertia of the x; y; z axis. kdx; kdy; kdz are
translational air resistance coefficients, kax; kay; kaz are fric-
tional air resistance coefficients. ωr ¼∑ð−1Þiωi; i¼ 1; 2; 3; 4.
ωi ði¼ 1; 2; 3; 4Þ is defined as the speed of the i motor.
Ui ði¼ 1; 2; 3; 4Þ is the control input, which is related to ωi
as follows:

U1 ¼ bω2
1 þ bω2

2 þ bω2
3 þ bω2

4

U2 ¼ bl −ω2
2 þ ω2

4ð Þ
U3 ¼ bl ω2

1 − ω2
3ð Þ

U4 ¼ d −ω2
1 þ ω2

2 − ω2
3 þ ω2

4ð Þ:
ð2Þ

Since the six outputs of the quadrotor UAV are only
controlled by four input signals, it is necessary to introduce
virtual control quantityu¼ðux; uy; uzÞT to solve the prob-
lem of underdrive of horizontal position. Virtual control
quantity is defined as follows:

ux ¼ cosϕ sin θ cosψ þ sinϕ sinψð ÞU1

uy ¼ cosϕ sin θ sinψ − sinϕ cosψð ÞU1

uz ¼ cosϕ cos θð ÞU1:
ð3Þ

Then the required angles ϕd; θd and the control input U1
can be expressed as follows:

U1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y þ uz þ gð Þ2

q
ϕd ¼ arcsin

ux sinψd − uy cosψd

U1

� �

θd ¼ arctan
ux cosψd þ uy sinψd

uz

� �
:

ð4Þ
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FIGURE 1: Simple model of a quadcopter UAV.
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3. Preliminary Knowledge Statement

In this paper, the sliding mode control plane under the defi-
nition of fractional order is used for controller design, and the
related used fractional order theory is explained as follows.
There are various definitions of fractional order calculus in
the development process, and there are three commonly used
definitions at present. They are the Riemann–Liouville (R–L)
type, the Grunwald–Letnikov (G–L) type, and the Caputo
type. Among them, Caputo is defined in such a way that it
has the same form as the integer order differential equations
under the initial conditions; therefore, Caputo’s definition is
widely used in engineering applications.

Definition 1 [13]. Caputo fractional-order differential:

C
t0D

α
t y tð Þ ¼ 1

Γ m − αð Þ
Z

t

t0

y mð Þ τð Þ
t − τð Þ1þα−m dτ; ð5Þ

where m¼ α is an integer. α2 ð0; 1Þ.

Definition 2 [13]. Caputo fractional-order integral:

C
t0D

−γ
t y tð Þ ¼ 1

Γ γð Þ
Z

t

t0

y τð Þ
t − τð Þ1−γ dτ: ð6Þ

For convenience of expression, when the upper and
lower limits of fractional-order operators are not involved,
the symbol C

t0D
α
t yðtÞis abbreviated as DαyðtÞ; α2 ð− 1; 1Þ.

When α>0 denotes differentiation, and α<0 denotes
integration.

Lemma 1 [24]. Like integer derivatives, fractional derivatives
have linear properties, namely:

Dα af tð Þ þ bg tð Þ½ � ¼ aDαf tð Þ þ bDαg tð Þ: ð7Þ

Lemma 2 [14]. The following inequality holds:

−Ke tð ÞD−αe tð Þ ≤ 0; 8α 2 0; 1ð Þ: ð8Þ

4. Controller Design

The flight control of four-rotor UAV is generally positioning
tracking, and according to the flight principle of four-rotor
UAV, the key to keep the vehicle stable in the air is attitude
control. Therefore, in this paper, a new fractional-order
backstepping sliding mode control method is proposed by
designing a double closed-loop control loop with the inner
loop for attitude control and the outer loop for position
control. Compared with the traditional backstepping control,
the backstepping sliding mode control proposed in this
paper is combined with the fractional-order theory, which
increases the control flexibility while avoiding the disconti-
nuity of the control signals and improves the robustness and
tracking accuracy of the system to a certain extent. The con-
trol system is divided into two parts: position controller and
attitude controller. The position controller is designed by the
given desired trajectory and the actual position feedback by
the position subsystem. The attitude-solving module can
obtain the desired attitude angle of UAV. The attitude con-
troller is designed based on the expected angle obtained from
the attitude-solving module and the actual angle feedback
from the attitude subsystem, resulting in control quantities
U2;U3, and U4. The block diagram scheme of the controller
of FOBSMC is shown in Figure 2.

Expected
trajectory

xd, yd, zd, 𝜓d

Position 
controller

Attitude 
controller

Attitude 
algorithm 

Position
subsystem

Attitude 
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e
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uy
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e

x, y, z

xd, yd, zd

𝜓d

d, 𝜃dϕ

ϕU3

U4

U1

, 𝜃, 𝜓

FIGURE 2: Block diagram of the controller structure of the FOBSMC.

4 Journal of Robotics



4.1. Position Controller Design. The design idea of the posi-
tion controller of the four-rotor UAV is to obtain U1 through
the control input in three directions and use the control
input U1 to adjust the thrust of the UAV, so as to control
the acceleration of the UAV in all directions, so that the UAV
can reach the expected trajectory. The following takes alti-
tude control as an example to introduce the design of the
position controller of four-rotor UAV. The dynamic model
system in the altitude direction is as follows:

z̈ ¼ cosϕ cos θð ÞU1

m
− g: ð9Þ

The height error is defined as follows:

ez1 ¼ z − zd: ð10Þ

The virtual control term is defined as follows:

α1 ¼ k1ez1: ð11Þ

The auxiliary tracking error variable is defined as follows:

ez2 ¼ ėz1 þ α1; ð12Þ

where the parameter k1 is assumed to be positive and known
constant.

Define the Lyapunov function as follows:

Vz1 ¼
1
2
e2z1: ð13Þ

Then:

V̇ z1 ¼ ez1ėz1 ¼ ez1 ez2 − k1ez1ð Þ: ð14Þ

Combined with the theory of fractional-order calculus, a
new fractional-order sliding mode surface is designed as fol-
lows:

Sz ¼ k1ez1 þ ėz1 þ k2D−αez2: ð15Þ

Taking the derivative of the sliding mode surface Sz , get
the following:

Ṡz ¼ k1ėz1 þ ëz1 þ k2D−αėz2: ð16Þ

The fractional-order backstepping sliding mode equiva-
lent control law is designed as follows:

ueqz ¼m z̈d þ g − k1ėz1 −
1
k2

Dαėz2

� �
: ð17Þ

In traditional sliding mode controllers, the sliding mode
surface is defined by embedding a symbolic function that
causes jumping and chattering of the control signal. With

the introduction of fractional calculus theory, fractional
operators can transform the instantaneous response of sym-
bolic function into a gradual response, which can allow the
control signal to change gently and reduce the phenomenon
of jumping and buffeting. Therefore, the exponential reach-
ing law of the fractional-order operator Dα is adopted in this
paper.

The switching control law is defined as follows:

uswz
¼ −ηDαsgn Szð Þ − h1DαSz: ð18Þ

The total control input is written as follows:

uz ¼m z̈d þg− k1ėz1 −
1
k2
Dαėz2 − ηDαsgn Szð Þ− h1DαSz

� �
:

ð19Þ

Stability proof:
Define the Lyapunov function as follows:

Vz2 ¼ Vz1 þ
1
2
S2z : ð20Þ

Taking the derivative of Vz2 yields the following:

V̇ z2 ¼ V̇ z1 þ SzṠz: ð21Þ

Substituting (16) gives the following:

V̇ z2 ¼ V̇ z1 þ Sz k1ėz1 þ ëz1 þ k2D−αėz2ð Þ: ð22Þ

Substituting Equations (9) and (10) into (22) can obtain
the following:

V̇ z2¼ ez1 ez2 − k1ez1ð Þ þ Szėz2

þ k2SzD−α uz
m

− g − z̈ d þ k1ėz1
� �

:
ð23Þ

Substituting Equations (15) and (19) into (23) can obtain
the following:

V̇ z2¼ −eTz Fzez − k2η Szj j − h1k2 k2D−αez2ð Þ2
− 2h1k22ez2D

−αez2;
ð24Þ

where ez ¼ ½ez1ez2� T and Fz is a symmetric matrix with the
form.

Fz ¼
k1 −0:5

−0:5 h1k2

" #
: ð25Þ

By adjusting the values of h1; k1, and k2, we can make
h1k1k2 ≥ 0:25, which ensures that Fz is a positive definite
matrix. By Lemma 2, it can be shown that − 2h1k22ez2D

−αez2
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is negative definite. Thus V̇ z2 ≤ 0 and the systemwill converge
asymptotically.

4.2. Attitude Controller Design. According to the dynamics
equation of the four-rotor UAV, the attitude is controlled by
U2;U3;U4. Taking roll angle ϕ as an example, the design of
an attitude controller is introduced. In order to facilitate
calculation, this paper rewrites the attitude subsystem of
the four-rotor UAV into the following form:

ϕ̈ ¼ fϕ
Ix
þ U2

Ix
; ð26Þ

where fϕ is defined as follows:

fϕ ¼ θ̇ψ̇ Iy − Iz
À Áþ Jrθ̇ωr: ð27Þ

Define the roll angle error as follows:

eϕ1 ¼ ϕ − ϕd: ð28Þ

The virtual control term is defined as follows:

α2 ¼ k3eϕ1: ð29Þ

The auxiliary tracking error variable is defined as follows:

eϕ2 ¼ ėϕ1 þ α2; ð30Þ

where the parameterk3 is assumed to be positive and known
constant.

Define the Lyapunov function as follows:

Vϕ1 ¼
1
2
e2ϕ1: ð31Þ

Then:

V̇ ϕ1 ¼ eϕ1ėϕ1 ¼ eϕ1 eϕ2 − k3eϕ1
À Á

: ð32Þ

Define the fractional-order sliding mode surface as fol-
lows:

Sϕ ¼ k3eϕ1 þ ėϕ1 þ k4D−αeϕ2: ð33Þ

Taking the derivative of the sliding mode surface Sϕ, get
the following:

Ṡϕ ¼ k3ėϕ1 þ ëϕ1 þ k4D−αėϕ2: ð34Þ

The fractional-order backstepping sliding mode equiva-
lent control law is designed as follows:

ueqϕ ¼ Ix ϕ̈d − k3ėϕ1 −
1
k4

Dαėϕ2

� �
− fϕ: ð35Þ

The switching control law is designed as follows:

uswϕ
¼ −ηDαsgn Sϕ

À Á
− h2DαSϕ: ð36Þ

The total control input is as follows:

U2 ¼ Ix ϕ̈d − k3ėϕ1 −
1
k4

Dαėϕ2 − ηDαsgn Sϕ
À Á

− h2DαSϕ

� �
− fϕ:

ð37Þ

Stability proof:
Define the Lyapunov function as follows:

Vϕ2 ¼ Vϕ1 þ
1
2
S2ϕ: ð38Þ

Taking the derivative of Vϕ2 yields the following:

V̇ ϕ2 ¼ eϕ1 eϕ2 − k3eϕ1
À Áþ SϕṠϕ: ð39Þ

Substituting Equations (26) and (34) can obtain the
following:

V̇ ϕ2¼ Sϕ ėϕ2 þ k4D−α
fϕ
Ix
þ U2

Ix
− ϕ̈d þ k3ėϕ1

� �� �
þeϕ1 eϕ2 − k3eϕ1

À Á
:

ð40Þ

Substituting Equation (37) can obtain the following:

V̇ϕ2¼ −eTϕFϕeϕ − k4η Sϕ
�� �� − h2k

3
4 D−αeϕ2
À Á

2

−2h2k24eϕ2D
−αeϕ2;

ð41Þ

where eϕ ¼ ½ eϕ1eϕ2 � T and Fϕ is a symmetric matrix with the
following form:

Fϕ ¼ k3 −0:5

−0:5 h2k4

" #
: ð42Þ

By adjusting the values of h2; k3, and k4 one can make
h2k3k4 ≥ 0:25, thus ensuring that Fϕ is a positive definite
matrix. By Lemma 2, it can be shown that −

2h2k24eϕ2D
−αeϕ2 is negative definite. ThereforeV̇ ϕ2 ≤ 0 and

the system will converge asymptotically.
The design of the controllers for θ and ψ is similar to that

of ϕ, so we can derive the controllers U3 and U4 in the same
way.
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TABLE 1: Parameters of the quadrotor UAV model.

Related parameters Parameter value Physical unit

m 2 kg
l 0.21 m
Ix ¼ Iy 1.22 Ns2=rad
Iz 2.2 Ns2=rad
b 5 Ns2

d 2 N=ms2

g 9.8 m=s2

Jr 0.2 Ns2=rad

0

10

5

0
1 2

Po
sit

io
n 

X(
m

)

3 4 5
Time (s)

6 7 8 9 10

0

6

4

2

0
1 2

Po
sit

io
n 

Y(
m

)

3 4 5
Time (s)

6 7 8 9 10

0

3

2

1

0
1 2

Po
sit

io
n 

Z(
m

)

3 4 5
Time (s)

6 7 8 9 10

BC
SMC

BSMC
FOBSMC

ðaÞ

0
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1

0
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𝜓
 (r
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 (r
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)
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ϕ

ðbÞ
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ðcÞ
FIGURE 3: Simulation results of UAV spotting flights: (a) positional response curve; (b) Euler angle response curve; (c) control input signal.
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U3 ¼ Iy θ̈d − k5ėθ1 −
1
k6

Dαėθ2 − ηDαsgn Sθð Þ − h3DαSθ

� �
− fθ:

ð43Þ

U4 ¼ Iz ψ̈ d − k7ėψ1 −
1
k8

Dαėψ2 − ηDαsgn Sψ
À Á

− h4DαSψ

� �
− fψ :

ð44Þ

So far, the design of fractional-order-based backstepping
sliding mode controller for quadrotor UAV is completed.

5. Simulation Results Analysis

In this section, two simulation examples are given to prove the
performance of the proposed control scheme. In the experimen-
tal part, the system inEquation (1) is selected as the experimental
object. MATLAB/Simulink simulation experiment platform is
used to build the UAV simulation model based on fractional-
order backstepping sliding mode, including the input module,
translation dynamics module, rotation dynamics module, and
controller module, and the performance is verified experimen-
tally. The platform has powerful simulation and modeling
capabilities to simulate and analyze complex control systems.
In the simulation environment, the fractional-order toolbox
FOMCON is selected for fractional-order partial calculation.
The initial simulation conditions are x¼ 0; y¼ 0; z¼ 0. Table 1
lists the parameter values of the four-rotor UAV model in this
study. The FOBSMC algorithm designed in this paper is com-
paredwith the traditional backward step algorithm, slidingmode
algorithm, and simple backward step sliding mode control algo-
rithm to prove the superiority of the proposed algorithm.

5.1. Fixed-Point Flight Simulation. In the fixed-point flight,
the tracking target is set to xd ¼ 10; yd ¼ 5; zd ¼ 3;ψd ¼ 1,
comparing the step tracking effect of the four controllers,

the simulation results of the UAV fixed-point flight are
shown in Figure 3.

The simulation results show that the output of the system
reaches the desired level in finite time with smooth transient
and steady-state responses. As shown in Figure 3(a), the
algorithm proposed in this paper can significantly improve
the convergence speed of trajectory tracking. The simulation
results in Figure 3(b) show that compared with several other
control algorithms, the fractional-order backstepping sliding
mode control algorithm proposed in this paper can effec-
tively reduce the overshooting phenomenon during the con-
vergence process of pitch and roll angles.

Absolute error integral and square error integral are
selected as the evaluation conditions for the tracking

TABLE 2: Performance indicators of different control algorithms.

Algorithm Passage IAE ISE Time ts

BC

Position x 3.8451 2.4223 1.0139
Position y 1.9226 0.6055 1.0136
Altitude z 2.1432 0.4113 1.8251

Yaw angle ψ 0.3846 0.0242 1.0137

SMC

Position x 5.3335 2.9783 1.6957
Position y 2.6672 0.7445 1.6961
Altitude z 3.5794 0.6110 3.7176

Yaw angle ψ 0.5082 0.0258 1.7606

BSMC

Position x 3.3318 2.0825 0.8925
Position y 1.6656 0.5205 0.8923
Altitude z 0.8816 0.1622 0.8161

Yaw angle ψ 0.2212 0.0138 0.5899

FOBSMC

Position x 0.4321 0.2410 0.1350
Position y 0.1754 0.0495 0.1349
Altitude z 0.1051 0.0187 0.3495

Yaw angle ψ 0.0432 0.0024 0.1460

Bold values emphasize that the control effect of the controller designed is better than other controllers.
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accuracy of the controller system, and the adjustment time of
3% error band is selected as the evaluation conditions for the
convergence speed of the controller system. The absolute
error integral and square error integral are defined as follows:

The integral of the absolute value of error (IAE):

IIAE ¼
Z

tf

0
e tð Þj jdt: ð45Þ

The integral of squared value of error (ISE):

IISE ¼
Z

tf

0
e2 tð Þdt: ð46Þ

The changes of absolute error integral, square error inte-
gral, and adjustment time of different control algorithms are
shown in Table 2.

As can be seen from Table 1, compared with other con-
trol algorithms, the fraction-order reverse-step sliding mode
control algorithm designed in this paper has a smaller error
integral and faster response speed.

5.2. Spiral Curve Tracking Simulation. Spiral ascent is a com-
mon flight mode of UAVs. This section assumes that the
expected trajectory of quad-rotor UAVs is a spiral ascent
curve, and the desired trajectory is designed as xd ¼
4 cos ð2tÞ; yd ¼ 4 sin ð2tÞ; zd ¼ 0:5t;ψd ¼ 0:2.
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The choice of fractional order is the key factor affecting
the controller effect, and the different order values will
directly affect the control performance. In order to obtain
the best fractional-order operator values, fractional-order
operators 0.01, 0.05, 0.1, and 0.2 were selected, respectively,
to compare yaw Angle errors, and the results are shown in
Figure 4.

As can be seen from Figure 4, under the condition that
other parameters are the same, the larger the value of the
fractional order α, the larger the yaw angle error. Therefore,
the fractional order of this paper is chosen as α¼ 0:01.

The model parameters of the simulation experiment are
the same as those of the fixed-point flight simulation. The
simulation results are depicted in Figure 5.

As shown in Figure 5, compared with other control meth-
ods, the fractional-order reverse-step sliding mode controller
designed increases the flexibility of control parameters, effec-
tively improves the control accuracy and convergence speed
of the system, and has a good trajectory tracking effect.
Figure 6 shows the 3D trajectory tracking of the four-rotor
UAV system under different controllers. It can be seen from
the figure that the controller proposed in this paper can reach
the desired trajectory in a shorter time when the tracking
error is almost the same.

6. Conclusion

In order to solve the problems of slow convergence and low
tracking accuracy of four-rotor UAV, a new fractional-order
sliding mode controller is proposed by combining the
fractional-order calculus theory based on Caputo and the
reverse sliding mode control algorithm (BSMC). The pro-
posed algorithm takes into account the dynamic constraints
of UAV and the constraints in practical applications and can
ensure the safety and operability of UAV flight. The back-
stepping sliding mode controller with fractional-order oper-
ator can not only improve the flexibility of the system but

also reduce the chattering caused by the sliding mode con-
trol, so that the tracking trajectory of the system is smoother
and the control effect is more accurate. Finally, the stability
and effectiveness of the controller are verified by two meth-
ods. The Lyapunov stability theorem is used to provide the
stability analysis of the complete system, and the simulation
experiment is carried out by MATLAB/Simulink. The simu-
lation results show that the proposed control algorithm has
high trajectory tracking accuracy and fast response speed
under the premise of satisfying the dynamic characteristics,
which can make the UAV reach the target accurately and
adapt to the changing flight conditions and task require-
ments quickly. In the future work, we plan to carry out
real experiments to further verify the effectiveness and feasi-
bility of the proposed method.
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