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Accurate real-time kinematics model is very important for the control of a skid-steering mobile robot. In this study, the kinematics
model of the skid-steering mobile robots was first designed based on instantaneous rotation centers (ICRs). Then, the extended
Kalman filter (EKF) technique was applied to obtain the parameters of ICRs under the same specific terrain online. To adapt to
different terrain environments, the fractal dimension-based SFTA (segmentation-based fractal texture analysis) method was used
to extract features of different terrains, and the k-nearest neighbor (KNN) method was used to classify the terrains. In the case of
real-time terrain recognition, the filter parameters of the EKF for estimating the ICRs are adjusted adaptively. Experiments on a
real skid-steering mobile robot show that this method can quickly estimate the kinematics model of the robot in the case of terrain
changes, and can meet the needs of practical applications. The average error of odometer estimation based on visual terrain

classification is 0.06 m, while the average error of odometer estimation without terrain classification is 0.14 m.

1. Introduction

The skid-steering mechanism is widely used in mobile robots
and vehicles [1]. The directions of the relative vehicles are
controlled by changing the speed of the left and right wheels
or tracks, rather than steering through an independent
mechanical steering mechanism. Therefore, this kind of
steering mechanism is simple, effective, and robust, and
can realize zero radius steering. It is especially suitable for
the robots and vehicles operating on all terrains. However,
the inherent sideslip of skid-steering brings the complex
wheel-ground contact force relationship. Compared with
the Ackerman-steering or differential-steering wheeled vehi-
cles, it is more difficult to establish an accurate motion model
[2-6]. The high-performance motion control, trajectory
planning, and collaborative control of skid-steering mobile
robots require accurate motion models [4, 7]. In the past
decade, the researches on accurate motion modeling are
mainly divided into two categories.

The first kind of research methods are mainly to establish
the model of tire stiffness or track mechanics from the per-
spective of dynamics [2, 3]. The research in this field often
focuses on the force of terrain and motion system. The slip
model is the functional relationship between the tire and the
traction force. In [8, 9], the authors analyzed and verified the
relationship between the traction, traction coefficient, driv-
ing torque, and parameters such as wheel radius and width
under different slip rates through numerical and experimen-
tal methods. The optimized wheel design parameters and the
best traction parameters are obtained using the genetic algo-
rithm. However, these parameters were measured offline under
specific terrain conditions. In [10], the authors used the unified
tire model to establish the dynamic model of the high-speed
wheeled mobile robot in the general motion and drift states.
The drift motion controller has also been designed based on the
model. However, there is a certain gap between the simulation
and experimental results. Aiming at the latitudinal dynamics of
skid-steering wheel vehicles, the authors in [11] has proposed


https://orcid.org/0000-0001-8934-0738
https://orcid.org/0009-0002-2690-9688
https://orcid.org/0000-0002-8353-8265
https://orcid.org/0000-0002-7092-0596
mailto:chenyang4117@163.com
mailto:wuyaongyao@126.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/1632563

the two-degrees-of-freedom linear latitudinal dynamics model
to study its steering performance under the conditions of over-
steer, understeer, and neutral steering. It has been found that
the proposed model has good steady-state and transient char-
acteristics under linear conditions [12]. However, the skid-
steering wheeled mobile robots are mostly in nonlinear motion,
so the use of this linear model is limited. In practical applica-
tion, because the dynamics model of the skid-steering wheeled
mobile robots is relatively complex and the calculation cost is
high in the case of real-time control, the dynamics model is
usually used for the motion simulation of the robots [2, 3].

The other kind of method is to use the kinematic model to
estimate the slip [13]. It is difficult to establish an accurate
kinematic model because the motion of the skid-steering robot
does not satisfy the relationship of nonholonomic constraints.
In [4], the authors estimated the slip using the EKF method to
fuse the information of an inertial measurement unit (IMU)
and the virtual speed. The experimental results show that when
the robot travels about 40 m on a complex road, the position
estimation deviation is less than 25 cm. In [14], a delayed-state
EKF method was applied to estimate the slip model, which
essentially adopted an integral prediction error minimization
method. In [15], the authors described the slip model through
the experiments. The relationship between the slip coefficient
and the turning radius was established by an exponential func-
tion. The experimental results showed that the control of a
skid-steering vehicle based on this model had good perfor-
mance. In [16], the kinematic model based on ICRs was
used. The position of ICRs was obtained using genetic algo-
rithm to process the recorded experimental data offline. The
authors in [17] have analyzed the inconsistency of the speed on
the same side of a 4W skid-steering mobile robot. The simula-
tion results have shown its effectiveness, but there is a lack of
further experimental verification. In [18], the authors have
presented a friction-based kinematic model lies at the region
between kinematic models and dynamic models. The parame-
ters of the proposed kinematic model are trained using the
nonlinear least squares optimization technique.

Based on the lidar positioning method, the authors in
[13] have adopted the model presented in [16] to obtain
the functional relationship between the ICRs and the radius
of the trajectory and velocity. The experimental results
showed that under the same terrain and road surface, the
ICRs changed in a small range (1.4-1.5). The results were
consistent with the study in [16]. The experimental results
showed that the empirical formula model obtained in [13]
significantly improved the accuracy of dead reckoning posi-
tion. However, this experimental method can only obtain the
functional relationship offline. In [19], the authors have pro-
posed a method to obtain the ICRs’ values based on EKF
online estimation technique. The kinematic model of the
robot can be directly obtained by measuring the given speed,
yaw angle, and the position of the robot. It should be noted
that under the condition of terrain change, the convergence
time of the proposed method is very long, even up to
100-150s, which has great limitations in practical applica-
tion. The authors in [20] have combined the multi-
innovation theory with UKF to estimate the motion for
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high-speed off-road skid-steering mobile robots, where the
position, heading, velocities, and wheel slip can be estimated
simultaneously. In [21], a variable Bayesian learning-based
adaptive Kalman filter method was designed to obtain better
tracking effect on time-varying noise, and higher filtering
accuracy than the classical Kalman filter. In this study, the
noise of the filter mainly mutates with the change of terrain.
Therefore, it is a way to deal with the real-time identification
of the kinematic model of the skid-steering mobile robot by
establishing the model estimation algorithm under the cor-
responding terrain conditions. The corresponding terrain
conditions can be obtained by terrain classification and rec-
ognition method.

There are a lot of researches on the terrain recognition
methods for robots [22—25]. The terrain classification meth-
ods are mainly realized through lidar, vision, or vibration
measurement. The vibration-based terrain classification
method extracts the feature vector of the signal by analyzing
the vibration signals between the wheels of the mobile robot
and the ground. The feature vector extraction methods
include the statistical features [22], fast Fourier transforma-
tion (FFT), and power spectral density (PSD) [24]; and then,
the k-nearest neighbors (KNN) method, decision tree-based
method, probabilistic neural network (PNN), or support vec-
tor machine (SVM) method will be used to realize the terrain
classification [26].

Combined with the existing research work [13, 19], this
study proposes an EKF-based method to learn the ICRs of
the robot. The motion of the robot can be predicted through
the kinematic model established by the ICRs. Aiming at the
problem that the convergence time of the filter is long under
the condition of changing terrain, the unknown terrain sur-
face is classified by visual information and the KNN terrain
classification method, where the image features are extracted
using the fractal dimension-based SFTA (segmentation-
based fractal texture analysis) method [27]. In order to
shorten the running time of the algorithm, the area to be
classified in front will be estimated according to the kine-
matic model. At the same time, the initial value of the error
covariance matrix of the EKF filter will be adaptively
adjusted when the terrain changes; and then, the EKF filter
can quickly enter the convergence state. The experimental
results show that compared with the traditional genetic algo-
rithm, the proposed method can greatly shorten the conver-
gence time while ensuring the convergence accuracy.

The remainder of this paper is organized as follows: the
kinematic model of a 4W skid-steering mobile robot is pre-
sented in Section 2. In Section 3, the EKF method to estimate
the values of ICRs is given. The visual-based terrain classifi-
cation method is also presented. The experiment results and
analysis are presented in Section 4. Some conclusions are
provided in Section 5.

2. ICR Kinematic Model of the 4W Skid-
Steering Mobile Robot

For a 4W skid-steering mobile robot, the following model
assumptions are adopted:
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FiGure 1: The schematic diagram of motion principle of a 4W skid-
steering mobile robot.

(1) the rotational speeds of all wheels on the same side of
the robot are the same;

(2) the robot runs on a solid road and all wheels are in
contact with the ground;

(3) only 2D plane motion is considered; and
(4) the robot is symmetric with respect to its sides.

As shown in Figure 1, an inertial frame (global frame)
OXY, and a body frame OXY have been defined. The motion
of the robot in the body frame and the inertial frame can be
expressed as v=(v,, v,, ;)" and g=(X,Y,0)"=
(vx, vy, vy)T, respectively. v, and v, are the linear velocities.
@y is the angular velocity. X and Y are the two coordinate
components of the center of mass in OXY. 0 is the orienta-
tion of the local coordinate frame with respect to the inertial
frame. Following [1], it has

X cosf —sinf 0 Vi
Y|=1sin0 cos® 0|, |. (1)
0 0 0 1] |w,

Let the forward linear speed of left and right wheels be v,
and v,, respectively. When the mobile robot moves, the ICRs
of the left-side tread, right-side tread, and the robot body are
denoted as ICR,, ICR,, and ICRg, respectively. The corre-
sponding coordinates in the OXY frame is defined as (x;, y;),
(%, yr), and (xg, yg), respectively. The relationship among
v}, vy, and the ICRs can be presented as [16]:

3
VX
)’G—wz
Y=Y
)’z——w
: (2)
Ve = Vy
Vr =
a)Z
V.
X=X =%, =—2.
a)Z

For the symmetrical model, the kinematic model of a 4W
skid-steering mobile robot can be obtained as:

v _ V= v
Yi—=)r
v, = - =% 3)
Yi—=Jr
v —=v,
W, = ——.
Ji=Vr

It can be found that the kinematics for the 4W skid-
steering mobile robot can be presented if the three parame-
ters y;, ¥,, and xg are known. Furthermore, all the effects of
dynamics, including the wheel-ground contact force, the dis-
tribution of the center of gravity, and the speed of motion,
are reflected in these three kinematic parameters. The rela-
tively complex motion state of the system can be described
through such a set of parameters. The three parameters y;, y,,
and x5 can be estimated using the EKF-based method in
real time.

3. The Estimation of the ICRs’ Location
based on EKF

3.1. The Estimation of the ICRs’ Location under the Same
Specific Terrain. In this subsection, the EKF method is
used to estimate the ICRs’ location. The state vector is
defined as X(t) = [X(t)Y(£)0(t)y,(t)y,(t)xg(t)]T € R®. The
process model is established as:

C X [ vycos 0 — v,sin 6 + wx ]
e v,sin 0 + v,cos 0 + wy
. v, — v
I e S e R
Y w
¥, w,
L %G | L wg ]

where u = [wy, wy, wy, w;, w,, wg]" represents an additive
Gaussian white noise vector. Each noise in u is unrelated to
another. To facilitate the calculation in the digital devices, the
discrete-time form of Equation (4) can be derived as



X(k+1)=X(k)+ATf(X(k), u(k)), (5)

where AT denotes the sampling period.

[ X(k+1)7 [X(k)+ATvx +ATwy ]
Y(k+1) Y(k) + ATvy + ATwy
Xkt 1) = O(k+1) _ O0(k) + ATw, + ATw,
yilk+1) yi(k) +ATw,
v (k+1) v (k) + ATw,
| xg(k+1) xg(k) + ATwg

(6)
The prediction estimation covariance can be derived as:
P(k + 1|k) = F(k)P(k)F" (k) + L(k)Q(k)L" (k) , (7)

where Q is the process noise variance matrix. The Jacobian
matrix F(k) can be derived as:

F, F
F(k) = LA A Ye (8)
OX | x (k) 0; I
where
1 0 -X
0 0 1
(y1c0 + xgs0)  (y,c0+xgs0) —sO 7
01 =y.)? G-y -y
(y180 — x5c0)  (y,50 — xgc0) O
Fier=| - (vi=v,).
o 01 =) Gi=2? =y '
1 1 0

L - 0=y 0i=»)? .

(10)

Here, cO =cos 0 , sO = sin 0. The noise Jacobian matrix
L(k) can be derived as:

_9
Lk) = - IAT. (11)

In Equations (8) and (11), I,, and 0,, represent the n X n
identity matrix and zero matrixes, respectively.

Because the position and the heading angle can be
obtained through differential global positioning system mea-
surement, the observation model can be defined as:
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Y(K) = | V() | = HROX () + V(§), (12)
O

where the observation noise vector V(k) is assumed to be
Gaussian white noises. The observation matrix H(k) can be
obtained as:

H(k)=[I, 0s]. (13)

Furthermore, the filtering gain K(k+ 1) can be calcu-
lated as

K(k+1)=P(k+1k)H"(k+1) -

[H(k+ 1)P(k + 1K) H (k + 1) + R, (14)

where R is the observation noise variance matrix. Finally, the
state and covariance estimates are updated as:

X(k+1)=X(k+1lk)+ K(k+1)[Y(k+1)
—-H(k+ 1)X(k+ 1lk) ],

P(k+1)=[I, - K(k+ 1)H(k + 1)]P(k + 1k).  (16)

3.2. The Estimation of the ICRs’ Location under Different
Terrains. It is assumed that the values of ICRs are obtained
by adding random noise on the basis of constant values as
shown in Equation (7). When the 4W skid-steering mobile
robot travels under the same specific terrain condition, the
values of ICRs will not change greatly. However, if the robot
shuttles between different terrain environments, such as
ceramic tile pavement, concrete pavement, sandy soil pave-
ment, and grassland, the wheel-ground contact parameters
will change, which will also lead to changes in the values of
ICRs. At this time, the assumption that “ICRs will not change
greatly” is no longer valid [19]. In this case, the convergence
of the algorithm in Subsection 3.1 cannot be guaranteed.

In order to ensure the convergence speed and not reduce
the accuracyj, it is necessary to make some adjustments to the
EKF method. It can be found that the EKF filter is stable and
the error covariance matrix P(k) tends to be stable when the
robot is on the terrain A. When the robot runs from terrain
A to terrain B, the error covariance matrix P(k) has a large
initial deviation value due to the change of ICRs. Therefore,
based on the existing measurement values, motion model,
and the robot terrain classification method, a method to
quickly judge whether the terrain changes (or the ICRs
mutate) is proposed. When the robot runs from terrain A
to terrain B, if significant changes in ICRs are detected, the
initial value of the error covariance matrix P(k) of EKF will
be adaptively adjusted at this time, which can greatly shorten
the convergence time on the premise that the accuracy
remains unchanged.

In some references [24, 25], the terrain classification
method based on vibration is adopted. The z-axis
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acceleration information in the IMU is used to extract the
frequency characteristics of acceleration. The classification
algorithm is used to realize the terrain classification.
Although the terrain classification method based on vibra-
tion measurement can effectively classify part of the terrain,
it can not obtain the terrain in advance; and it needs to run
on the unknown terrain for a period of time to obtain enough
sample information, which is used to effectively get the clas-
sification information of terrain. The terrain classification
method based on vision can classify the terrain that the
mobile robot will pass through. It can know the types of all
the terrains that the mobile robot will pass through earlier. In
this subsection, we consider how to classify the unknown
terrain through the images captured by the camera, and
estimate the area to be classified according to the kinematic
model, so as to shorten the running time of the algorithm.

3.2.1. Image Feature Vector Extraction. In this study, it is
assumed that the ground is an ideal plane and the origin of
the robot coordinate system coincides with the ground. In
this case, the robot coordinate system is a plane coordinate
system, and any point on it can be mapped into the image
coordinate system. In our experimental platforms, an indus-
trial camera was placed on the top of the robot to photograph
the terrain in front from top to bottom. The image format
output by industrial cameras is Red-Green-Blue (RGB), and
the camera sampling frequency is 30 fps. The relationships
between the coordinates in the image pixel coordinate sys-
tem [xp, yp} T and the coordinates in the robot coordinate
system [x,,, ¥,,] can be formulated as [28]:

M =fH (17)
Vp Vm

where fi .., is the transformation function.

The image features are extracted using the fractal
dimension-based SFTA method [27]. While using the
SFTA method, there are two steps to extract the image fea-
ture. Figure 2 shows the process of image feature extraction,
with an example being the RGB format of asphalt pavement
captured by the camera.

Step 1: The input RGB image is converted into a gray-
scale image; and then, the grayscale image is decomposed
into a group of binary images. The input RGB and grayscale
images are defined as Izgg(x,y) and Ig(x,y), respectively.
The relationship between these two images is:

I(x,y) = 0.30 % Iygg(x, y).R +
0.59 % IRGB(x’y)'G + 0.11 * IRGB(.X,)/).B.

(18)

Here, the TTBD algorithm [26] is used to decompose the
grayscale image I;(x, y) into a group of binary images. The
basic idea of TTBD algorithm is: when the input parameter is
n,, the thresholds T'(i), i=1,2, ..., n, are calculated by mul-
tilevel Otsu algorithm [29]. These thresholds minimize the
variance of I(x, ). The binary image is obtained as:

5
I (xy) 1,if I(x, y) € TB(i)
ilX, =
bty 0, otherwise ) (19)
i=1,2,..,2n,
where
TB(i)=
{00, TN} ifi=1,..n,
{(T(i-n), Ti+1-n,)}, fi=n+1,...2n
(20)

Then, 2n, binary images I, ;(x, y) can be obtained using
the TTBD algorithm. In this study, n; is chosen as n, =4.

Step 2: The feature of each binary image is extracted. The
feature vector of the input image is composed of the features
of each binary image. For each binary image I, ;(x, y), the
image boundary map 4;(x, y) is calculated as:

if 3(x',y") € Nigl(x, )],

CL(xy) =0&I,(x.y) =1
0, otherwise

Ai(x.y) = (21)

where N; g[(x, y)] are eight-pixel points adjacent to the
pixel point (x, y). If the value at the pixel point (x,y) is 1
and its eight adjacent pixels exist, and their values are 0,
then A;(x, y) = 1. Otherwise, A;(x, y) =0. Therefore, it can
be seen that the calculated boundary is one pixel width.
After the boundary map 4;(x, y) has been calculated, the
fractal dimension D; will be calculated using box-counting
fractal dimension algorithm. The dimension D; is used to
describe the boundary complexity and structure segmenta-
tion of the image.

For each binary image I, ;(x, y), let the number of non-
zero value pixel points be C;. For nonzero value pixel points,
the average value of the corresponding gray values is calcu-
lated as G;. The extracted feature values of each binary image
are D;, C;, and G;. Finally, the feature vector of the input
image is represented by the feature values extracted from the
2n; binary images combined in order, that is, F=[D,, Cy,
G1.D,.C,,Gy,.... Dy, . Gy, .Gy, | The dimension of the
eigenvector is 3 #2n,. In our experiment, n,=4, so the
dimension of the eigenvector is 24.

3.2.2. Improvement of Terrain Classification based on Robot
Kinematic Model. In the process of terrain classification cal-
culation, if the feature extraction is based on the whole
image, it will take a long time. Since the online estimation
of the robot kinematic model is greatly affected by the ter-
rain, the processing error caused by the longer prediction
time will be greater when estimating the motion model of
the 4W skid-steering mobile robot. In fact, when the 4W
skid-steering robot is running, its kinematic model is con-
stantly updated. The target area of image processing can be
optimized using the kinematic model at the current time. In
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FiGure 2: The image feature extraction process (1, =4).

this study, according to the control input, the kinematic
model is obtained through online estimation. The motion
trajectory and travel area of the robot at the next moment
can be predicted; and then the range of image feature extrac-
tion and classification can be reduced to improve the proces-
sing efficiency.

Figure 3 shows the region prediction of visual terrain
classification based on kinematic model. It is assumed that
the fixed coordinate system of the robot at the current time
t(k) is x — y, and the speed input is known. The position and
direction of the robot at the time #(k+ 1) can be predicted
based on the kinematic model obtained by EKF. The position
and direction of the robot are shown in Figure 3. At this time,
the centroid coordinate system of the robot is denoted as x' —
y'. The rotation angle and its coordinates in the fixed coordi-
nate system are expressed as 6 and (xg, yg), respectively.

Taking into account the error during the experimental
process, we have expanded the dimensions of the robot in the

longitude and latitude directions to 1.2 times the original
size, denoted as W, and B,, respectively. We surround the
expanded mobile robot with a rectangle with length and
width parallel to the x-axis and y-axis, as shown in the red
dashed rectangle in Figure 3. The length H,, and width L, are
computed as:

H, = B,|sin 0] + W{[cos 0|

L (22)
L, = By|cos 8| + W |sin 0]

According to the kinematic model of the robot and the
control command obtained by the motion planning, the 4W
skid-steering mobile robot will move to the range of the red
rectangular box after f; seconds. In order to determine which
terrain the 4W skid-steering mobile robot will move to at a
certain time, it is only necessary to classify the area covered
by the above-mentioned red rectangular box, while the other
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areas are not classified. In this way, the classified area will be
reduced. Furthermore, the time for image processing and
terrain classification will be shortened. The accuracy of clas-
sification and motion estimation for the 4W skid-steering
mobile robot can be ensured.

3.2.3. Kinematic Model Identification based on KNN for
Terrain Classification. The KNN method is used to classify
the terrain. Several samples of known terrain categories are
selected as training samples. Then, their category voting is
used to determine the terrain category of the test samples.
The KNN method is described as follows.

The mobile robot travels on each terrain and collects data
to obtain the training sample set of the corresponding ter-
rain. The training sample set is recorded as:

SIN) = {(%1, 1), (%2, 62), =, (%N, en) } (23)

where x; is the feature vector of the ith sample, and ¢; is the
corresponding terrain category. There are m kinds of ter-
rains. Thus, ¢; € {1,2, ---, m}; and the distance between two
samples d(x;, x;) is defined by the Euclidean distance ||x; -
x;||. As described above, the feature vector x; can be denoted
as x; = [xi,l, Xigs oees xi.24}T. Then,

24
d(x;.x;) = ||x - x| = ) CAEE T (24)

When the robot travels on a specific unknown terrain, the
terrain is taken as the sample x to be tested. We investigate the
first k neighbors of sample x to be tested in N training sam-
ples, and assume that there are k; neighbors belong to class ;.
Then, the discriminant function of class ¢; is:

gi(x) =k (i=1,2,--,m). (25)
The decision rules are:

Ifi=n, andg(x) = max g;(x),thenx€c, — (26)

i=1,-

Through real-time measurement, the KNN method is
used to obtain the terrain type of the robot currently travel-
ing. Then, the kinematic model of the mobile robot when the
terrain changes will be estimated. If the terrain at this time is
different from the terrain at the previous time, and the robot
is kept on the new terrain for two consecutive times, it is
considered that the working terrain of the robot at this time
has changed. Then the error covariance matrix P(k) in EKF
is adjusted.

Py is the initial value of large error covariance set in
advance, which is determined through multiple experimental
debugging. The principle of the whole kinematic model esti-
mation algorithm based on terrain classification of vision
data is shown in Figure 4.

4. Experimental Results

The 4W skid-steering mobile robot—a Pioneer P3-AT robot
shown in Figure 5 was used for all testing in this study. An
industrial camera was placed on the top of the robot to
photograph the terrain in front from top to bottom. During
the whole experiment, the mobile robot traveled on marble,
concrete, asphalt, and grass. The robot collected images and
stored the data on the on-board computer under appropriate
lighting conditions.
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FiGure 4: The whole kinematic model estimation algorithm based on terrain classification of vision data.

Camera

IMU DGPS antenna

Mobile robot

FiGURE 5: The experimental platform.

The classification results based on the visual terrain clas-
sification method under the four terrains are shown in
Table 1. It can be seen that the accuracy rate of classification

TasLE 1: Confusion matrix of cross validation with all terrains.

Terrain Marble Concrete Asphalt Grassland
type (%) (%) (%) (%)
Marble 98.7 0 0.9 0.4
Concrete 0 85.6 5.1 0
Asphalt 0 13.8 89.5 0
Grassland 1.3 0.6 4.5 99.6

under the four topologies is above 85%, as shown by the data
on the diagonal in Table 1.

In the experiment, the mobile robot travelled from the
concrete pavement to the asphalt pavement, and then to the
concrete pavement. When the robot runs in the terrain con-
version situation, the KNN terrain classification algorithm was
also used for classification, and the EKF was used to estimate
the ICRs’ parameters. The ICRs’ parameters are used to obtain
the model odometer estimation and deviation based on visual
terrain classification and no terrain classification.

Figure 6 shows a terrain classification result based on
kinematic model with/without under terrain transition.
The yellow area was identified as concrete pavement and
the white area was identified as asphalt pavement. As the
mobile robot moves, the white area became smaller and
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FIGURE 6: Terrain classification results based on kinematic model used/not used under terrain transition. (a) The 193rd picture (model not

used). (b) The 193rd picture (use model). (c)The 197th picture (model not used). (d) The 197th picture (use model). (e) The 201st picture
(model not used). (f) The 201st picture (use model).

(d)

TasLe 2: Comparison of operation time of terrain classification algorithm with/without kinematic model.

) Without kinematic model With kinematic model
Terrain type . . . . i .
Average time (s) Maximum time (s) Average time (s) Maximum time (s)
Marble 2.11 2.20 0.47 0.64
Concrete 2.20 2.23 0.48 0.67
Asphalt 2.19 2.24 0.47 0.73
Grassland 2.02 2.09 0.46 0.63

Ficure 7: The layout of the experimental area.
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FiGURE 8: Odometer estimation based on the model using vision-based terrain classification and nonterrain classification. (a) position; and (b)

position error.

the yellow area became larger. It indicated that the robot
traveled from the asphalt pavement to the concrete pave-
ment. In the 193rd picture, the classification indicated that
the current robot was running on the asphalt pavement,
while in the 201st picture, it was completely running on
the concrete pavement.

Table 2 shows the comparison of the average and
maximum time of the operation with and without the
terrain classification algorithm based on the kinematic
model under the four terrains. The notebook computer
used in the experiment is configured with an Intel i7
3.2 GHz processor, 8 GB Ram, and window eight 64-bit
operating system. The algorithm was tested under
Matlab2010a. It can be seen that when the terrain classifi-
cation algorithm based on the kinematic model is not
adopted, the average operation time under the four types
of terrains was more than 2s. The average operation time
of terrain classification algorithm based on kinematic
model was less than 0.5s. The speed was increased by
more than 4 times.

The error covariance matrix P(k) in EKF is adjusted
based on the terrain classification. The adaptive EKF method

was used to estimate the ICRs’ parameters to obtain the
model odometer estimation and deviation based on visual
terrain classification and no terrain classification. The layout
of the experimental area was shown in Figure 7. The robot
moved on the asphalt pavement for a certain distance before
entering the concrete pavement. After moving on the con-
crete pavement for about 20s, it then entered the asphalt
pavement to move. The built-in kinematic model of P3-AT
[13] (abbreviated as P3-AT DF Model) was also used to
produce the odometer estimation. The comparison results
are shown in Figure 8.

Figure 9 shows at the time of t =20.6s and t =40s, the
ICRs’ parameters y;, V,, X, and y all change suddenly (as
shown by the change of red dotted line in Figure 9). We judge
that this is the time of terrain conversion. Figure 8(b) shows
the position error estimated by different odometers. The aver-
age error of the odometer estimation using visual-based ter-
rain classification was 0.06 m, while the average error of the
odometer estimation without terrain classification was
0.14m. The error was reduced by 57.1%. The method based
on visual terrain classification can detect the changes of ter-
rain fast.
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Fiure 9: ICRs’ parameter identification based on visual terrain
classification and nonterrain classification.

5. Conclusions

This paper investigates a terrain adaptive odometry for a 4W
skid-steering mobile robot. The odometry calculation is
based on the kinematic model using the ICRs. The EKF
method is used to estimate the parameters of ICRs in real
time. In order to make the Kalman filter on the robot adapt
to the terrain changes quickly, a vision-based terrain classifi-
cation method has been designed to make the robot have the
ability to recognize the terrain in real time. Additionally, the
forward motion trajectory is predicted based on the kine-
matic model, which is used to realize the capture of small
images. The proposed method reduces the calculation time
of image feature extraction. Once the robot knows the terrain
change, the relevant error covariance matrix of the Kalman
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filter will be adaptively adjusted to another value, so that the
convergence speed of the filter can be guaranteed.

Furthermore, the estimated ICRs’ parameters will
quickly converge to the true value. The real-time kinematic
model of the robot will be obtained. The estimation of the
odometer will be more accurate.

In [16], under the assumption that the mobile robot is
moving on a flat surface, with the speed of each wheel being
the same and all in contact with the ground of equal velocity
on the same side, Martinez et al. [16] adopted the method of
ICR to establish the kinematic model of a skid-steering
mobile robot. The sliding effect caused by complex dynamic
effects will be reflected in the changes in ICRs’ values. In our
study, we have inherited the idea of Martinez et al. [16]
regarding the use of ICR to establish the kinematic model
for a 4W skid-steering mobile robot. However, in actual
terrain environment. the above assumptions cannot be met
in real time. At this point, the model has certain errors. In the
Kalman filtering algorithm used in the article, Gaussian
white noise is introduced into the model, which can reflect
certain error information, but cannot fully reflect the real
situation. In the future, further research will be conducted
on the applicability of this method on nonflat surfaces.

During actual long-term work, the lighting conditions
are constantly changing, the lighting conditions will also be
considered in our future engineering prototypes.
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