
Research Article
The Parallel Solving Method of Robot Kinematic Equations
Based on FPGA

Deli Zhang ,1 Shaohua Jiang ,1 and Liu Zhe 2

1College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Engineering Technology Center, Shenyang Aircraft Company, Shenyang 110850, China

Correspondence should be addressed to Deli Zhang; nuaazdl@126.com

Received 13 May 2023; Revised 6 October 2023; Accepted 10 October 2023; Published 3 November 2023

Academic Editor: Shahram Payandeh

Copyright © 2023 Deli Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the implementation of robot motion control, complex kinematic computations consume too much central processing unit
(CPU) time and affect the responsiveness of robot motion. To solve this problem, this paper proposes a parallel method for solving
kinematic equations of articulated robots based on the coordinate rotation digital computer (CORDIC) algorithm. The method
completes the fast calculation of the transcendental function based on the CORDIC algorithm, adopts the tree structure method to
optimize the key computational paths of forward and inverse solutions, and designs a parallel pipeline to realize the low latency
and high throughput of the kinematic equations. The experiments of the proposed method are validated based on the field-
programmable gate array (FPGA) hardware experimental platform, and the experimental results demonstrate that the compu-
tational time to complete the entire kinematic equations is 4.68 μs, of which the computational time for the kinematic positive
solution is 0.52 μs and the computational time for the kinematic inverse solution is 4.16 μs.

1. Introduction

Real-time control of robots is a challenging research priority,
especially in space, medical, and industrial robotics applica-
tions where fast response is very important [1, 2]. However,
robot kinematics involves real-time computation of a large
number of transcendental functions such as cosine, sine, arc
tangent, square, and so on. Solving kinematic equations takes
up a lot of CPU time, which makes it difficult for the robot to
respond quickly [3–5].

To solve this problem, using digital signal processing
(DSP) and field-programmable gate array (FPGA) are two
possible solutions. Some researchers perform kinematic cal-
culations for robots based on DSP [6–8], but as robot systems
become increasingly complex, the computational tasks under-
taken by DSP also become more intensive, and excessive
resource occupation leads to a decrease in the robot’s response
speed. FPGA is widely used in the field of robot control due to
its programmable hardwired characteristics and fast parallel
computing capabilities, which improve the processing power
of hardware and the speed of real-time information proces-
sing [9–12], Chand et al. [13] used embedded FPGA for

motion planning and control of dual arm robots, by establish-
ing accurate armmotion sequences to accurately executemul-
tiple tasks. Gürsoy and Efe [14] proposed proportion integral
differential and slidingmode control scheme for robotmanip-
ulators based on FPGA, achieving better trajectory tracking
performance. Furthermore, kinematic solution based on
FPGA has also been proposed by researchers.

The issue of the first importance is the computation of
transcendental functions by FPGA, the look-up-table (LUT)
method [15], Taylor series expansion method [16], and coor-
dinate rotation digital computer (CORDIC) algorithm [17–19]
have been proposed. Zhang et al. [15] proposed a master–slave
surgical robot forward–reverse kinematics computationmethod
based on FPGA, and all the transcendental function computa-
tions use the LUT method, which can effectively improve the
computation rate of the transcendental function, but it needs to
take up a large amount of LUT resources when performing
high-precision computations. In order to solve the problem
of kinematic inverse tangent and inverse cosine hardware com-
putation, Kung et al. [16] proposed a combination of Taylor
series expansion method and LUT method, which reduces the
LUT resource occupation for high-precision computation,

Hindawi
Journal of Robotics
Volume 2023, Article ID 2426982, 8 pages
https://doi.org/10.1155/2023/2426982

https://orcid.org/0000-0001-6139-796X
https://orcid.org/0009-0005-3645-5423
https://orcid.org/0009-0001-6062-9957
mailto:nuaazdl@126.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2426982


but requires multipliers for polynomial computation, which
leads to a reduction in the computation rate. The CORDIC
algorithm has high speed and area achieved in digital signal
processing applications [20], Multiplexers based CORDIC
algorithm and fully pipelined CORDIC algorithm [21] used
to achieve a fast and efficient hardware on FPGA. Wei et al.
[17], Zhang et al. [18], and Çelik et al. [19] have used the
CORDIC algorithm for the computation of the transcendental
function, which has a higher computation rate and less
resource consumption when implemented in FPGA. In order
to improve the calculation speed of kinematic equations, Zhang
et al. [18] and Petko et al. [22] proposed an FPGA heteroge-
neous scheme for kinematic computation, where only the
FPGA is used as a coprocessor for the fast computation of
the transcendental function, which reduces the computation
time consuming of the transcendental function, but increases
the corresponding instruction scheduling time and puts for-
ward higher requirements for the timing control of the hetero-
geneous platform. A single FPGA-based method for solving
kinematic equations can effectively avoid the shortcomings of
heterogeneous platform methods, with a simpler system com-
position and better robustness and stability. Chen et al. [23]
proposed an FPGA-based kinematic intellectual property (IP)
for selective compliance assembly robot arm (SCARA) robots,
which realizes the overall kinematic computation within 10 μs,
but due to the use of finite-state machines, this kinematic IP
cannot perform parallel streaming computation and fails to
give full play to the FPGA’s parallel data processing capability.
Fan et al. [24] proposed a high-level synthesis method based on
Zynq FPGA to realize the inverse kinematics computation of
humanoid robots, although the high-level synthesis method
can realize the rapid development of FPGA, but it is more
suitable for the scenarios with lower requirements on timing,
the robot kinematics computation process is more complex,
and the addition of the computation process to the timing
control is more conducive to improving the real-time perfor-
mance of the robot.

Motivated by the aforementioned discussions, an FPGA-
based hardware parallel solving method for robot kinematic
equations is proposed in this paper, which is based on the
CORDIC algorithm to complete the fast computation of
transcendental functions, adopts the tree structure method
to optimize the key computational paths of the forward and
inverse solutions, and carries out a parallel pipeline design of
the whole forward and inverse solution computation to real-
ize the low-latency and high-throughput solving of the kine-
matic equations. The main contributions and innovations of
this paper are as follows:

(1) The kinematic hardware computation model pro-
posed in this paper takes only 4.68 μs to complete
the whole kinematic computation, and the computa-
tion process adopts parallel pipeline design, which
allows data computation in each clock cycle and
improves the computational efficiency greatly.

(2) The computational timing of the kinematic hardware
computation model proposed in this paper is fixed,
so that when the data bit width is increased, the

computational cycle can still be guaranteed to remain
unchanged, but the computational accuracy will be
improved accordingly.

The rest of the paper is organized as follows: in Section 2,
the kinematic model is developed and forward/inverse kine-
matic equations are derived. The principle of CORDIC algo-
rithm is presented in Section 3. In Section 4, a hardware
parallel FPGA-based solution of the kinematic equations is
given. Experimental results are given in Section 5. Conclu-
sions are given in Section 6.

2. The Kinematic Equation for
Articulated Robots

In this section, the structure of the robot is first described,
then the robot is modeled using the Denavit–Hartenberg
(D–H) method [25], and finally the forward kinematics
equations and inverse kinematics equations are derived
separately.

2.1. The Kinematic Model of Articulated Robots. An articu-
lated robot is an open chain structure composed of a series of
connecting linkages connected by joints [26, 27]. To accu-
rately describe the robot’s poses, this paper uses D–Hmethod,
which constructs a kinematic model using a fourth-order
transformation homogeneous matrix to describe the relation-
ships of adjacent links and deriving the positional relation-
ships of each linkage relative to the base in a recursive
manner.

The robot studied in this paper is a 6-degree-of-freedom
industrial robot, and the kinematic model is built using D–H
mothod, the link coordinate systemas{zi}is shown in Figure 1,
ai is link length and di is link offset.

d4

Z4

Z5
Z3

a3

Z2

a2

Z1

a1

(Z0)

Z6

FIGURE 1: Link coordinate system of the robot.

2 Journal of Robotics



Based on the distribution of the coordinate system in
Figure 1 and the connecting rod parameters, the D–H
parameters to build this robot model can be derived, αi is
the link twist, αi is link length, di is link offset, θi is the joint
angle, as shown in Table 1.

In the D–H parameter method, the vector defined by the
adjacent coordinate system {zi} is transformed to the coordi-
nate system {zi−1}, transformation for which homogeneous
matrix can be expressed as [28]:

i−1
iT ¼

cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

2
66664

3
77775

ð1Þ

where cθi means cos θi and sθi stands for sin θi.
TheD–Hparameters inTable 1 are brought intoEquation (1)

to obtain the homogeneous transformation matrix between
the adjacent linkages of this robot.

2.2. The Forward Kinematic Equations of Articulated Robots.
After determining the linear transformation homogeneous
matrix between each coordinate system, the kinematic
equation 0

6T can be obtained by multiplying the transforma-
tion matrix i−1

iT of each linkage:

0
6T ¼0

1 T
1
2T

2
3T

3
4T

4
5T

5
6T ¼

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

2
66664

3
77775

ð2Þ

The forward kinematic equation solution is to find the
position 0

6T of the end effector with respect to the reference
coordinate system, knowing the parameters (αi; ai; di; θi) of
each joint. The inverse kinematic equation solution is to find
the motion parameters θi of each joint based on the given
poses 0

6T of the end effector relative to the reference coordi-
nate system.

2.3. The Inverse Kinematic Equations of Articulated Robots.
The robot studied in this paper conforms to the Pieper crite-
rion [29], i.e., three adjacent joint axes intersect at a point,
and is a configuration with closed solutions. To meet the
requirements of real-time robot control, this paper utilizes
the algebraic method in the closed solution method to

calculate the inverse kinematic solution, and the analytical
expression can be obtained as:

ikineSolver 0
6Tð Þ ¼ θ1; θ2;…; θ6ð ÞT ð3Þ

where θ1 ¼ arctan py;
À

pxÞ− arctan 0;ð Æ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
px2 þ py2

q
Þ,

θ3 ¼ arctan a3;ð d4Þ− arctan K;ð Æ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K2

p
Þ,

K ¼ px2þpy2þpz2−2a1c1px−2a1s1pyþa12−a22−a32−d42

2a2
ffiffiffiffiffiffiffiffiffiffiffiffi
a32þd42

p ,

θ2 ¼ θ23 − θ3,

θ23 ¼ arctan s23;ð c23Þ,
s23 ¼ −ð a2c3 − a3Þpz þ c1pxð þ s1py − a1Þ a2s3 −ð d4Þ,
c23 ¼ a2s3 −ð d4Þpz þ c1pxð þ s1py − a1Þ a2c3ð þ a3Þ,
θ4 ¼ arctan −ð axs1 þ ayc1; − axc1c23 − ays1c23 þ azs23Þ,
θ5 ¼ arctan s5;ð c5Þ,
s5 ¼ ax −ð c1c23c4 − s1s4Þ− ay s1c23c4 −ð c1s4Þþ az s23c4ð Þ,
c5 ¼ ax −ð c1s23Þþ ay −ð s1s23Þþ az −ð c23Þ,
θ6 ¼ arctan s6;ð c6Þ,
s6 ¼ − nx c1c23s4 −ð s1c4Þ− ny s1c23s4ð þ c1c4Þþ nz s23s4ð Þ,
c6¼ nx c1c23c4 þ s1s4ð Þc5 −½ c1s23s5� þ ny s1c23c4−ð½

c1s4Þc5 − s1s23s5�− nz s23c4c5ð þ c23s5Þ.

3. Parallel Calculation Method of
Transcendental Functions for
Kinematic Equations

The CORDIC algorithm is an iterative algorithm that uses
only shift operations and addition and subtraction opera-
tions to solve the problem of real-time computation of trig-
onometric functions in air navigation control systems [30].
Based on this, Walther [31] proposed a unified form of the
CORDIC algorithm, application for which extends to inverse
trigonometric functions, hyperbolic functions, and transcen-
dental functions. The algorithm is well-suited to run in plat-
forms such as FPGAs due to its high hardware efficiency.
From the perspective of FPGA portability, using fixed-point
numbers for cordic algorithm implementation can ensure
computational speed while configuring FPGA resource utili-
zation. Therefore, this paper employs the CORDIC algo-
rithm in the form of fixed-point numbers for trigonometric
functions, inverse trigonometric functions, and open-root
operations in the kinematic solution process.

The unified iterative equations of CORDIC algorithms
for circular, linear, and hyperbolic systems are given as fol-
lows:

xiþ1 ¼ xi − μdi 2−iyið Þ
yiþ1 ¼ yi þ di 2−ixið Þ
ziþ1 ¼ zi − diθi

8><
>:

ð4Þ

where the circular system is μ¼ 1; θi ¼ tan−12−i, the linear
system is μ¼ 0; θi ¼ 2−i, and the hyperbolic system is μ¼ −

1; θi ¼ tan h−12−i.

TABLE 1: Parameter table of the D–H method.

i αi−1 ai−1 di θi
1 0 0 0 0
2 − π=2 a1 0 0
3 0 a2 0 0
4 − π=2 a3 d4 0
5 π=2 0 0 0
6 − π=2 0 0 0

Journal of Robotics 3



The CORDIC algorithm solves the computation of trig-
onometric and inverse trigonometric functions under the
circumferential system, which contains the rotation mode
and the vector mode. The former solves the computation
of trigonometric functions, and the latter is for inverse trig-
onometric functions. In the calculation of Equation (3), there
exist open-root operations in the form of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K2

p
. The

CORDIC algorithm can be computed in the vector mode of
hyperbolic systems.

The coefficients of the iterative Equation (4) of the
CORDIC algorithm are different when performing trigono-
metric functions, inverse trigonometric functions, and open-
root operations, but the implementation principle is the
same. Taking the rotation mode of the circular system as
an example, the operation unit of the iterative Equation (4)
includes three adders, LUT, and two shift operations. The
structure of the iterative processing unit for FPGA imple-
mentation is shown in Figure 2, {xiyizi} is the input parame-
ters of the iterative computing unit, {xiþ1yiþ1ziþ1}is the
output parameter of the iterative computing unit.

The computational accuracy of CORDIC algorithms is
determined by the iteration number. To ensure the compu-
tational accuracy of kinematics, the number of iterations is
chosen to be 16, and the data bit width of 24 bit is selected for
fixed-point computation in this paper. In order to maximize
the computational efficiency of CORDIC algorithm, this
paper adopts a parallel pipeline structure based on FPGA,
and the hardware structure is shown in Figure 3; {x0y0z0} is
the input parameter of the first iteration of the CORDIC
algorithm and {xn−1yn−1zn−1}is the output parameter of the
Nth iteration. Certainly, the number of iterations can be set
according to different accuracy requirements, thus balancing
computational accuracy and resource consumption.

4. Hardware Parallel Solution Method for
Kinematic Equations

On the basis of implementing the calculation of transcenden-
tal functions based on FPGA, this section carries out the
parallel pipeline design of the computation process according

to Equations (2) and (3). Finally gives the parallel computa-
tion hardware structure for the forward kinematics equation
and the inverse kinematics equation, respectively.

4.1. Hardware Parallel Solution Method for the Forward
Kinematic Solution. In the computation process of the kine-
matic forward solution, the logical path with the longest
delay from the input to the output is the critical path, and
the optimization degree of the key path determines the work-
ing speed of the model. In Equation (2), nx; ny; ox, and oy are
the critical paths to calculate the forward kinematic solution,
where nx ¼ c1 c23 c4c5c6 − s4s6ð Þ−½ s23s5c6� þ s1 s4c5c6ð þ c4s6Þ;
ci means cos θi; si means sin θi; cij means cos θið þ θjÞ; sij
means sin θið þ θjÞ. The computational modules can be
divided into different computational modules according to
the order of operations: A×B; AÆ Dð Þ×B, and Að þDÞ×
BÆ C, and each computational module is executed in paral-
lel in different time sequences. In this paper, the nodes are
computed in parallel through the tree structure method. The
entire critical path execution process takes 21 clock cycles
(clk) and requires 11-bit wide hard-core multipliers. The
computational model of the kinematic forward solution nx
is shown in Figure 4, where θi is the joint angle, ci means
cos θi, si means sin θi; cij means cos θið þ θjÞ; sij means
sin θið þ θjÞ, and ri:j is procedure calculated value.

Since each clk performs homotypic structural computa-
tion, the whole computation process can be parallel pipelined
by inserting flow registers. After completing the structure
and timing design of the critical path, it is necessary to per-
form a register leveling process for other computational
paths so as to balance different computational paths and
thus increase the overall working frequency. Since the critical
path has already achieved the lowest latency output, the
parallel pipeline solution of the forward kinematic solution
is completed by inserting registers in other shorter compu-
tational paths, and inserting a pipeline register after dividing
according to the same computational structure and the same
computational timing. Due to the insertion of pipeline reg-
isters into the computational structure, the computation time
of the forward kinematic positive solution increases to 26 clk,
but the data throughput rate is multiplied.

4.2. Hardware Parallel Computation Method for the Inverse
Kinematic Solution. In Equation (3), the joint angle θ1 and θ3
can be calculated as follows:

First: θ1 ¼ arctan py;
À

pxÞ− arctan 0;ð Æ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
px2 þ py2

q
Þ

Second: K ¼ px2þpy2þpz2−2a1c1px−2a1s1pyþa12−a22−a32−d42

2a2
ffiffiffiffiffiffiffiffiffiffiffiffi
a32þd42

p
Third: θ3 ¼ arctan a3;ð d4Þ− arctan K;ð Æ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K2

p
Þ

The process of solving the joint angle θ1 and θ3 involves
trigonometric function, inverse trigonometric function, and
open-root calculation, where the computation of process
data K is the most time-consuming, and its computation
process includes 16 multiplications, one open root, and
one division. Besides, the computation process of joint angle
is serial. In order to improve the computational efficiency of
the kinematic inverse solution, the invariant constants in the
computational process are precomputed. The computational

xi

yi

MSB not

±

±

±

tan–1(2–i)

zi

zi+1

yi+1

xi+1
≫ i

≫ i

FIGURE 2: Iterative computing unit for rotation mode in CORDIC
algorithm.

4 Journal of Robotics



process is parallelized by register leveling, and the computa-
tional models of joint angle θ1 and θ3 are shown in Figure 5,
where θi is the joint angle, ci means cos θi; si means sin θi; ri:j
is procedure calculated value. The denominator term of
the process data K is converted into a fixed-point multipli-
cation that can be executed by the hard-core multiplier. The
results of 1= 2a1 a32 þ d42ð Þ1=2Â Ã

; a12 − a22 − a32 − d42, and
arctan a3;ð d4Þ are obtained by pre-computation, and the

resultant values are used directly in the calculation model.
The parameters required for the trigonometric function of
joint angle θ1 and the solution of joint angle θ3 are calculated
in parallel to reduce the time consumption of joint angle
solution.

Referring to the computational model in Figure 5, the
computation of the entire kinematic inverse solution is com-
pleted. The parallel pipeline design of the entire kinematic

D
Iterative

computing
unit

Iterative
computing

unit

Iterative
computing

unit
D D

i = 0 i = 1 i = N–1 
x0
y0
z0

xn–1
yn–1
zn–1

Pipelining register

FIGURE 3: Hardware structure of parallel pipelining CORDIC algorithm.
CO

RD
IC

c4
×

×

×

×
×

×

×

–

–

+ +

×

×

×

×
c4

c6

c23

c5

c5

s23
s5
s4

s4
s6

s6

r1.1 r2.1

r3.1
r2.2

r2.4

r2.3

r2.5

r1.2

r1.3

s1

c1

r3.2 nx

0 clk 16 clk 17 clk 18 clk 19 clk 20 clk 21 clk

θ1

θ2

θ3

+

θ4

θ5

θ6

FIGURE 4: Computational model of the forward kinematic solution.

px

0 clk 16 clk 33 clk 38 clk 54 clk 70 clk 71 clk

CORDIC

CORDIC CORDIC

CORDICθ1

θ3

sin/ cosθ1
r1.1 = 

r1.2 = 2a1 × px

r2.1 = r1.4 × c1

r4.1 = 1–r3.1
2

r 3
.1

 =
×

r 1
.1

–r
2.

1–
r 2

.2

r2.2 = r1.5 × s1

r1.3 = 2a1 × py

px × px
+ py × py
+ pz × pz

arctan (py, px)

arctan (r3.1, r4.1)

arctan (a3, d4)

py

pz

a1

1
a1

2_a2
2_a3

2_d4
2

2a1 a3
2+d4

2

1
2a

1
a 3

2 +d
42

+ 
a 1

2 –a
22

– 
a 3

2 –d
42 –

FIGURE 5: Calculation model of inverse kinematic solution joint angle.

Journal of Robotics 5



inverse solution is completed by inserting the pipeline regis-
ter into the computational model, and the pipeline period is
208 clk. Therefore, the computation time of the inverse kine-
matic solution is 208 clk.

5. Experimental Verification

To verify the effectiveness of the computational method pro-
posed in this paper, the algorithm is experimented on
XC7A200T FPGA platform, where the joint angles θi and
linkage parameters ai; αi, and di are represented by 21-bit
unsigned numbers, and the poses 0

6T are represented by
24-bit signed numbers, which are calculated using Q20 fixed
points.

5.1. Experiments on Computational Time and Computational
Errors. The computational time is obtained by inserting the
integrated logic analyzer (ILA) IP into the program, configur-
ing the ILA IP to capture program run signal and result output
signal, and then calculating the time difference between the two
signals to obtain the time consumed. The computation time
includes the computation time of the forward kinematic solu-
tion and the inverse kinematic solution. The computational
error is based on the results of the X86 architecture platform,
where the computation time on X86 architecture platform
was deaveraged over 10,000 computations. The computational
results of the algorithm in this paper are obtained by inserting
the virtual input output (Vio) IP core into the FPGA. The input
value of the forward solution computation module is the angle
of the robot’s joint angle after performing the fixed-point trans-
formation, while the inverse solution computation module
inputs the elements of the position matrix into the Vio IP
core after performing the fixed-point transformation.

The experimental results obtained in this paper are com-
pared with other methods on X86 architecture platforms,
advanced reduced instruction set (RISC) machine (ARM)
platforms, DSP platforms, and FPGA platforms as shown
in Table 2.

5.2. Discussion. The parallel computation method proposed
in this paper reduces the computation time by more than 100
times compared with other software computation schemes
for ARM or DSP platforms, and significantly improves the
computation efficiency of the kinematic equations. Com-
pared with the study by Celik et al. [19], the computation
in this paper takes more time, which is due to the application
object of [19] is a 4-degree-of-freedom SCARA robot,
the kinematic equations solving steps and computational

complexity of SCARA robot are less than that of this paper’s
6-degree-of-freedom robot, and importantly this paper proposes
themethod to be able to carry out the parallel flow computation,
the computational efficiency is far more than that in a study
by Çelik et al. [19]. The results of converting the fixed-point
results of the kinematic forward and inverse solutions to
floating-point numbers are compared with those of the
software implementation scheme using single-precision
floating-point numbers, the computational errors are less
than 10−5, and the result is same as in a study by Çelik
et al. [19].

It is worth mentioning that the computational time of the
computation model proposed in this paper is fixed, which
still ensures that the computation period remains unchanged
when the data bit width is increased, the computational
accuracy will be improved accordingly, but the logic resource
consumption of the FPGA will be doubled as well.

6. Conclusions

In this paper, we address the problem of high-real-time com-
putation delay of kinematic equations of multijoint robots,
study the hardware logic computation method of kinematic
equations based on FPGA, and propose a parallel solution
method of kinematic equations based on CORDIC algo-
rithms. In addition, the computational delay of kinematic
forward and inverse solutions is reduced tomicrosecond level,
and the solution process is designed as parallel pipeline com-
putation to further improve the computational efficiency.

The parallel solution method proposed in this study is of
great importance in the motion control of space robots and
ultra-high-speed robots. In future work, the servo control
algorithm and the parallel solution method proposed in
this paper will be considered for implementation in a single
FPGA.

Data Availability

Data were deposited in a public repository.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study is financially supported by the National Natural
Science Foundation of China (202014353).

TABLE 2: Comparison of calculation time and calculation error.

Test platform Architecture Main frequency Computation time Computation errors

i5-8500 X86 3GHz 182 μs —

nRF52832 ARM 64MHz 5.28ms —

TMS320C6713B DSP 50MHz 495 μs —

EP4CE115 FPGA 50MHz 3.48 μs <10−5

XC7A200T FPGA 50MHz 4.68 μs <10−5

Note: The data of the ARM platform was obtained from [24], the data of the DSP platforms was obtained from [32], the data based on FPGA (EP4CE115)
platforms was obtained from [23].

6 Journal of Robotics



References

[1] K. Merckaert, B. Convens, C.-J. Wu, A. Roncone, M. M. Nicotra,
and B. Vanderborght, “Real-time motion control of robotic
manipulators for safe human–robot coexistence,” Robotics and
Computer-Integrated Manufacturing, vol. 73, Article ID 102223,
2022.

[2] L. Wang, L. Chen, Z. Shao, L. Guan, and L. Du, “Analysis of
flexible supported industrial robot on terminal accuracy,”
International Journal of Advanced Robotic Systems, vol. 15,
no. 4, pp. 1–12, 2018.

[3] Y. Kung, B. T. H. Linh, M. Wu, F. Lee, and W. Chen, “FPGA-
realization of inverse kinematics control IP for articulated and
SCARA robot,” inDesign andComputation ofModern Engineering
Materials, vol. 54 of Advanced Structured Materials, pp. 205–213,
Springer, Cham, 2014.

[4] H. Peng, Research on 6-DOF tandem robot kinematic
algorithm and its control system implementation, Master
Dissertation, Hefei University of Technology, 2016.

[5] J. J. Craig, Introduction to Robotics, Machine Industry Press,
2018.

[6] X. Shao, D. Sun, and J. K.Mills, “Anewmotion control hardware
architecture with FPGA-based IC design for robotic manip-
ulators,” in Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006, pp. 3520–3525,
IEEE, Orlando, FL, USA, 2006.

[7] N. Li, Y. Chen, Y. Shi, F. Gao, J. Che, and J. Chen,
“Development of a DSP based control system for a parallel
high-quality tea plucking robot,” in American Society of
Agricultural and Biological Engineers Annual International
Meeting 2015, pp. 1188–1195, Curran Associates, Inc., 2015.

[8] J.-W. Lee and S. Jung, “A tutorial on control implementation
for a collaborative robot in joint space using DSPs,” Journal of
Institute of Control, Robotics and Systems, vol. 28, no. 1,
pp. 28–38, 2022.

[9] E. S. Fiestas and S. G. Prado, “Motion control of a cartesian
robot using a dual-core ARM cortex-A9 system-on-chip
FPGA,” in 2017 Latin American Robotics Symposium (LARS)
and 2017 Brazilian Symposium on Robotics (SBR), pp. 1–6,
IEEE, Curitiba, Brazil, 2017.

[10] Y. Takaki, K. Nagasu, S. Abiko, M. Watanabe, and K. Sano,
“FPGA implementation of a robot control algorithm,” in 2019
24th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pp. 1571–1574, IEEE,
Zaragoza, Spain, 2019.

[11] Y. Ishida, T. Morie, and H. Tamukoh, “A hardware intelligent
processing accelerator for domestic service robots,” Advanced
Robotics, vol. 34, no. 14, pp. 947–957, 2020.

[12] C. V. Duy, “Industrial robot arm controller based on
programmable system-on-chip device,” FME Transactions,
vol. 49, no. 4, pp. 1025–1034, 2021.

[13] R. Chand, R. P. Chand, M. Assaf, P. R. Naicker, S. V. Narayan,
and A. F. Hussain, “Embedded FPGA-based motion planning
and control of a dual-arm car-like robot,” in 2022 IEEE 7th
Southern Power Electronics Conference (SPEC), pp. 1–6, IEEE,
Nadi, Fiji, 2022.

[14] H. Gürsoy and M.Ö. Efe, “Control system implementation on
an FPGA platform,” IFAC-PapersOnLine, vol. 49, no. 25,
pp. 425–430, 2016.

[15] R. Zhang, J. Zhang, Y. Dai, H. Shang, and Y. Li, “Forward and
inverse kinematics of the robot based on FPGA,” Journal of

Nankai University (Natural Science Edition), vol. 51, no. 6,
pp. 18–23, 2018.

[16] Y.-S. Kung, M.-K. Wu, H. L. B. Thi, T.-H. Jung, F.-C. Lee, and
W.-C. Chen, “FPGA-based hardware implementation of
arctangent and arccosine functions for the inverse kinematics
of robot manipulator,” Engineering Computations, vol. 31,
no. 8, pp. 1679–1690, 2014.

[17] R. Wei, M. H. Jin, J. J. Xia, Z. W. Xie, and H. Liu,
“Reconfigurable parallel VLSI co-processor for space robot
using FPGA,” in 2006 IEEE International Conference on
Robotics and Biomimetics, pp. 374–379, IEEE, 2006.

[18] Y. Zhang, H. Sun, Q. Jia, and G. Shi, “Kinematics control for a
6-DOF space manipulator based on ARM processor and FPGA
co-processor,” in 2008 6th IEEE International Conference on
Industrial Informatics, pp. 129–134, IEEE, Daejeon, Korea
(South), 2008.

[19] B.Çelik, A. Ak, and V. Topuz, “Field programmable gate arrays
based real time robot arm inverse kinematic calculations and
visual servoing,” ELECTRICA, vol. 18, pp. 143–150, 2018.

[20] Manupotisreenivasulu and T. Meenpal, “Efficient MUX based
CORDIC on FPGA for signal processing application,” in 2019
IEEE International Conference on Electrical, Computer and
Communication Technologies (ICECCT), pp. 1–6, IEEE,
Coimbatore, India, 2019.

[21] G. Evangelista, C. Olaya, and E. Rodriguez, “Fully-pipelined
CORDIC-based FPGA realization for a 3-DOF hexapod-leg
inverse kinematics calculation,” in 2018 WRC Symposium on
Advanced Robotics and Automation (WRC SARA), pp. 237–
242, IEEE, Beijing, China, 2018.

[22] M. Petko, K. Gac, G. Karpiel, and G. Gora, “Acceleration of
parallel robot kinematic calculations in FPGA,” in 2013 IEEE
International Conference on Industrial Technology (ICIT),
pp. 34–39, IEEE, Cape Town, South Africa, 2013.

[23] W.-C. Chen, C.-S. Chen, F.-C. Lee, and Y.-S. Kung, “FPGA-
realization of the kinematics IP for SCARA robot,”
Microsystem Technologies, vol. 27, no. 4, pp. 1075–1090, 2021.

[24] X. Fan, H. Yan, and D. He, “nverse kinematics of robot based
on zynq platform,” Microcontroller and Embedded System
Applications, vol. 17, no. 2, pp. 18–22, 2017.

[25] M. M. Alam, S. Ibaraki, and K. Fukuda, “Kinematic modeling
of six-axis industrial robot and its parameter identification: a
tutorial,” International Journal of Automation Technology,
vol. 15, no. 5, pp. 599–610, 2021.

[26] M.-A. Cabrera-Rufino, J.-M. Ramos-Arreguín, J. Rodríguez-
Reséndiz, E. Gorrostieta-Hurtado, and M.-A. Aceves-Fernandez,
“Implementation of ANN-based auto-adjustable for a pneumatic
servo system embedded on FPGA,” Micromachines, vol. 13,
no. 6, Article ID 890, 2022.

[27] M.-A. Martinez-Prado, J. Rodriguez-Resendiz, R.-A. Gomez-
Loenzo, G. Herrera-Ruiz, and L.-A. Franco-Gasca, “An FPGA-
based open architecture industrial robot controller,” IEEE
Access, vol. 6, pp. 13407–13417, 2018.

[28] D. He, F. Liu, and F. Wang, “Optimal design of industrial
robot kinematics algorithm,” Journal of Physics: Conference
Series, vol. 1624, no. 4, Article ID 042029, 2020.

[29] D. L. Pieper, The kinematics of manipulators under computer
control, Phd Thesis, Stanford University, 1968.

[30] Y. Zhong, J. Wu, X. Liu, P. Gao, and X. Duo, “A high-precision
inverse tangent solution based on CORDIC algorithm,”
Applications of Electronics Technology, vol. 48, no. 1, pp. 12–
17, 2022.

Journal of Robotics 7



[31] J. S. Walther, “A unified algorithm for elementary functions,”
in AFIPS ’71 (Spring): Proceedings of the May 18-20, 1971,
Spring Joint Computer Conference, pp. 379–385, Association
for Computing Machinery, 1971.

[32] Y. Zhang, Design and implementation of minimally invasive
surgical robot control system based on CAN network, Master
Dissertation, Nankai University, 2015.

8 Journal of Robotics




