
Research Article
Assembly Sequence Planning for Rectangular Modular
Robots with Accessibility Constraints

Anelize Zomkowski Salvi 1 and Henrique Simas2

1Department of Control, Automation and Computation, Federal University of Santa Catarina, Blumenau 89036-002, Brazil
2Department of Mechanical Engineer, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil

Correspondence should be addressed to Anelize Zomkowski Salvi; anelize.salvi@udesc.br

Received 3 November 2022; Revised 28 August 2023; Accepted 8 September 2023; Published 25 November 2023

Academic Editor: Bingxiao Ding

Copyright © 2023 Anelize Zomkowski Salvi and Henrique Simas. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Product assembly is the final step in a manufacturing process where the individual components of a product are joined together.
Assembly sequence planning (ASP) can be defined as the problem of finding a collision-free sequence of operations that allow the
product assembly. Considering that during assembly individual modules cannot pass through a gap only as large as a module side,
the ASP problem can be extended to modular robots, more specifically to rectangular modular robots. The main ASPs presented in
the literature that are applicable to rectangular modules do not allow configurations with narrow corridors, i.e., corridors which are
too narrow for a robot to transverse. Furthermore, these ASPs do not allow preassembled substructures or the free selection of the
assembly starting point. Thus, the main goal of this work is to extend the classes of rectangular modular robot configurations that
can be assembled without violating the accessibility condition. This paper introduces three novel ASP for constructing planar target
structures composed of rectangular modular robots. Each ASP is adequate for a different scenario. Original implementation results
and mathematical proofs for the three novel ASPs are also presented. To the best of the authors’ knowledge, this is the first work
that presents, considering the accessibility condition, how to obtain centralized ASPs for assembling planar structures composed of
rectangular modules with narrow corridors. Furthermore, the novel ASPs allow structures composed of subsets of preassembled
modules and configurations with internal holes. They also allow the choice of the assembly starting point. Moreover, the third ASP
proposed in this work allows achieving discontinuous assembly paths, i.e., wherever possible, the ASP allows a novel module to not
connect to the latest added robot.

1. Introduction

Product assembly is the final step in the manufacturing pro-
cess, where the individual components of a product are
joined together. Assembly sequence planning (ASP) can be
defined as the problem of finding a collision-free sequence of
operations that allow the product assembly. According to Su
[1], the purpose of the ASP is to determine a proper sequence
of components and assembly operations. With the ordered
sequence, the components can be located at the specified
positions and fixed within the assembly operations to con-
struct the final product. An inclusive review on assembly
sequence generation and its automation can be found in a
study by Bahubalendruni and Biswal [2].

ASP is one of the best known production scheduling
problems, which has been proved to be a NP-hard problem,
and ASP is a typical combinatorial explosion problem with
the increase in the number of components in products [3]. A
NP-hard problem is at least as hard as the hardest problems
in NP. A decision problem H is NP-hard when for every
problem L in NP, there is a polynomial-time many-one
reduction from L to H. Concerning the assembly of mechan-
ical products, according to Ghandi and Masehian [4], assem-
bly generation methods can be divided into four general
categories:

(1) Human interaction methods: This approach relies on
user responses to a set of questions [5, 6].

Hindawi
Journal of Robotics
Volume 2023, Article ID 3264369, 20 pages
https://doi.org/10.1155/2023/3264369

https://orcid.org/0009-0002-0594-2892
mailto:anelize.salvi@udesc.br
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3264369


(2) Geometric feasible reasoning approaches: These
methods plan feasible assembly paths [7–12]. Recent
methods also include an analysis about the ASP geo-
metric feasibility along principal axes [13–15].

(3) Knowledge-based reasoning approaches: This approach
considers geometrical and non-geometrical informa-
tion, as human reasoning about the assembly process
[16–18].

(4) Intelligent methods: These methods use multiple tech-
niques as neural networks [19], heuristics [20–22],
and optimization [23], among others.

It is important to notice that, in order to perform parallel
assemblies, the problem of achieving mechanical stability
during the assembly steps and the problem of identifying
subassembly detection must be addressed. In this context,
different approaches, including knowledge-based reasoning
approach and intelligent methods, can be found in a study by
Gulivindala et al. [24], Gulivindala et al. [25], Bahubalen-
druni et al. [26], Bahubalendruni and Biswal [27], and Bahu-
balendruni et al. [28].

The problem of determining an adequate assembly
sequence can be extended to scenarios other than mechanical
assemblies, for example, it can be extended to modular
robots. Modular robots are robots capable of changing their
morphology in order to perform various tasks and in order to
adapt to different environments. For example, they can be
employed to construct large marine structures, out in space,
or even to construct furniture. For these robots, the problem
of finding a sequence of collision-free operations necessary
for bringing a configuration together can be regarded as the
problem of finding an assembly sequence that ensures easy
accessibility for individual modules.

Paulos et al. [29] and Seo et al. [30, 31] first addressed the
ASP problem for modular robots. More specifically, they
were the first authors to address the problem of how to
determine an ASP for structures composed of rectangular
modular robots. An important constraint must be consid-
ered during assembly: individual modules cannot pass
through a gap only as large as the module side.

Paulos et al. [29] and Seo et al. [30, 31] considered the
problem of constructing large scale floating structures in
order to accelerate humanitarian missions or disaster relief.
This can be achieved by assembling together many self-
propelled shipping containers whose dimensions are speci-
fied by the International Standards Organization (ISO).

These ISO shipping containers are regarded as robotic
boats or modules.

By considering such constraints for rectangular modules,
Paulos et al. [29] and Seo et al. [30, 31] introduced the
assembly problem for rectangular modules, which is
addressed in this paper. However, their ASPs can only be
applied to a restricted subclass of structures. More precisely,
their ASPs do not allow configurations with narrow corri-
dors, i.e., corridors that are too narrow for a robot to trans-
verse. Furthermore, their ASPs do not allow preassembled
substructures or the free selection of the assembly starting
point.

Thus, the main goal of this work is to extend the classes
of rectangular modular robot configurations, which can be
assembled without violating the accessibility condition when
compared to the main centralized ASPs in literature for
modular robots [29–31]. Furthermore, as the classical ASPs
for assembling mechanical parts were not applied for modu-
lar robots, this work can be only directly compared with the
works of Paulos et al. [29] and Seo et al. [30, 31].

In this context, this work presents three novel ASPs for
rectangular modular robots considering the same accessibil-
ity condition, as in a study by Paulos et al. [29] and Seo et al.
[30, 31]. These novel ASPs can be successfully applied for
different situations and can assembly novel classes of config-
urations, not solved in literature [32]. The main limitation is
the overall complexity, which is discussed in detail in Section:
Mathematical proofs for the proposed ASPs.

To the best of the author’s knowledge, this is the first
work that presents, considering the accessibility condition,
how to obtain a centralized ASP for assembling planar struc-
tures composed of rectangular modules with the following
characteristics:

(1) With narrow corridors, i.e., corridors that are too
narrow for a robot to transverse.

(2) Composed of subsets of preassembled modules and
configurations with internal holes.

(3) Choosing the ASP starting point.
(4) Achieving discontinuous assembly paths, i.e., wher-

ever possible, the ASP allows a novel module not to
be connected to the latest added robot.

It is important to notice that the accessibility condition
imposed by Paulos et al. [29] and Seo et al. [30, 31] is gener-
ally employed for modular robots. In a study by Naz et al.
[33], for example, this condition is considered to simplify the
self-reconfiguration of cylindrical lattice-based modular
robots. More specially, the method in a study by Naz et al.
[33] maintains an empty cell between cylindrical modules
during reconfiguration. Furthermore, in a study by Salvi
et al. [34], the authors address the problem of assembling
target structures composed of subsets of modules forming
independent and free-flying robots. These configurations are
considered without internal holes and with the same con-
straints, as in a study by Paulos et al. [29] and Seo et al. [30, 31].

There is an extensive literature on the self-assembly of
modular robots with techniques in different directions
[35–37]. However, in this correlated problem, the robots
are not usually free flying. In this context, in a study by Tucci
et al. [38], a distributed self-assembly algorithm for avoiding
unfeasible docking positions, similar to the constraints
imposed by Paulos et al. [29] and Seo et al. [30, 31], is pre-
sented. This algorithm for self-reconfiguration of modular
robots has similar complexity to the herein presented cen-
tralized algorithm for free-flying rectangular modules.

Other important correlated problems are the autonomous
robotic assembly of target modular structures [39–43] and the
path planning problem. According to Orozco-Rosas et al.
[44], path planning is the problem of the autonomous

2 Journal of Robotics



navigating a mobile robot, where the objective is to conduct
an autonomous mobile robot from one (start) position to the
goal (final) position in an optimal and safe manner.

It is important to notice that this paper does not focus on
the path planning problem. In fact, it only addresses the
problem of determining an adequate assembly sequence for
modular robot assembly, i.e., when each module or structure
can be moved to its desired position in order to avoid con-
flicts during the assembly process. Thus, it is considered that
during assembly, a path planning strategy should be applied
in order to move each module or structure to its desired
position.

According to Orozco-Rosas et al. [45], the path planning
problem is a fundamental issue in mobile robot navigation
because of the need of having algorithms to convert high-
level specifications of tasks from humans into low-level
descriptions of how to move. Inclusive surveys on path plan-
ning can be found in a study by Abujabal et al. [46], Lin et al.
[47], Sánchez-Ibáñez et al. [48], and Patle et al. [49]. As
example of possible path planning adequate for this problem,
in a study by Kelly [50] and Gheneti et al. [51], a trajectory
planning for shape shifting between configurations com-
posed of rectangular robotic boats with the same accessibility
conditions addressed in this paper is presented.

Furthermore, the results presented in this study can be
extended to address the assembly process of modular micro-
positioning stages (MPS). This class of problems involves
creating products capable of fulfilling various functions
through the combination of distinct blocks. The ongoing
trend of product miniaturization in diverse industrial
domains has given rise to an increasing demand for MPS
capable of executing micromanipulation and microassembly
tasks with submicrometer or nanometer precision. These
MPS play a pivotal role in achieving ultra-high precision
while miniaturizing products in accordance with the emerg-
ing industrial trend [52].

In order to ensure broader adoption of flexure-basedMPSs,
two critical challenges must be addressed: achieving superior
performance and maintaining cost-effectiveness. Presently, the
design and fabrication processes for MPSs are both time-
consuming and costly. Custom configurations are often tai-
lored to specific applications, resulting in limited flexibility
for broader usage. Consequently, the development of more
adaptable and cost-efficient MPSs has become a pressing con-
cern in the realm of micromanipulation and microassembly
technology. For researchers interested in exploring relevant
designs and gaining a comprehensive understanding of this
topic, a comprehensive bibliographic review can be found in
a study byWu and Xu [53], Ding et al. [54], and Liao et al. [55].

In the next section, the materials and methods and basic
definitions necessary for introducing the ASPs proposed in
this paper are presented.

2. Materials and Methods

This paper introduces three novel ASP for constructing pla-
nar target structures composed of rectangular modular
robots. Each ASP, as will be further explained in this section,

is adequate for a different scenario as, for example, for
assembling configurations with or without internal holes
composed of robot modules or of subsets of modules. How-
ever, before introducing the main characteristics of the pro-
posed ASPs, some basic definitions must be discussed.

During assembly, the following condition about accessi-
bility must be verified for all the ASPs proposed in this paper:
any rectangular module cannot pass through a gap only as
large as a side of a module between two physical robots
already assembled in the structure [29]. Figure 1 shows two
scenarios where the accessibility condition is not verified.
This accessibility condition, first stated in a study by Paulos
et al. [29], is incorporated into the three novel ASPs because it
models common mechanical constraints found in modular
robots. Other constraints can be easily incorporated into all
the ASPs. Also, the ASPs herein proposed extend the classes of
structures that can be assembled without accessibility issues
when compared to those proposed in literature. Thus, in order
to compare the ASPs proposed in this work with the methods
found in literature, the same constraints introduced in a study
by Paulos et al. [29] are herein employed.

Given a configuration, if the accessibility condition is not
satisfied for any of its module, then the configuration is
considered to have a narrow corridor [29]. In these config-
urations, a site(s) to be occupied by a module can only be
reached by passing through a gap at most as large as the edge
of a robot, as shown in Figure 1. It is important to notice that
the ASPs herein proposed can assembly different classes of
configurations with narrow corridors where the main algo-
rithms in literature cannot be applied [29].

A configuration is considered composed of shape hetero-
geneous modular robots or robot systems for simplicity, if it
is composed of subsets of modules forming independent and
free-flying robots. Each of these robots is a collection of
rectangular modules, where each robot module is repre-
sented by the coordinates of its centroid. This situation is
shown in Figure 2(a) where a configuration composed of 12
different subrobots labeled from A to L is presented, along
with the x− y coordinate system [34].

An ASP is considered path continuous if the configura-
tion is constructed in a continuous path, i.e., in each itera-
tion, wherever it is possible, the novel robot connects to the
latest added robot. This implies that at each iteration, if the
previously added robot has a neighbor that can be added to
the structure, the ASP must add this neighbor module to the

y

x

C

BA

ðaÞ

C

A B

ðbÞ
FIGURE 1: The gap between A and B blocks module C, thus the
configurations present narrow corridors.

Journal of Robotics 3



structure. Otherwise, the ASP must search for a robot already
in the structure that has neighbors to add. In this context, the
algorithm is similar to a depth-first search in a graph where
the search starts at a selected root node and explores as far as
possible along each branch before backtracking [56].

The path continuous assembly is shown in Figure 2(c)–2(i),
where the configuration, as shown in Figure 2(a), is assembled.
The assembly sequence tree is shown in Figure 2(b). It can be
noticed that the novel robot system is preferably added by the
previously added one. In the step, as shown in Figure 2(i), this
fact does not happen. In fact, in this step, the novel robot
system G is not added by the previously added one, robot
system A. The reason is that the robot system A has no novel
neighbors to add to the structure. Thus, as shown in Figure 2(i),
the ASP searches for an already assembled robot, which has
neighbors that can be added to the robot system. Then, the
robot systemD finally adds robot systemG to the structure. It is
important to notice, however, that wherever a novel module or
robot system is assembled by the herein proposed ASPs, the
accessibility condition is always guaranteed. Thus, the process
can be regarded as a conventional depth-first search with the
introduction of the accessibility condition.

The first two ASPs differ because only ASP2 can be
applied for configurations with internal holes, as shown in
Figure 3. In this figure, the path continuous construction is
obtained by allowing a novel robot system to be assembled by
the previous robot systems or by the previously added holes.
In fact, the holes are also herein modeled as robot systems.

The third ASP, ASP3, however, uses holes as a way to
traverse the configuration in a noncontinuously way, i.e.,
shifting back and forth from the boundary of the holes.
This situation is shown in Figure 4 where the arrows repre-
sent the assembly order and h1, h2, and h3 represent the
figure’s internal holes.

Table 1 summarizes the use cases of the three novel ASPs
proposed in this text.

In the ASPs proposed in this text, the problem of determin-
ing an assembly order can be regarded as the problem of choos-
ing a path to transverse the whole structure adding as many
robots as possible without violating the accessibility condition.

In this paper, the target structure is modeled as an undi-
rected graph: each module is represented by a vertex and
neighbors relations are represented by edges. Furthermore,
powerful tools of graph theory [56] are applied in order to
find an assembly sequence that does not violate the accessi-
bility condition, i.e., a feasible path to transverse the graph.

Next sections introduce the novel ASPs, which constitute a
complete and original method to assemble target structures with
or without internal holes, composed of modular robots or of
shape heterogeneous modular robots with the possibility of
allowing discontinuous assembly paths. Furthermore, in the pro-
posed ASPs, the assembly starting point can be freely chosen.

2.1. ASP1: Novel ASP for Path Continuous Construction of
Configurations without Internal Holes. In the three novel
ASPs, G is the class that contains information about the target

F

F F E G G G I I

H G I

H H H

I

J J J

F E E D I I K L J

F

1

0 1 2 3 4 5 6 7 8 9 10 11 x

2

3

4

5

6

7

y

C E D K L J

C D D

C B B

A A A

K L L L

ðaÞ

F

C

B

A

E

D G

ðbÞ

×

× ×

×

×

ðcÞ

×

×

×

ðdÞ

×

×

×

×

ðeÞ

×

×

××

ðfÞ
× ×

ðgÞ
× × ×

ðhÞ

× ××

×

ðiÞ
FIGURE 2: (c–i) Path continuous ASP for the configuration, as shown in (a). (b) The ASP tree.

4 Journal of Robotics



structure and about the ASP. The target structures can be repre-
sented by an undirected graph in the adjacency list form: a vertex
represents a module or a robot system and an edge represents a
neighbor relation betweenmodules or between robot systems. In
the class G, as introduced by Salvi et al. [34]:

(1) G.adj[s] is the adjacency list of element s; in other
words, the list of robots that are neighbors of s in the
target structure.

(2) G.Tree[s] is the list of elements added to an element s
during the assembly process.

(3) G.parent(s) is the parent of element s in the assembly
process.

2.1.1. Algorithm 1: Main Procedure for ASP1. In order to
introduce the novel ASP for path continuous construction,
the case where configuration’s have no internal holes is

G G G H H

H

C H

C D

E

E

E

A

A A A

B B

F F

F

F

D D D

C

C

G

ðaÞ

×

× × ×

ðbÞ

× ×

ðcÞ

×

×

×

×

ðdÞ

×

×

×

ðeÞ

×

×

× ×

ðfÞ

×

× ×

×

ðgÞ

×

×

× ×

ðhÞ

×

× ××

ðiÞ
FIGURE 3: (b–i) Path continuous ASP for the configuration, as shown in (a), with robot system A as starting point.

h1 h2 h3

ðaÞ
Start ×

ðbÞ
Start

×

ðcÞ

×
Start

ðdÞ
FIGURE 4: (b–d) An example of ASP3 for modular construction allowing discontinuous assembly paths for the configuration in (a).

TABLE 1: Novel ASPs use cases.

Modular rectangular robots
Robot
systems

Path continuous assembly Internal holes Path discontinuous assembly

ASP1 ✓ ✓ ✓ — —

ASP2 ✓ ✓ ✓ ✓ —

ASP3 ✓ ✓ ✓ ✓ ✓

Journal of Robotics 5



first considered. This ASP was first presented by Salvi
et al. [34].

This first ASP for path continuous construction can be
applied for both configurations composed of rectangular mod-
ules by robot systems. Also, the ASP starting point can be
freely chosen. Furthermore, the ASP for configurations with
internal holes is an extension of the case herein discussed.

First, let us consider robots F, E, C, and G, as shown in
Figure 5(a). The main idea is to transverse the structure in its
depth, as in a depth-first search. Thus, each robot can add
one of its neighbors if the accessibility condition is satisfied
for this neighbor robot. If an accessibility issue is encoun-
tered while adding a novel robot to the structure, the proce-
dure disassembles some of the structure’s parts until the
accessibility issue is solved.

Two cases with accessibility issues can arise during the
assembly process of a robot w:

(1) The accessibility issue is caused by w’s parent in the
process.

(2) The accessibility for w is caused by another robot
already added to the ASP.

For the first case, where the accessibility issue for w is
caused by w’s parent in the process, consider the configura-
tion, as shown in Figure 5(a). As shown in Figure 5(b), in
steps 1–2, the ASP visits F→ E→G. At the end of step 2, as G
has no neighbor to add, the procedure tries adding a new
neighbor of G’s parent, robot E. At this point, the only undis-
covered neighbor of E is robot C. However, C cannot be
added to the structure (step 3, as shown in Figures 5(a)
and 5(b)) without violating the accessibility condition.
Thus, in order to achieve an ASP without accessibility issues,
C’s parent, robot E, must be deleted from the growing struc-
ture; otherwise, the accessibility issue remains for robot C.

Furthermore, as E has added robot G, this implies that G
must also be deleted from the growing structure. If G had
added any neighbors to the growing structure, those neigh-
bors should also be deleted. In other words, if E is deleted
from the structure, all the assembly branches starting at E
must be deleted. After the branch is deleted, the search can
return to the previously added robot, in this case, F. New

neighbors of F can be explored (step 4, as shown in Figure 5(b)).
Finally, the correct sequence F→C→E→G can be encoun-
tered (steps 4–6, as shown in Figure 5(b)).

For the second case of accessibility issue, where the acces-
sibility issue for a robot w is not caused by w’s parent but for
another robot already added to the growing structure, con-
sider the structure composed of robot systems I, J, K, and L,
as shown in Figure 6(a).

Consider that robot systems I and J are connected to the
growing structure in I→ J order. For the remaining robot
systems K and L, there are two possible assembly orders
I→ J→K→ L or I→ J→ L→K. Let’s analyze each case:

(i) Sequence I→ J→K→ L (Figure 6(b)): Due to the
accessibility issue, L cannot be added to the structure.
Thus, L’s parent, robot K must be deleted from the
structure. Thus, by the end of this cycle, I− J can be
added to the structure as opposed to robots K− L.

(ii) Sequence I→ J→ L→K (Figure 6(c)): Due to the
accessibility issue, K cannot be added to the struc-
ture. Thus, K’s parent, robot L must be deleted from
the structure. Thus, by the end of this cycle, I− J can
be added to the structure as opposed to robots K− L.

This situation occurs because the accessibility issue is not
directly caused by the parents of any novel added robots (L orK),
but it is caused by robot J. Thus, in order to solve the accessibility
issue, J should be deleted from the structure and, eventually, a
correct assembly order, as I−K−L− J, can be found.

These cases are comprised in the first ASP, Algorithm 1
(AssemblyOrder), which is briefly explained in the next para-
graphs. A complete proof that the procedure only assembles
configurations in a continuous path and without accessibility
issues is presented in Section: Mathematical proofs for the
proposed ASPs.

When the assembly process is initialized, there are no
robots in the structure, i.e., in terms of graph theory, all
vertices are initially marked as undiscovered. A robot s is
selected as the starting point for the assembly process.

Then, Algorithm 1 (AssemblyOrder) is called.
Call the procedure for a starting robot s: AssemblyOrder

(G, s)

F
G

C

E
(1)

(2)

(3)

ðaÞ

F

Step 1 Step 4

G C

Step 2 Step 3

C

E

E

Step 5

G

Step 6

ðbÞ
FIGURE 5: (a) If the algorithm places F→E→G and then E placing robot C, an incorrect assembly sequence is encountered. Thus, the parent
of C, robot E, must be deleted from the structure along with G, the unique robot belonging to E’s assembly tree branch (represented in (b)).

6 Journal of Robotics



(1) Line 1: Add s to the structure (label s as discovered).
(2) Lines 2 and 3: Select a neighbor robot w of s that is

not in the structure (undiscovered).
(3) Line 4: Check if it is possible to add w (verify acces-

sibility condition, which will be explained by Algo-
rithm addEdge); if it is possible, continue, otherwise,
go to line 9.

(4) Lines 5–7: Add w to the structure and mark s as
parent of w.

(5) Line 8: Call recursively the procedure AssemblyOr-
der (G, w), i.e., continue searching “deeper” for new
robots (as in a depth-first search).

(6) Lines 9–12: If w cannot be added to the structure,
then w’s parent, s, cannot be added to the structure.

(7) These lines comprise the first case of accessibility issues,
where the accessibility issue for a robot w is caused by
w’s parent in the process and shown in Figure 5.

(8) Lines 13–16: Given a robot s, when the recursion
explores all neighbors of s, if any of these neighbors

is still not added to the structure, then s cannot also
be added to the structure.

(9) These lines comprise the second case of accessibility
issues, where the accessibility issue for a robot w is
not direct caused by w’s parent in the process and
shown in Figure 6.

Finally, the main Algorithm 1 (AssemblyOrder), with the
steps explained above, is herein presented. This algorithm
contains the necessary steps to plan the sequence in which
the robots are added to the structure.

It calls another two auxiliary procedures: Algorithm 2
(addEdge), which determines when a new robot can be
added to the growing structure and Algorithm 3 (deleteB-
ranch), which gives a strategy to delete a not allowed robot
from the growing structure. These two algorithms are pre-
sented in the next subsections.

Next, two subsections present Algorithm 2 (addEdge)
and Algorithm 3 (deleteBranch), respectively.

I I

I I J J

I I K L

K L

K L

J

J

J

L L

ðaÞ

I I
(1)

(2)

(3)

(4)

I I J J

I I K

L

K

L

K

L

J

J

J

L L

ðbÞ

I I
(1)

(2)

(4)
(3)

I I J J

I I

K

L

K

L

K

L

J

J

J

L L

ðcÞ
FIGURE 6: Due to the accessibility issue in (a), robot systems L and K cannot be added to the growing structure in cases (b) and (c), respectively.

1: Label s as discovered

2: For each vertex w in G.adj[s] do

3: If vertex w is labeled as undiscovered then

4: If w can be added to the structure (addEdge (G, w) is true) then

5: G.Tree[s]←w

6: G.parent(w)= s

7: Label w as discovered

8: AssemblyOrder (G, w)

9: Else

10: deleteBranch (G, s)

11: Label s as undiscovered

12: Return

13: If exists w in G.adj[s] marked as undiscovered then

14: deleteBranch (G, s)

15: Label s as undiscovered

16: Return

ALGORITHM 1: AssemblyOrder (G, s).

Journal of Robotics 7



2.1.2. Algorithm 2 (addEdge): Conditions to Add a New Robot
to the Target Structure. The next algorithm, first presented by
Salvi et al. [34], gives a procedure to determine if a new robot
can be added to the growing structure. Wherever a new robot
s is added to the growing structure:

(1) Construct oriented edges ending in s and starting in
the s’s already added neighbors.

(2) Check if these edges are in conflict, i.e., if exists
north–south or east–west edge pairs.

(3) If no conflict occurs, the new robot can be added to
the growing structure. Otherwise, an accessibility
issue was encountered.

For example, as shown in Figure 7(a), robot J is added to
the configuration composed only of robot K, thus edge K→ J
is created. As shown in Figure 7(b), robot L is added to the
configuration composed of robots K and L, thus edges K→ L
and J→ L are created.

As shown in Figure 7, each edge can receive one to four
labels: north, south, east, and west according to the following
rule. An edge from robot A to robot B (edge A→B) is
labeled as:

(1) North: If adjacent modules a 2 A and b 2 B exist such
that module a is at the north of module b (ax= bx and
ay= by+ 1).

(2) South: If adjacent modules a 2 A and b 2 B exist such
that module a is at the south of module b (ax= bx and
ay= by− 1).

(3) East: If adjacent modules a 2 A and b 2 B exist such
that module a is at the east of module b (ay= by and
ax= bx+ 1).

(4) West: If adjacent modules a 2 A and b 2 B exist such
that module a is at the west of module b (ay= by and
ax= bx− 1).

Where (ax, ay) and (bx, by) are the coordinates of modules
a and b, respectively. The horizontal and vertical axes are,
respectively, the x- the y-axis.

Thus, in order to determine if a new robot s can be added
to the whole structure, Algorithm 2 (addEdge) considers all
edges arriving in s. These edges start at s’s neighbors already
added to the growing structure. addEdge checks if these
edges are in conflict, i.e., if exists north–south or east–west
edge pairs. If no conflict occurs, the algorithm returns true,
signalizing that the new robot can be added to the growing
structure. Otherwise, it returns false.

2.1.3. Algorithm 3 (deleteBranch): Deleting a Branch from the
Structure. For a better understanding of Algorithm 3, first
presented by Salvi et al. [34], consider that an element smust
be deleted from the assembly planning. An example of this
procedure is shown in Figure 5(b), more precisely in step 3.
In that step, robot E tried adding robot C. Due to the acces-
sibility issue, C could not be added to the growing structure.
Thus, Algorithm 1 (AssemblyOrder) called the deleteBranch
procedure for robot E (C’s parent). As E had added robots G,
E and G were both deleted from the growing structure. If G
had added any neighbors to the growing structure, those
neighbors would have been deleted in an analogous process
and so on.

Furthermore, in order to delete a robot from the struc-
ture, the robot must be marked as undiscovered and deleted
from its parent’s tree. As shown in Figure 5(b), deleteB-
ranch(E):

(1) Marks E as undiscovered and deletes it from its par-
ent tree, in this case from G.Tree[F].

(2) Marks G, a child of E, as undiscovered and deletes it
from G.Tree[E].

The discussion suggests a recursive implementation of
the deletion process, marking element’s as undiscovered
and deleting them from their parent’s tree. Algorithm 3
summarizes this idea.

1: For each vertex w in G.adj[s] do

2: If vertex w is labeled as discovered then

3: Create edge (w, s)

4: Check if any created edges are in conflict

5: If A conflict occurs then

6: Return false

7: Else

8: Return true

ALGORITHM 2: addEdge (G, s).

1: Remove s from G.Tree[parent(s)]

2: While G.Tree[s] is not empty do

3: Pop the first element w from G.Tree[s]

4: Mark w as undiscovered

5: deleteBranch (G, w)

ALGORITHM 3: deleteBranch (G, s).

(8, 5)

(8, 4)
S

K

J

ðaÞ

(9, 5)

(9, 4)

W

N,E

J

K L

(8, 4) (10, 4)

ðbÞ
FIGURE 7: (a) Robot J is added to the configuration composed only by
robot K, thus edge K→ J is created. (b) Robot L is added, thus edges
K→ L and J→ L are created.

8 Journal of Robotics



In Section 5, applications of ASP1 for configurations
composed of robot systems without internal holes are pre-
sented. Also, the algorithm’s main properties and mathemat-
ical proofs are discussed.

3. ASP2: Novel ASP for Continuous Construct
Configurations with Internal Holes

In this section, ASP1 is extended for target structures with
internal holes. In order to perform this extension, holes are
regarded as one or more robot systems. Furthermore, addi-
tional rules, original contributions of this work, are herein
introduced.

First, internal holes are regarded as robot systems; other-
wise, accessibility issues might not be detected by addEdge.
Furthermore, in order to avoid accessibility issues for robots
docking to the structure, internal holes are modeled by con-
tinuous modular systems parallel to the x- or y-axis. For
example, the internal hole, as shown in Figure 8(a), can be
modeled as three continuous robot systems parallel, respec-
tively, to the x- or y-axis. This is shown in Figures 9(a) and
9(b), where the holes are labeled as h1, h2, and h3.

An incorrect modeling for the hole in Figure 8(a) is
shown in Figure 8(b) where the hole is modeled as a unique
robot system h1. This modeling is considered incorrect
because robot system C cannot be assembled in C→ h1 or

h1→C order, as shown in Figure 8(c). In fact, as shown,
respectively, in Figures 8(d) and 8(e), robot system C induces
conflicting edges west–east in h1 and vice versa. Thus,
addEdge would not allow neither the assembly sequence
C→ h1 nor the assembly sequence h1→C.

In the next paragraphs, the additional rules for the sec-
ond ASP are discussed. First, let us consider that in order to
assembly connected configurations, any robot must connect
to at least one other robot already in the target structure. The
only exception is the first added robot which is allowed to
connect only to previously added holes.

This discussion is summarized in Rule 1.
Rule 1: If a new robot system s is added to the growing

structure, then s must connect with another robot system
already in the growing structure. The only exception is if s is
the first robot system added to growing structure.

Furthermore, as holes are regarded as continuous robot
empty spaces, parallel, respectively, to the x- or y-axis, holes
are allowed to connect with other holes at any point. This
discussion is summarized in Rule 2 and an example of its
application is shown in Figure 10.

Rule 2: If a hole h is added to the growing structure, then h
is not required to connect with any robot system already
present in the growing structure.

By modeling any internal hole as described above and by
applying Rules 1 and 2, ASP1 can be extended successfully to

h2

M

N

O

P
y

x

H

G

F

Q

L K J

D

I

A B

C

E

h1 h3

ðaÞ

M

N

O

P

H

G

F

Q

L K J

D

I

A B

C

E

h1 h2 h3

ðbÞ
FIGURE 9: The internal hole, as shown in Figure 9(a), can be modeled as three continuous robot systems parallel, respectively, to the x- or
y-axis, as shown in (a) and (b), respectively.

M

N

O

P

H

G

F

Q

L K J

D

I

A B

C

Internal hole

E

ðaÞ

h1

M

N

O

P

H

G

F

Q

L K J

D

I

A B

C

E

ðbÞ

h1

C

ðcÞ

E W

h1

C

ðdÞ

W E

h1

C

ðeÞ
FIGURE 8: (a) A target structure with an internal hole. (b) If the internal hole is modeled as a singular robot system h1, the target structure
cannot be assembled. In fact, robot system C cannot be assembled in C→ h1 or h1→C order (c). As shown, respectively, in (d) and (e), robot
system C induces conflicting edges in h1 and vice versa.

Journal of Robotics 9



configurations with internal holes obtaining ASP2. Further-
more, if the holes are regarded as robot systems, ASP2 con-
structs the configuration in a continuous path, i.e., each
novel robot is added by the previously added robot or by a
previously added hole, which is modeled as a robot system.

Thus, incorporating Rules 1 and 2 into AssemblyOrder,
Algorithm 1, a novel algorithm, Algorithm 4, is obtained. In
Algorithm 4, any robot system representing a hole is refer-
enced only as a hole, and real robot systems are referenced
only as robot systems. If an element s has any holes as
neighbors, those holes must be the last elements in s’s adja-
cent list, i.e., in G.adj[s] because the model proposed in this
thesis uses the holes as the last resource to transverse the
configuration.

(1) Rule 1 is summarized in Lines 5–13 of Algorithm 4.

Suppose that a robot system s is trying to add a new robot
system w. If smodels a hole and w is not the first added robot
system, Rule 1 requires that robot system w connects with
another robot system z already present in the structure.
Thus, in Line 6, the algorithm searches for such robot system
z. If z is found, the parent of w can be the robot system z or
the hole s. However, if the hole s is chosen as a parent, the
ASP will not reflect the mechanical docking between robots
w and z. Thus, in Lines 7 and 8, w is added to G.Tree[z] and z
is marked as w’s parent, respectively. Then, the algorithm can
search for new neighbors of w, i.e., AssemblyOrder (G, w) is
called in Line 9. If s is not a hole or w is the first added robot
system, the usual procedure of AssemblyOrder must be per-
formed, which is done in Lines 11–13.

(1) Rule 2 is summarized in Lines 11–13 of Algorithm 4.

Suppose that a robot system s is trying to add a hole w.
Thus, by Rule 2, w is not required to connect with any robot
system already in the growing structure. This implies that the
usual procedure of AssemblyOrder must be performed,
which is done in Lines 11–13.

ASP2, a novel contribution of this work, is adequate for
shape heterogeneous modular robots but it is also able to
treat cases of modular construction not treated in literature.
Consider, for example, the configurations, as shown in
Figure 11. The ASPs of Paulos et al. [29] and Seo et al.

[30, 31] are not able to assemble any of these configurations
because these configurations have internal holes and narrow
corridors. However, except for the configuration, as shown in
Figure 12(d), the configurations can be assembled without
violating the accessibility condition for any module. In other
words, the configurations can be assembled without accessi-
bility issues.

ASP2 can assemble the first three configurations, as
shown in Figure 11, without violating the accessibility con-
dition for any module. Furthermore, it does not return an
assembly sequence, as shown in Figure 12(d). This result is
correct because this configuration cannot be assembled with-
out violating the accessibility condition for at least one mod-
ule. The assembly sequences for the first three cases, as
shown in Figure 11, are shown by the arrows, as shown in
Figure 12(a)–12(c), respectively.

In Section 5, applications of Algorithm 4 for path con-
tinuous assembly of configurations with internal holes are
presented. Also, the algorithm’s main properties and mathe-
matical proofs are discussed.

4. ASP3: Novel ASP for Allowing Path
Discontinuous Assembly

In this section, a novel ASP for allowing path discontinuous
assembly, ASP3, is obtained from ASP2. Given the impor-
tance of this case for modular construction, i.e., for aggregat-
ing module by module to assembly the target structure, the

M

N

O

P

H

G

F

Q

L K J

D

I

A B

C

E

h1 h2 h3

Start

FIGURE 10: This figure shows an application of Rule 2. When the
target configuration is assembled in the order shown by the arrows,
hole h2 does not connect with any robot already in the structure. In
fact, h2 only connects with h1, which is another hole.

1: Label s as discovered

2: For each vertex w in G.adj[s] do

3: If vertex w is labeled as undiscovered then

4: If w can be added to the structure (addEdge (G, w) is
true) then

5: If s is a hole and w is not a hole or the first added
robot system then

6: If exists a discovered robot system z2G.adj[w]
then

7: G.Tree[z]←w

8: G.parent(w)= z

9: AssemblyOrder (G, w)

10: Else

11: G.Tree[s]←w

12: G.parent(w)= s

13: AssemblyOrder (G, w)

14: Else

15: deleteBranch (G, s)

16: Label s as undiscovered

17: Return

18: If exists w in G.adj[s] marked as undiscovered then

19: deleteBranch (G, s)

20: Label s as undiscovered

21: Return

ALGORITHM 4: AssemblyOrder (G, s) configurations with internal
holes.

10 Journal of Robotics



main examples herein presented focus on this case. However,
the results herein discussed can be also extended to robot
systems.

Consider the ASP, as shown in Figure 13. This ASP
utilizes the added holes as links from one side to another
of the already assembled structure, thus providing a way for
assembling the configuration on a noncontinuous path.

Regard that this kind of situation cannot be treated with
the first two ASPs.

Thus, in order to allow path discontinuous assemblies, in
ASP3, holes can be allowed to add one or more modules to
the growing structure if these additions are possible. As
shown in Figure 13, in order to include this case, ASP3
recursion must allow the assembly sequence to return to a

hole if this hole has already added a module to the growing
structure. Then, this hole can try to add another module to
the growing structure.

This novel rule is incorporated into Algorithm 4, result-
ing in Algorithm 5. More specifically, the rule is summarized
in Lines 20–24 of Algorithm 5.

The novel lines in Algorithm 5 are modifications of Lines
18–21 of Algorithm 4. However, these lines were first intro-
duced in Algorithm 1 and stated that: given a robot system s,
when the recursion explores all neighbors of s, if any of these
neighbors are still not added to the structure, then s cannot
also be added to the structure. In the novel version, if the
parent of s is a hole, the algorithm does not delete s and
returns to the hole, allowing another robots to be added
to the growing structure; this is done in Lines 20–24 of
Algorithm 5.

Furthermore, it can be noticed that ASP3 is still able to
find path continuous sequences. An example is shown in
Figure 14 where another case of modular construction is
presented, as this configuration presents internal holes and
narrow corridors. Thus, it cannot be assembled with the
ASPs of Paulos et al. [29] and Seo et al. [30, 31].

It is important to notice that ASP3 does not guarantee
that all possible path discontinuous assemble sequences will
be found, but it solves some cases that the main ASPs found
in the literature cannot solve. More details and discussions
about the results and the limitations of the three proposed
ASP will be presented in Section 5.

h1

h2

h3

Start

ðaÞ

h1 h2

h4

h3

Start

ðbÞ

h1

h2

h3

Start

ðcÞ

h3

�

h1 h4

h2 h5

ðdÞ
FIGURE 12: The configurations in the first three cases can be assembled with the proposed ASP, without violating the accessibility condition. Also,
the proposed ASP can detect that the configuration in the fourth case cannot be assembled without violating the accessibility condition.

4
95 10

3

2

1

21

20

19

18
Start 17A

h1 h2 h3

11 12166 7

14 15

8 13

FIGURE 13: An example of ASP3 with the novel rule for path discon-
tinuous assembly.

h1

h2

h3

ðaÞ

h1 h2

h4

h3
�

ðbÞ

h1

h2

h3

ðcÞ

h3

�

h1 h4

h2 h5

ðdÞ
FIGURE 11: These configurations can be assembled with the proposed ASP without violating the accessibility condition. These configurations
cannot be assembled with the ASPs of Paulos et al. [29] and Seo et al. [30, 31].

Journal of Robotics 11



5. Results and Discussion

In this section, properties and implementation results for the
three ASPs are presented. Furthermore, mathematical proofs

of the termination, soundness, and complexity of the algo-
rithms composing the three ASPs are discussed.

5.1. Implementation Results. The three ASPs proposed in this
work were implemented in C++. The software takes as input
the sites composing each robot system of the target structure
and the graph representing the robot system connections. It
returns an assembly plan that specifies a complete order for
building the target structure. All computer simulations were
performed in a 4-GB, 1.6-GHz machine.

First, the work considers the path continuous assembly
cases: configurations without internal holes (ASP1) and con-
figurations with internal holes (ASP2). In these cases, both
configurations composed for modular robots or by robot
systems are presented. Then, in order to illustrate the path
discontinuous case (ASP3), the modular construction is pre-
sented. In this section, the main results for both of these cases
are discussed.

5.1.1. Path Continuous Case: ASP1 and ASP2 Results. For the
path continuous case, configurations composed for robot
systems and by modular robots are considered. Algorithms
1 and 4 are the main algorithms for these cases, more spe-
cifically, for configurations without and with internal holes,
respectively.

First, Algorithm 1 was applied to target structures with-
out holes and composed for robot systems. Considering the
configuration, as shown in Figure 2(a), given an arbitrary
choice of the starting robot system for the assembling pro-
cess, the computational time was 8ms on average for the
ASP to compute a correct assembly sequence, as shown in
Table 2. However, this algorithm cannot be applied to con-
figurations with internal holes. This result was first shown by
Salvi et al. [34].

Then, Algorithm 4 was applied to configurations with
internal holes and composed for robot systems. Table 3 pre-
sents the average time for the ASP2 to compute a correct
assembly sequence, as shown in Figure 9(a) and Figure 3(a).
It is important to notice that neither of these configurations
can be assembled with the main ASPs in literature [29, 31].
In fact, the first configuration has a narrow corridor and the
second one is composed for robot systems; neither of these
cases can be solved with the main ASPs in literature. Fur-
thermore, in all the novel ASPs proposed in this work, the

1: Label s as discovered

2: For each vertex w in G.adj[s] do

3: If vertex w is labeled as undiscovered then

4: If w can be added to the structure (addEdge (G, w)
is true) then

5: If s is a hole and w is not a hole or the first added
robot system then

6: If exists a discovered robot system z2G.adj
[w] then

7: G.Tree[z]←w

8: G.parent(w)= s

9: AssemblyOrder (G, w)

10: Else

11: G.Tree[s]←w

12: G.parent(w)= s

13: AssemblyOrder (G, w)

14: Else

15: deleteBranch (G, s)

16: Label s as undiscovered

17: Return

18: If exists w in G.adj[s] marked as undiscovered then

19: deleteBranch (G, s)

20: If G.parent(s) is a hole, then

21: If exists a discovered robot system z2G.adj[w]
then

22: G.Tree[z]←w

23: G.parent(w)= s

24: Return

25: Else

26: Label s as undiscovered

27: Return

Algorithm 5: AssemblyOrder (G, s) configurations with internal
holes.

6

5 1 2

19 20 21 22

17

18

14

15

Start
23

2410

11

7 8 9

16
3 124 13

�

FIGURE 14: A further example of the third ASP in modular
construction.

TABLE 2: ASP1 computational time for path continuous assembly.

Target configuration Computational time Starting point

Figure 2(a) 8ms on average Arbitrary

TABLE 3: ASP2 computational time for path continuous assembly.

Target
configuration

ASP result and
starting point

Computational
time (ms)

Figure 9(a) See Figure 10 0.3
Figure 3(a) See Figure 3 1.3

12 Journal of Robotics



assembly starting point can be freely chosen, which cannot
be obtained with the main ASPs in literature either.

There is no guarantee that ASP1 or ASP2 will return all
possible assembly sequences for a given configuration.

However, any sequence returned by these ASPs is a valid
sequence.

To the best of the author’s knowledge, this is the first
work that shows, considering the accessibility condition:

(1) How to assemble target structures composed for
shape heterogeneous modular robot systems with
internal holes, the case without internal holes was
treated by Salvi et al. [34].

(2) How to assemble planar target structures with nar-
row corridors.

(3) How to assemble configurations by choosing the ASP
starting point.

5.1.2. ASP for Allowing Path Discontinuous Assembly: ASP3
Results. The assembly planning for allowing path discontin-
uous assembly is modeled in ASP3. The main algorithm for
this case is Algorithm 5. In order to illustrate this ASP for
path discontinuous assembly, the modular construction was
chosen. It is important to notice that ASP3 can be applied for
configurations with and without internal holes.

For the configuration, as shown in Figure 13 and Table 4,
the computational time was 6ms on average for the ASP to
compute a correct assembly sequence, including the one, as
shown in Figure 13. It is important to notice that this kind of
discontinuous assembly is not solved in the literature.

More examples are shown in Table 5, which presents the
average time it takes ASP3 to determine a correct assembly
sequence. As previously stated for Algorithm 4, for the path
continuous case, Algorithm 5 is able to assemble the first
three configurations, as shown in Figure 11, and the config-
uration, as shown in Figure 14, without violating the acces-
sibility condition for any module. These four cases cannot be
treated with the main ASPs in literature [29, 31] because they

have narrow corridors. Also, Algorithm 5 detected that does
not exist an adequate ASP for the configuration, as shown in
Figure 12(d).

There is no guarantee that the proposed ASP will return
all possible assemble sequences for a given configuration.
However, any sequence returned by this ASP does not violate
the accessibility condition for any module.

It is important to notice that for configurations without
narrow corridors, the expected average time of ASP3, ASP2,
or ASP1 is greater than the main ASPs in literature [29, 31].
In fact, the ASPs proposed by Paulos et al. and Seo et al. have
polynomial-time complexity. However, with the ASPs by
Paulos et al. [29] and Seo et al. [31], a starting point for
the assembly process cannot be freely chosen. On the other
hand, all the ASPs proposed in this work allow the selection
of a starting point for the assembly process.

As it is explained in the next section, where the complex-
ity analysis for the proposed ASPs is presented, the average
time depends mostly on the number of sequences evaluated
during the assembly process. To the best of the author’s
knowledge, this is the first work that shows, considering
the accessibility condition:

(1) An ASP for modular robots allowing discontinuities
in the assembly path.

Furthermore, as future work, the ASPs proposed in this
paper can be extended to complex 3D shapes, a first applica-
tion for planar vertical structures can be found in a study by
Salvi et al. [32].

5.2. Mathematical Proofs for the Proposed ASPs. In this sec-
tion, mathematical proofs about the properties of the three
proposed ASPs, original contributions of this work, are
introduced. It is shown that the proposed methods are cor-
rect and that they finish, however, as, in the worst case sce-
nario, they can return empty sequences and they are not
complete. First, the auxiliary procedures addEdge and Dele-
teBranch are discussed; then, each ASP is analyzed.

5.2.1. Properties of Algorithm 2 (addEdge). An analysis of
Algorithm 2 is herein presented. First, let us discuss the
termination of addEdge by analyzing what occurs in each
line of Algorithm 2.

Lines 1–3 end when the cycle for is completed for graph
G. In the worst scenario, G is a complete and finite graph

with n vertices, thus it has n n−1ð Þ
2 edges. In this case, as G is

presented in the adjacency list form, the cycle for ends after n
(n− 1) operations. Also, considering m as the number of
novel edges created in Line 3, then m is limited by the num-

ber of edges in G, i.e., m≤ n n−1ð Þ
2 .

Line 4 ends when all pairs of edges created in Line 3 are
tested. Ifm edges are generated in the previous step, then the
number of tests is limited by m!

m−2ð Þ!2! <m m−ð 1Þ:
If a conflict occurs, then Lines 5 and 6 are performed and

the algorithm returns false. Otherwise, Lines 7 and 8 are
performed and the algorithm returns true.

TABLE 4: ASP3 computational time for a configuration without nar-
row corridors.

Target configuration Computational time Starting point

Figure 13 6ms on average Arbitrary

TABLE 5: ASP3 computational time for the examples with narrow
corridors.

Target configuration
ASP result and
starting point

Computational time (ms)

Figure 11(a) See Figure 12(a) 3.706
Figure 11(b) See Figure 12(b) 5.384
Figure 11(c) See Figure 12(c) 3.375
Figure 12(d) It does not exist 29
Figure 14 See Figure 14 8.87

Journal of Robotics 13



In the next paragraphs, it is discussed how addEdge
detects accessibility issues in the proposed ASP, i.e., its
soundness in terms of detecting accessibility issues. When
Algorithm 1 calls addEdge for a robot s being added to the
growing structure, addEdge is either capable of detecting
accessibility at the moment that s is added to the growing
structure, or, in the worst case scenario, addEdge will detect
accessibility issues when the last robot is added by Algorithm
1 to the growing structure.

Consider a configuration C, its graph G, and a robot
system s belonging to C. A call of function addEdge is started
when AssemblyOrder, Algorithm 1, tries to add a robot sys-
tem s to the ASP constructing C.

Thus, in Lines 1–3, addEdge creates edges between s and
its already assembled neighbors. In Line 4, addEdge checks if
there exists a north/south or an east/west pair of edges. If a
conflict occurs, addEdge returns false; otherwise, it returns
true. Therefore, for each robot system s being added by
AssemblyOrder, addEdge guarantees that there are no direct
neighbors of robot system s at its north and south or at its
east and west. Thus, s is not blocked by north/south or east/
west neighbors.

Let us now examine if the north/south or the east/west
checking is a sufficient condition in order to detect that a
module passes through a narrow corridor during assembly.
In order to perform this analysis, the creation of a narrow
corridor is discussed.

Consider module A, as shown in Figure 15, and consider
a generic configuration C containing A. If any module in the
set B−Q, as shown in Figure 15, is added to configuration C,
then a narrow corridor between A and the novel module is
created.

First, let us analyze the case where the narrow corridor is
created in the generic configuration C between module.

A in position (i, j) and one of the modules D, H, L, or P,
which are, respectively, in positions (i− 2, j), (i, j+ 2), (i+ 2, j),
and (i, j− 2), as shown in Figure 16(a).

Figure 16(b) shows that if configuration C has no internal
holes or if they are regarded as auxiliary robots, a novel
module is eventually added in position (i− 1, j), (i, j+ 1),
(i+ 1, j), and (i, j− 1). Thus, function addEdge will create
north/south or west/east edges arriving at the novel module,
detecting the accessibility issue.

Second, let us consider the case where a narrow corridor
is created in configuration C between module A and the
other modules, as shown in Figure 15, i.e., modules B, C,
E, F, G, I, J, K, M, N, O, or Q.

In order to perform the analysis, let us consider modules
in the narrow corridor created between modules A, which is
in position (i, j) and F, which is in position (i− 2, j+ 2); the
other cases are similar. An example is shown in Figures 17(a)
and 17(b).

It is important to notice that the presence of a narrow
corridor, as shown in Figure 17(b), only represents an acces-
sibility issue if a novel robot transverse this narrow corridor
and then is added to some position into the structure, as
shown in Figure 18.

As shown in Figure 18, if the novel robot transverse the
narrow corridor between A and F, it will be surrounded by
the modules inside the path or it will close the path, as shown
in Figure 17(b). The path between A and F must exist
because the configuration is connected; furthermore, because
holes are treated as continuous structures parallel to x- or
y-axis, the ASP tries to fully cover the remaining space with
novel modules. Thus, in the worst scenario, the last module
that is added inside the closed path will be blocked by north/
south and west/east neighbors implying that addEdge even-
tually detects the accessibility issue.

Furthermore, as in all ASPs, an accessibility issue is fol-
lowed by a call to DeleteBranch, and sequential deletions are
performed until the first robot system violating the accessi-
bility condition is deleted from the growing structure.

5.2.2. Properties of Algorithm 3 (DeleteBranch). Algorithm 3
is executed in order to delete elements from the ASP created
by Algorithm 1. It will be shown that Algorithm 1 always
returns connected and finite trees without accessibility issues.
Thus, Algorithm 3 is executed on a finite and connected tree.

Suppose that Algorithm 3 is executed on a tree G with n
vertices. In the worst scenario, the first call of Algorithm 3 is
performed for the tree root, a generic robot system s.

As G is a tree with n elements, it has n− 1 edges. Also, for
each call of Algorithm 3, when Line 3 is performed, a tree
edge is eliminated along with its tree leaf. Thus, after n− 1
calls of Algorithm 3, all the n− 1 tree edges are eliminated.
At this point, each while cycle is closed, finishing the entire
procedure.

In order to show the soundness of Algorithm 3, it is
necessary to show that the ASP tree is not disconnected while
performing the deletion process. This proof is discussed
along with the soundness of Algorithm 1 is discussed.

5.2.3. Properties of Algorithm 1: Main Algorithm for ASP1. In
this section, the mathematical properties of Algorithm 1 are
discussed.

B

Q

y

x

P

O

N M L K J

I

H

G

FC D

A

E

FIGURE 15: Module A forms a narrow corridor with any of the
modules from B to Q.

14 Journal of Robotics



First, let us discuss the termination of Algorithm 1. Given
a configuration C with n robot systems, Algorithm 1 ends if
an ASP with n elements is founded or if all possible
sequences are explored.

In the first case, as Algorithm 1 finds an ASP with n
elements, all robot systems belonging to configuration

C are marked as discovered. Thus, each open call of function
AssemblyOrder is closed when the cycle for in Line 2 ends. In
fact, as there are no undiscovered robot systems, the condi-
tions in Line 3 and in Line 16 are not true. Therefore, for
each open call of AssemblyOrder, the cycle for in Line 2 ends
without further operations thus, the algorithm ends.

In the second case, in the worst scenario, the algorithm
ends when all possible vertices combinations are explored,
i.e., when all spanning trees are visited. For a complete graph
with n vertices, the number of these trees is nn− 2. However,
for the modular robot case, the configuration graph is usually
not complete; therefore, the number of these possibilities is
lower and can be determined by the Kirchhoff ’s matrix tree
theorem [57].

In order to show the soundness of Algorithm 1, it can be
demonstrated that it always returns connected trees without
accessibility issues. Consider an ASP Sn with n elements
returned by Algorithm 1. First, the accessibility condition
is shown by induction in n.

For n= 1, the property is true. In fact, if n= 1, when the
algorithm starts, Line 1 marks this element as discovered.

P
(i, j – 2)

L
(i + 2, j)

H
(i, j – 2)

D
(i – 2, j)

A
(i, j)

ðaÞ

P
W

N

S
E

L

H

D

A

N

S

W E

ðbÞ
FIGURE 16: Detection of the narrow corridors between module A and modules D, H, L, and P.

F

A

ðaÞ

F

A

S

ðbÞ
FIGURE 17: Conditions for obtain a narrow corridor.

F

A

Novel module

FIGURE 18: Conditions for obtain a narrow corridor.

Journal of Robotics 15



Then, as no undiscovered elements remain, the algorithm
ends. Thus, for n= 1, the algorithm returns a tree with a
single element that is connected and does not present acces-
sibility issues.

Assume that for some n2N, the algorithm returns ASPs
without accessibility issues for every natural i < n. Consider
an ASP Sn with n elements, obtained from an ASP Sn−1 with
n−1 elements by adding a new element k. By the induction
hypothesis, Sn−1 presents no accessibility issues. Thus, if Sn
presents some accessibility issue, it must be caused by ele-
ment k. Consider s the parent of k in this step of the process.
There are two possibilities:

(1) If k causes no accessibility issues, Line 4 of Algorithm
1 is satisfied. Thus, k is added to the structure in
Lines 5–7. Then, AssemblyOrder (G, k) is called in
Line 8. Because k has no undiscovered neighbors,
AssemblyOrder (G, k) ends as all the others Assem-
blyOrder calls. Therefore, an ASP Sn with n elements
presenting no accessibility issues is returned.

(2) If k causes an accessibility issue, deleteBranch (G, s) is
called in Line 10. Thus, the ASP branch starting in s,
parent of k, is deleted. Then, s is also deleted from the
structure in Line 11. At this point, the assembly ASP
presents l< n elements; thus, by the induction
hypothesis, it presents no accessibility issues.

The algorithm returns to s’s parent, an element a. If a has
unvisited and unexplored neighbors, they are explored at this
point. If, at the end of the neighborhood checking for a, s and
all the other a’s neighbors are added to the structure, Assem-
blyOrder (G, a) ends. At this point, the algorithm returns a
partial ASP with less than n elements. Thus, by the induction
hypothesis, it presents no accessibility issues.

If, at the end of the neighboring checking for a, s or any
other a’s neighbors are not added to the structure, Lines
13–16 are executed. Thus, s and a are deleted, along with
the branch starting in a. As in the previous case, the algo-
rithm returns a partial ASP with less than n elements; thus,
by the induction hypothesis, it presents no accessibility
issues.

The algorithm then returns to a’s parent, an element b,
and the process described in the two paragraphs above is
performed for b and so on. In the worst scenario, an element
j cannot be added to the structure at any step thus, the
resulting ASP is empty. In order to discuss the empty case,
consider that all possible ASP but one was already tested.
Suppose that in the final possible sequence, an element i tries
to add j. As j cannot be added to the structure at any point, i
and its entire ASP branch are deleted. Then, the parent of i is
deleted by the condition in Lines 13–16 and so on, until all
elements are deleted. Thus, the resulting ASP is empty.

Therefore, when Algorithm 1 ends, the ASP presents n
elements without accessibility issues or it is empty.

In the next paragraphs, it is shown that the ASP is a tree.
First, it is important to notice that when an element w with
parent s is added to the structure, a single edge is created. In
fact, in Line 5, w is added to G.Tree[s], i.e., edge (s, w) is

created. Thus, for each added element, only one edge is
created. Therefore, if n elements are added, n−1 edges
are created.

Also, no cycles are created because if a vertex k is incident
to two edges, k has two parents x and y in the process. This is
an absurd because after k is added to the ASP by an element
x, k is marked as discovered. Thus, another element y cannot
add k unless it has been remarked as undiscovered. In order
to marked k as undiscovered, function deleteBranch (G, x)
must be called, which can only occur in Lines 10 or 14.
However, after each of these lines, x is marked as undiscov-
ered. Thus, even in this case, k has only one parent, y. There-
fore, no cycles are created in the ASP process. As the process
creates n− 1 edges and no cycles when n elements are added,
the ASP constructs a tree.

Furthermore, when function deleteBranch is called, it
performs a DFS search marking tree leaves as undiscovered.
Therefore, the ASP remains a tree when this function is
called. In fact, suppose that deleteBranch is called for some
element s. First, in its Line 3, function deleteBranch pops the
first element w from G.Tree[s], i.e., edge (w, s) is deleted.
Then, in Line 5, deleteBranch (G, w) pops the first element
z from G.Tree[w], i.e., edge (z, w) is deleted. This process
continues until function deleteBranch reaches an element d
whoseG.Tree[d] is empty, i.e., d is a leaf of the ASP tree. Then,
function deleteBranch returns to d’s parent, some element c.
In other words, it returns to its open call deleteBranch (G, c).
However, this call is only closed when all elements in G.Tree
[c] are deleted. Thus, when deleteBranch (G, c) is closed, c is a
leaf of the ASP tree. The same occurs for each of function
deleteBranch calls. Thus, this recursive deletion process can
be regarded as successively deleting tree leaves. Therefore, the
ASP remains a tree after all the deletions.

In terms of complexity, in the worst scenario, the algo-
rithm ends when all possible vertices combinations are
explored, i.e., when all spanning trees are visited. For a com-
plete graph with n vertices, the number of these trees is nn−2

thus, the complexity is O(nn−2). However, for the modular
robot case, the configuration graph is usually not complete;
therefore, the number of these possibilities is lower and can
be determined by the Kirchoff ’s matrix tree theorem [57].

5.2.4. Properties of Algorithm 4—ASP2. In this section, the
properties of Algorithm 4 are discussed.

The termination of Algorithm 4 follows directly from the
termination of Algorithm 1. In fact, as holes are modeled as
auxiliary robot systems, the unique difference between Algo-
rithm 4 and Algorithm 1 is how the robot systems are con-
nected to the holes, thus, and holes connect to each other,
thus conditions for termination follows from ASP1, consid-
ering that in the worst cases scenario, all possible sequences
are visited.

Furthermore, ASP2, as ASP1, returns a tree without
accessibility issues or its soundness. As Algorithm 4 is
obtained from Algorithm 1 by adding the conditions in Lines
5–14, in order to show that Algorithm 4 is sound, it can be
shown that these conditions do not introduce accessibility
issues or disconnect the graph.

16 Journal of Robotics



Consider that a robot system s tries to add a robot system
w to a configuration C being assembled by Algorithm 4.
Thus, in Line 4, the accessibility condition for w is verified.
Therefore, if w is added to the configuration, no accessibility
conditions exist. Let us analyze the cases where s is a hole
because the other cases are identical to Algorithm 1.

(1) If s is a hole and w is a hole, in Lines 11–12, s adds w
to the ASP and only one edge is created between s
and w.

(2) If s is a hole and w is not a hole, w must connect to
another robot system z in the ASP. If z exists, in Lines
6–8, z adds w to the ASP, and only one edge is created
between z and w. Otherwise, s is eliminated from the
ASP in Lines 14–17. Thus, this process does not dis-
connect the ASP or create accessibility issues.

It is important to remark that, in both cases, when w is
added to the ASP, only one edge is created, thus the ASP
remains a tree without accessibility issues.

Therefore, as the other cases are identical to Algorithm 1,
Algorithm 4 returns a tree without accessibility issues.

Furthermore, as stated for Algorithm 1, in the worst
scenario, Algorithm 4 ends when all possible vertices com-
binations are explored, i.e., when all spanning trees are vis-
ited, thus both ASPs have the same complexity.

5.2.5. Properties of Algorithm 5—ASP3. Algorithm 5 differs
from Algorithm 4 in Lines 20–27. Thus, in order to show that
Algorithm 5 ends, the condition in these lines must be ana-
lyzed. Consider a configuration C being assembled by Algo-
rithm 5 and consider that a robot system s, added to the ASP
by a hole h1, cannot add some of his neighbors to configura-
tion C. At the end of the neighborhood checking for s, there
exist unassembled neighbors, thus the condition in Line 18 is
satisfied.

Therefore, all the ASP branch starting at s is deleted in
Line 19.

Also, as the step of neighborhood checking for s ends, the
function AssemblyOrder (G, s) is closed. Then, Algorithm 5
returns to his previously open call, AssemblyOrder (G, h1).
Thus, function AssemblyOrder (G, s) is closed before return-
ing to AssemblyOrder (G, h1), where the neighborhood
checking for h1 can be continued. Furthermore, Assem-
blyOrder (G, h1) is closed when its cycle for in Line 2 is
finished.

In the other case, where a robot system s does not have a
hole as a parent was analyzed for Algorithm 4. In the worst
scenario, the algorithm ends when all possible vertices com-
binations are explored, i.e., when all spanning trees are vis-
ited. For a complete graph with n vertices, the number of
these trees is nn− 2. However, for the modular robot case, the
configuration graph is usually not complete; therefore, the
number of these possibilities is lower and can be determined
by the Kirchoff ’s matrix tree theorem [57].

In order to show that Algorithm 5 is sound, i.e., that
returns sequences without accessibility issues the same lines
as for the termination case must be analyzed. Consider again
a configuration C been assembled by Algorithm 5. Consider

that a robot system s, added to the ASP by a hole h1, cannot
add some of its neighbors to configuration C. At the end of
the neighborhood checking for s, there exists not assembled
neighbors thus, the condition in Lines 23–31 is satisfied.
Therefore, all the ASP branch starting at s is deleted in
Line 24.

Also, as the step of neighborhood checking for s ends, the
function AssemblyOrder (G, s) is closed. Then, Algorithm 5
returns to his previously open call, AssemblyOrder (G, h1).

As AssemblyOrder (G, h1) already examined the accessi-
bility of s in Line 4, no accessibility issues are found when s is
added to the structure. Furthermore, if s is a hole, only one
edge is created between s and h1. If s is not a hole, by the
condition in Lines 25–27, s must connect to a robot system z
in configuration C. In other words, only one edge is created
between s and z. Therefore, the ASP remains a tree because
only one edge is created for each new element and it presents
no accessibility issues. In the worst case scenario, at some
point, deleteBranch is called for hole h1 and s is then deleted
from the structure.

Finally, the complexity analysis is equal to the analysis of
the first two ASPs.

6. Conclusions

This work presents three novel ASP for modular robots,
which can be successfully applied for different scenarios
and that are able to assemble novel classes of configurations
[32]. In fact, with respect to the main ASP for modular
robots found in literature [29–31], the main goal of this
work is to extend the classes of rectangular modular robots
configurations, which can be assembled without violating the
accessibility condition. More precisely, the main ASPs in
literature do not allow configurations with narrow corridors,
i.e., corridors which are too narrow for a robot to transverse.
Furthermore, these ASPs do not allow preassembled sub-
structures or free selection of the assembly starting point.

In this work, the classes of rectangular modular robots
configurations which can be assembled without violating the
accessibility condition when compared to the main central-
ized ASPs in literature for modular robots [29–31] were
significantly extended. Furthermore, as the classical ASPs
for assembling mechanical parts were not applied for modu-
lar robots, the present work can be only directly compared
with the works of Paulos et al. [29] and Seo et al. [30, 31].
Examples of configurations whose ASPs can be only be
achieved with the methods proposed in this paper are pre-
sented in Section 5.

First, the novel ASP for path continuous construction of
configurations without internal holes, ASP1, first introduced
by the Salvi et al. [34] is discussed. Then, the case with
internal holes, ASP2, an original contribution of this work,
is presented. Furthermore, application cases and novel math-
ematical proofs, which are also original contributions of this
work, are presented for both ASPs.

(1) These two ASPs are implemented by two main algo-
rithms which consider configurations without and

Journal of Robotics 17



with internal holes, respectively: Algorithm 1, first
introduced by Salvi et al. [34], and Algorithm 4, a
novel contribution of this work.

(2) Original auxiliary procedures, first introduced by
Salvi et al. [34], are also discussed. Algorithm 2
(addEdge), which determines when a new robot sys-
tem can be added to the growing structure, and Algo-
rithm 3 (deleteBranch), which gives a strategy to
delete a not allowed robot system from the growing
structure, are introduced in a study by Salvi et al. [34].

(3) Examples of application and mathematical proofs for
these two ASPs are also presented.

Furthermore, a novel ASP for path discontinuous assem-
bly, ASP3, is introduced. This case is illustrated for modular
construction, i.e., aggregating module by module to assemble
the target structure.

(1) The novel ASP is implemented by its main algo-
rithm: Algorithm 5. It can be applied to configura-
tions with and without internal holes.

(2) Original implementation results and mathematical
proofs for ASP3 are also presented. The proposed
ASP has a bigger complexity when compared to the
literature for modular construction; however, it is
able to assembly novel classes of configurations.

To the best of the authors’ knowledge, this is the first
work that presents, considering the accessibility condition,
how to obtain a centralized ASP for assembling planar struc-
tures composed of rectangular modules with the following
characteristics:

(1) With narrow corridors.
(2) Composed of subsets of preassembled modules and

configurations with internal holes.
(3) Choosing the ASP starting point.
(4) Achieving discontinuous assembly paths.

Furthermore, all the ASPs herein proposed satisfy the
accessibility condition, i.e., any rectangular module cannot
pass through a gap only as large as a side of a module between
two physical robots already assembled in the structure. Finally,
the complexity of the proposed ASPs is presented: for n robots,
the worst case for the number of possible sequences evaluated is
nn−2 considering a complete graph. However, for the modular
robot case, the configuration graph is usually not complete;
therefore, the number of these possibilities is lower and can
be determined by the Kirchhoff ’s matrix tree theorem [57].
Thus, the average time depends mostly of the number of
sequences evaluated during the assembly process.

6.1. Further Works. The following suggestions are presented
for future work:

(1) Extension of the three proposed ASPs for other types
of modules and for different types of modules
constraints.

(2) Extension of the ASP for modular construction to
three dimensional structures. In this case, stability
analysis should be integrated to the proposed ASP.

(3) Implementation of the proposed methods, in modu-
lar platforms, integrating them with path planning
methods and application of statistical methods to
measure the success of achieving the assembly
sequence in uncertain environments.

Data Availability

No underlying data were collected in this study because the
main contribution of this paper is a set of new ASP algo-
rithms. These algorithms and all the mathematical proofs are
presented in this work. Many examples are provided along
the manuscript.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research has been partially funded by the Brazilian
National Council for Scientific and Technological Develop-
ment (CNPq).

References

[1] Q. Su, “A hierarchical approach on assembly sequence
planning and optimal sequences analyzing,” Robotics and
Computer-Integrated Manufacturing, vol. 25, no. 1, pp. 224–
234, 2009.

[2] M. V. A. R. Bahubalendruni and B. B. Biswal, “A review on
assembly sequence generation and its automation,” Proceed-
ings of the Institution of Mechanical Engineers, Part C: Journal
of Mechanical Engineering Science, vol. 230, no. 5, pp. 824–
838, 2016.

[3] H. G. Lv and C. Lu, “An assembly sequence planning approach
with a discrete particle swarm optimization algorithm,” The
International Journal of Advanced Manufacturing Technology,
vol. 50, no. 5–8, pp. 761–770, 2010.

[4] S. Ghandi and E. Masehian, “A breakout local search (BLS)
method for solving the assembly sequence planning problem,”
Engineering Applications of Artificial Intelligence, vol. 39,
pp. 245–266, 2015.

[5] A. Bourjault, Contribution à une approche méthodologique de
l’assemblage automatisé: élaboration automatique des
séquences opératoires, PhD thesis, Universite de Franche-
Comte, France, 1984.

[6] T. De Fazio and D. Whitney, “Simplified generation of all
mechanical assembly sequences,” IEEE Journal on Robotics
and Automation, vol. 3, no. 6, pp. 640–658, 1987.

[7] R. H. Wilson and J.-C. Latombe, “Geometric reasoning about
mechanical assembly,” Artificial Intelligence, vol. 71, no. 2,
pp. 371–396, 1994.

[8] L. S. H. de Mello and A. C. Sanderson, “And/or graph
representation of assembly plans,” in Proceedings of the Fifth
AAAI National Conference on Artificial Intelligence, Fifth

18 Journal of Robotics



AAAI National Conference on Artificial Intelligence,
pp. 1113–1119, AAAI Press, USA, 1986.

[9] S. Lee and Y. G. Shin, “Assembly coplanner: cooperative
assembly planner based on subassembly extraction,” in
Computer-Aided Mechanical Assembly Planning, L. S. Homem
de Mello and S. Lee, Eds., vol. 148 of The Springer
International Series in Engineering and Computer Science,
pp. 315–339, Springer, Boston, MA, 1991.

[10] D. Halperin, J.-C. Latombe, and R. H. Wilson, “A general
framework for assembly planning: the motion space
approach,” Algorithmica, vol. 26, no. 3-4, pp. 577–601, 2000.

[11] M.Wu, Y. Zhao, and C.Wang, “Knowledge-based approach to
assembly sequence planning for wind-driven generator,”
Mathematical Problems in Engineering, vol. 2013, Article ID
908316, 7 pages, 2013.

[12] N. Zhang, Z. Liu, C. Qiu, and J. Tan, “A novel assembly
sequence design mechanism for assembly sequence planning,”
in Proceedings of the 2021 8th International Conference on
Industrial Engineering and Applications (Europe), ICIEA 2021-
Europe, pp. 109–114, Association for Computing Machinery,
New York, NY, USA, 2021.

[13] J. Yu, L. D. Xu, Z. Bi, and C. Wang, “Extended interference
matrices for exploded view of assembly planning,” IEEE
Transactions on Automation Science and Engineering, vol. 11,
no. 1, pp. 279–286, 2014.

[14] V. S. S. V. Prasad, M. Hymavathi, C. S. P. Rao, and
M. V. A. R. Bahubalendruni, “A novel computative strategic
planning projections algorithm (CSPPA) to generate oblique
directional interference matrix for different applications in
computer-aided design,” Computers in Industry, vol. 141,
Article ID 103703, 2022.

[15] G. A. Kumar, M. V. A. R. Bahubalendruni, V. S. S. Vara
Prasad, D. Ashok, and K. Sankaranarayanasamy, “A novel
geometric feasibility method to perform assembly sequence
planning through oblique orientations,” Engineering Science
and Technology an International Journal, vol. 26, no. 4,
Article ID 100994, 2022.

[16] T. Dong, R. Tong, L. Zhang, and J. Dong, “A knowledge-based
approach to assembly sequence planning,” The International
Journal of Advanced Manufacturing Technology, vol. 32,
no. 11-12, pp. 1232–1244, 2007.

[17] Y. Y. Hsu, W. C. Chen, P. H. Tai, and Y. T. Tsai, “A
knowledge-based engineering system for assembly sequence
planning,” in Proceedings of the 36th International MATADOR
Conference, 36th International MATADOR Conference,
pp. 123–126, Springer, London, UK, 2010.

[18] J. Qian, Z. Zhang, C. Shao, H. Gong, and D. Liu, “Assembly
sequence planning method based on knowledge and
ontostep,” Procedia CIRP, vol. 97, no. 1, pp. 502–507, 2021.

[19] W.-C. Chen, P.-H. Tai, W.-J. Deng, and L.-F. Hsieh, “A three-
stage integrated approach for assembly sequence planning
using neural networks,” Expert Systems with Applications,
vol. 34, no. 3, pp. 1777–1786, 2008.

[20] J. F. Wang, J. H. Liu, and Y. F. Zhong, “A novel ant colony
algorithm for assembly sequence planning,” The International
Journal of Advanced Manufacturing Technology, vol. 25,
no. 11-12, pp. 1137–1143, 2005.

[21] Hao Pan, Wen Jun Hou, and Tie Meng Li, “Genetic algorithm
for assembly sequences planning based on heuristic assembly
knowledge,” in Applied Mechanics and Materials, vol. 44–47,
pp. 3657–3661, International Conference on Frontiers of
Manufacturing and Design Science, Trans Tech Publications,
Switzerland, 2011.

[22] I. Ibrahim, Z. Ibrahim, H. Ahmad et al., “An assembly
sequence planning approach with a rule-based multi-state
gravitational search algorithm,” The International Journal of
Advanced Manufacturing Technology, vol. 79, no. 5–8,
pp. 1363–1376, 2015.

[23] C. Li and W. Hou, “Assembly sequence planning based on
hierarchical model,” Wireless Communications and Mobile
Computing, vol. 2022, Article ID 9461794, 19 pages, 2022.

[24] G. Anil Kuma, M. V. A. Raju Bahubalendruni, I. Anil Kumar,
S. S. Vara Prasad Varupala, and K. Sankaranarayanasamy, “A
modified cut-set method for mechanical subassembly
identification,” Assembly Automation, vol. 41, no. 6,
pp. 659–680, 2021.

[25] A. K. Gulivindala, M. V. A. R. Bahubalendruni,
S. S. V. P. Varupala, and K. Sankaranarayanasamy, “A
heuristic method with a novel stability concept to perform
parallel assembly sequence planning by subassembly detec-
tion,” Assembly Automation, vol. 40, no. 5, pp. 779–787, 2020.

[26] M. V. A. R. Bahubalendruni, A. Gulivindala, M. Kumar,
B. B. Biswal, and L. N. Annepu, “A hybrid conjugated method
for assembly sequence generation and explode view genera-
tion,” Assembly Automation, vol. 39, no. 1, pp. 211–225, 2019.

[27] M. V. A. R. Bahubalendruni and B. B. Biswal, “An efficient
stable subassembly identification method towards assembly
sequence generation,” National Academy Science Letters,
vol. 41, no. 6, pp. 375–378, 2018.

[28] M. V. A. R. Bahubalendruni, B. B. Biswal, M. Kumar, and
R. Nayak, “Influence of assembly predicate consideration on
optimal assembly sequence generation,” Assembly Automa-
tion, vol. 35, no. 4, pp. 309–316, 2015.

[29] J. Paulos, N. Eckenstein, T. Tosun et al., “Automated self-
assembly of large maritime structures by a team of robotic
boats,” IEEE Transactions on Automation Science and
Engineering, vol. 12, no. 3, pp. 958–968, 2015.

[30] J. Seo, M. Yim, and V. Kumar, “Assembly planning for planar
structures of a brick wall pattern with rectangular modular
robots,” in 2013 IEEE International Conference on Automation
Science and Engineering (CASE), pp. 1016–1021, Madison,
New Jersey, USA, 2013.

[31] J. Seo, M. Yim, and V. Kumar, “Assembly sequence planning
for constructing planar structures with rectangular modules,”
in 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5477–5482, Stockholm, Sweden,
2016.

[32] A. Z. Salvi, R. Simoni, and H. Simas, Enumerating and
assembling configurations with modular robots, PhD thesis,
Universidade Federal de Santa Catarina, Florianopolis, SC,
Brazil, 2018.

[33] A. Naz, B. Piranda, J. Bourgeois, and S. C. Goldstein, “A
distributed self-reconfiguration algorithm for cylindrical
lattice-based modular robots,” in 2016 IEEE 15th International
Symposium on Network Computing and Applications (NCA),
pp. 254–263, Cambridge, MA, USA, 2016.

[34] A. Z. Salvi, R. Simoni, and H. Simas, “Assembly sequence
planning for shape heterogeneous modular robot systems,” in
Multibody Mechatronic Systems, J. Carvalho, D. Martins,
R. Simoni, and H. Simas, Eds., vol. 54 of MuSMe 2017.
Mechanisms and Machine Science, pp. 128–137, Springer,
Cham, 2018.

[35] C. Jones and M. J. Mataric, “From local to global behavior in
intelligent self-assembly,” in 2003 IEEE International Confer-
ence on Robotics and Automation (Cat. No. 03CH37422), vol. 1,
pp. 721–726, Taipei, Taiwan, 2003.

Journal of Robotics 19



[36] R. Fitch, Z. Butler, and D. Rus, “Reconfiguration planning for
heterogeneous self-reconfiguring robots,” in Proceedings 2003
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003) (Cat. No. 03CH37453), vol. 3, pp. 2460–
2467, New Jersey, USA, 2003.

[37] D. Bie, I. Sajid, J. Han, J. Zhao, and Y. Zhu, “Natural growth-
inspired distributed self-reconfiguration of ubot robots,”
Complexity, vol. 2019, Article ID 2712015, 12 pages, 2019.

[38] T. Tucci, B. Piranda, and J. Bourgeois, “A distributed self-
assembly planning algorithm for modular robots,” in
Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’18,
pp. 550–558, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 2018.

[39] T. Kang, J.-B. Yi, D. Song, and S.-J. Yi, “High-speed
autonomous robotic assembly using in-hand manipulation
and re-grasping,” Applied Sciences, vol. 11, no. 1, Article ID
37, 2020.

[40] B. Jenett, A. Abdel-Rahman, K. C. Cheung, and
N. A. Gershenfeld, “Material–robot system for assembly of
discrete cellular structures,” IEEE Robotics and Automation
Letters, vol. 4, no. 4, pp. 4019–4026, 2019.

[41] S. Leder, O. S. Oguz, H. Kim et al., “Co-design in architecture:
a modular material-robot kinematic construction system,” in
International Conference on Intelligent Robots and Systems,
Las Vegas, NV, USA, 2021.

[42] J. Werfel, Y. Bar-Yam, D. Rus, and R. Nagpal, “Distributed
construction by mobile robots with enhanced building blocks,”
in Proceedings 2006 IEEE International Conference on Robotics
and Automation, pp. 2787–2794, ICRA 2006, Orlando, FL,
USA, 2006.

[43] J. Werfel and R. Nagpal, “Three-dimensional construction
with mobile robots and modular blocks,” The International
Journal of Robotics Research, vol. 27, no. 3-4, pp. 463–479,
2008.

[44] U. Orozco-Rosas, O. Montiel, and R. Sepúlveda, “Pseudo-
bacterial potential field based path planner for autonomous
mobile robot navigation,” International Journal of Advanced
Robotic Systems, vol. 12, no. 7, Article ID 81, 2015.

[45] U. Orozco-Rosas, K. Picos, J. J. Pantrigo, A. S. Montemayor,
and A. Cuesta-Infante, “Mobile robot path planning using a
qapf learning algorithm for known and unknown environ-
ments,” IEEE Access, vol. 10, pp. 84648–84663, 2022.

[46] N. Abujabal, R. Fareh, S. Sinan, M. Baziyad, and M. Bettayeb,
“A comprehensive review of the latest path planning
developments for multi-robot formation systems,” Robotica,
vol. 41, no. 7, pp. 2079–2104, 2023.

[47] S. Lin, A. Liu, J. Wang, and X. Kong, “A review of path-
planning approaches for multiple mobile robots,” Machines,
vol. 10, no. 9, Article ID 773, 2022.

[48] J. R. Sánchez-Ibáñez, C. J. Pérez-del-Pulgar, and A. García-
Cerezo, “Path planning for autonomous mobile robots: a
review,” Sensors, vol. 21, no. 23, Article ID 7898, 2021.

[49] B. K. Patle, G. Babu L, A. Pandey, D. R. K. Parhi, and
A. Jagadeesh, “A review: on path planning strategies for
navigation of mobile robot,” Defence Technology, vol. 15,
no. 4, pp. 582–606, 2019.

[50] Ryan Henderson Kelly, Algorithms for planning and executing
multi-roboat shapeshifting, PhD thesis, Massachusetts Institute
of Technology, 2019.

[51] B. Gheneti, S. Park, R. Kelly et al., “Trajectory planning for the
shapeshifting of autonomous surface vessels,” in 2019

International Symposium on Multi-Robot and Multi-Agent
Systems (MRS), pp. 76–82, IEEE, 2019.

[52] B. Ding, Z.-X. Yang, X. Xiao, and G. Zhang, “Design of
reconfigurable planar micro-positioning stages based on
function modules,” IEEE Access, vol. 7, pp. 15102–15112,
2019.

[53] Z. Wu and Q. Xu, “Survey on recent designs of compliant
micro-/nano-positioning stages,” Actuators, vol. 7, no. 1,
Article ID 5, 2018.

[54] B. Ding, Z. Yang, and Y. Li, “Design of flexure-based modular
architecture micro-positioning stage,” Microsystem Technolo-
gies, vol. 26, no. 9, pp. 2893–2901, 2020.

[55] S. Liao, B. Ding, and Y. Li, “Design, assembly, and simulation
of flexure-based modular micro-positioning stages,”Machines,
vol. 10, no. 6, 2022.

[56] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Computer Science, McGraw-Hill,
New York, 2009, https://books.google.com.br/books?id=ae
fUBQAAQBAJ, 3rd edition.

[57] M. M. John Harris and J. L. Hirst, Combinatorics and Graph
Theory, Undergraduate Texts in Mathematics (UTM),
Springer-Verlag, New York, 2nd edition, 2008.

20 Journal of Robotics

https://books.google.com.br/books?id=aefUBQAAQBAJ
https://books.google.com.br/books?id=aefUBQAAQBAJ
https://books.google.com.br/books?id=aefUBQAAQBAJ
https://books.google.com.br/books?id=aefUBQAAQBAJ
https://books.google.com.br/books?id=aefUBQAAQBAJ



