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Control of mechanical systems by electronic systems controlled by computer programs is one of the most active research
areas in mechatronic systems engineering. Tese programs carry out control laws, which are algorithms. Tis study focuses
on Segway control (a two-wheeled inverted pendulum which is a highly nonlinear and unstable open-loop system). Our
research entails creating a control law to stabilize this system. We proposed using a state feedback controller, which
provided us with a stable system and a lower error margin; however, to correct this error, we used a combination of the state
feedback controller and the fuzzy-PID controller. Te efectiveness of the proposed method is demonstrated using sim-
ulation results.

1. Introduction

Te control of the wheel inverted pendulum (WIP) robot has
gained popularity in both industry and research commu-
nities. WIP-based products, such as the Segway human
transporter, have recently become available in the market.
However, due to the inherent instability and signifcant
nonlinearity of the inverted pendulum system, precise
control is crucial for its successful operation. In this study,
we aim to contribute to the existing body of research by
proposing a novel control approach to stabilize the WIP
system.

We begin by demonstrating computationally that the
open-loop control is unstable. Te system’s controllability
and observability will also be investigated. To overcome the
challenges of controlling a highly nonlinear system, we
propose the use of state feedback control, which can provide
high accuracy and fexible dynamic response. Furthermore,
we will augment the state feedback control with a fuzzy-PID
integrator to enhance stabilization.

1.1. State of theArt. Te study of inverted pendulum systems
is an area of automation research that has experienced
signifcant growth in recent years. Tis is owing to their
optimum instability, which makes them difcult to regulate,
as well as their diverse forms and dimensions. Te simple
pendulum, the double pendulum, and the Furuta pendulum
can be mentioned. Diverse control strategies have been
proposed to stabilize these systems, with a focus on linear
systems such as proportional-integral-derivative (PID)
controllers [1, 2] and linear-quadratic-regulators (LQR) [3],
which are simple to design and evaluate in terms of stability
but require a linearized model of the system to function
efectively. To overcome these difculties, other techniques,
such as sliding mode control [4, 5] and adaptive control [6]
based on the backstepping approach [7–9], have been de-
veloped to overcome the limitations of these linear systems.
PDC control [10] and dynamic surface control [11], which
employ neural networks [12–14] and fuzzy logic [15–18],
have also been suggested to enhance the performance of
nonlinear systems.
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In a recent study, the authors in [19] presented a state
feedback control law for an inverted pendulum system,
which demonstrated good stabilization performance in
simulation. Te authors in [20] proposed a fuzzy-PID
controller for a wheeled inverted pendulum, which
achieved improved control accuracy and robustness com-
pared to traditional PID controllers. Furthermore, the au-
thors in [21] utilized a hybrid control scheme combining
sliding mode control and LQR to stabilize an underactuated
pendulum system.

Despite the progress made in the feld of inverted
pendulum control, there is still a need for novel control
techniques that can provide improved stability and ro-
bustness for more complex and underactuated systems.

1.2. Problem. In this study, we propose a novel control
approach to stabilize a nonlinear and underactuated
inverted pendulum system. Te system is highly sensitive to
delays, friction, and external disturbances and has unstable
open-loop dynamics. To address these challenges, we
combine a state feedback control law with a fuzzy-PID
integrator. Our contribution is to demonstrate the efec-
tiveness of this technique in achieving stable control of the
system. Compared to traditional control strategies, our
approach ofers high accuracy and a fast and fexible dy-
namic response.

2. Description and Modelling of the
Inverted Pendulum

Te inverted pendulum is a test platform that poses an
instability problem at the angle θ� 0; therefore, a modelling
phase is necessary to allow the study in simulation. For this
purpose, diferent methods can be found in the literature,
such as the one based onNewtonian physics or the one based
on the Lagrange–Euler formalism. In this work, we have
chosen the Lagrange–Euler method which constitutes
a systematic approach whose implementation is simple.

2.1. Modelling of a Segway. A Segway can be modelled by
a wheeled inverted pendulum. Tis underactuated me-
chanical system has been particularly studied because, de-
spite its simplicity, it indicates a practical interest for
locomotion, as proved by the commercialization of the
Segway, a compact personal vehicle based on the model of
the wheeled inverted pendulum. Te wheeled inverted
pendulum is schematically shown in Figure 1 [22].

Te parameters of our system are presented in Table 1.

2.1.1. Te Dynamic Model
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Te dynamic model gives the nonlinear equations of the
system’s motion. To solve these equations, we linearize them
around the equilibrium position. In this position, the system
is in its quasiequilibrium state. So, we could develop the

linearized model under the assumption that the variation of
the inclination angle is small enough to be neglected. We
then have three linearized equations of motion at the state of
equilibrium as follows:
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Once the system is linearized, we have reorganized it into
the following state space:

_X � Ax + Bu,

y � Cx,
(3)
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where the vectors x and u are given by the following
equation:

X � [x _xθ _θφ _φ]
t et u � [α3 β3] . (4)

Te matrices A and B can be identifed as follows:
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,

Table 1: Variables used in the modelling.

Parameters Defnition Unity
θ Pendulum angle to the vertical rad
φ Pendulum orientation in a horizontal plan (xr, yr) rad
x Position along the xp axis m
g Gravity constant 9.81m/s2

d Distance between the rotating wheels, the axis center, and the gravity center of the
pendulum 0.1m

ms, mc Respective masses of the pendulum and of each one of the wheels 4.315, 0.503 kg
l Half distance between the wheels 0.1m
R, r Wheel radius 0.073m

I2, I3
Pendulum inertia, respectively, around the I2 axis aligned with the pendulum, and I3

axis aligned with the wheels axis
0.003679, 0.02807

kg·m2

α3, β3 Torques 3e− 3, 28e− 3N·m
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Figure 1: Wheeled inverted pendulum.
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. (5)

Te matrix C is defned as an identity matrix (6, 6) and
the matrix D as a null matrix, which then gives Y�X.

After validating the developed model, we will present
open-loop simulations.

2.2. Response of the InvertedWheel Pendulum. To study the
system’s stability, we will determine the impulse re-
sponse of the system in the open-loop using MATLAB.
Tis is the reference tool for numerical simulation. It
ofers advanced possibilities for identifcation or control.
More generally, it can be used to solve a wide variety of
simulation problems.

Simulations are carried out in an environment MAT-
LAB/Simulink. Te diferential equations governing the
dynamics of the system are integrated using the method
Runge–Kutta (function ode45 of MATLAB).

Figure 2 shows the Simulink diagram.
Applied to the input an amplitude, we will obtain the

following results.
Figures (Figures 3–5) show that the system’s kinematic

parameters (x and _x, θ and _θ, and φ and _φ) grow with time,
indicating its instability. In this case, a control law is required
to make the system stable.

2.3. Instability of the System. According to the study, the
open-loop system is unstable because one of its poles is
located in the right half plane of the complex plane.

>> poles = eig (A)
poles =

0

0
0

0

10.3796
–10.3796

c = [B AB A2B An–1B].

(6)

To stabilize the system, state feedback control will be
used using the control gain matrix K. Before that, we need to
show that the system is controllable and observable.

3. The Notions of Controllability
and Observability

Observability and controllability are among the fundamental
and essential notions in control theory. Tey have been
introduced by Kalman during the 1960s in the context of
fnite system dimensions.

Te concepts of controllability and observability play an
essential part in the study of control and fltering problems.
Te concept of controllability studies the possibility of
adjusting the behavior of the system under consideration in
order to force the state to take the desired values during
a fnite time. On the other hand, the observability of a system
can be defned as the possibility of predicting the state of the
system at any time within the operating time interval.

3.1.Te Controllability. Te system is controllable if any two
distinct points in the state space can be joined; in other words,
let there be two points x0, x1∈X; there exists two instants t0
and t1 with t0< t1 and a control u, defned on the interval [t0,
t1], such that x (ti)� x, i� 0,1. We study the controllability of
the linear system with dimension n defned in the state space
by the system of equations of the following form:

_x � Ax + Bu,

y � Cx + Du,
􏼨 (7)

where x ∈Rn×1 the state vector, A ∈Rn×n the state matrix,
B ∈Rn×m the control matrix, u ∈Rm×1 control vector, y ∈Rp×1

the output vector, and C ∈Rp×n the output matrix, p rep-
resents the number of outputs, and D ∈Rp×n is the direct
transmission matrix. Te matrices A and B are time-
independent matrices. In such a case, the dynamics of the
system is said to be time-invariant (or stationary).

≫ rank(ctrb(A,B))

ans � 6.
(8)

It can be shown that a system is controllable only if its
controllability matrix C has full rank (i.e., rank (C)� n,
where n is the number of variable states).
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Since 6� 6 in our system, then the system is said to be
controllable.

3.2. Te Observability. In a nutshell, observability is
a property from which the state of the system under
consideration can be determined exactly or approximately.
By duality with the concept of controllability, the linear
invariant system is observable only if the following con-
dition is met:

(9)

Te rank Γobs � n, Γobs is the observability matrix, ob-
tained by putting nmatrices 1, , . . ., nCCACA (n− 1) below
each other.

U2

U1 x = Ax + Bu.

y = Cx + Du

Figure 2: Simulink open-loop diagram.
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>> rank (obsv (A, C))

ans =

6

C
CA

CA2 .

CAn–1

O = (10)

For LTI (linear time-invariant) systems, the system is
observable if and only if the observability matrix Γobs, has full
rank (i.e., rang (Γobs)� n, where n is the number of variable
states).

As far as our system is concerned, we can conclude that it
is observable.
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Using the MATLAB software, we will make a dynamic
analysis of the discretized linear model. Ten, we will study
the features of this model as a function of the chosen dis-
cretization step k, and thus, of the dimension 2 (N+ 1) of the
system. Tis study focuses on the application of state
feedback control theoretically through simulation using
Simulink modelling software; the results will then be pre-
sented and their interpretation.

4. Feedback Control and Choice of K-Matrix

Feedback control modifes the self-dynamics (poles) of the
closed-loop system to increase stability, accuracy, and speed,
while maintaining a small or zero steady-state error. Te
method consists of generating a control signal u from the
states x1, x2. . .xn.

Figure 6 provides a visual representation of the re-
lationship between the system’s states and the feedback
control mechanism.

Te idea is always to drive the system with a setpoint
signal and to automatically generate the control signal by
comparing the setpoint value and the actual behavior of the
system in performance.

Te control law that meets the above objective is called
pole placement control.

4.1. Pole Placement. Pole placement consists of determining
the value of a controller’s gain according to the desired
position in the complex plane of certain BF poles chosen by
the designer. Let be a state feedback controller; we defnite
the following system of equations:

U � v − Kx, (11)

where K is a matrix called the state feedback gain and v is
a new input to the closed-loop system.

Te closed-loop system is therefore written as follows:

_x � Ax + B (u − Kx),

_x � x (A − KB) + Bu.
(12)

Te calculation of the K-matrix was carried out through
a random pole change at the beginning; each time the values
are changed and the curve plotted until a control point is
reached:

K �
−2.2361 −3.2762 0.7071

−2.2361 −3.2762 0.7071

0.7286 −15.3874 −2.1505

0.7286 −15.3874 −2.1505
􏼢 􏼣.

(13)

We then modifed lines 3 and 4 of our MATLAB cal-
culation and obtained the results shown in Figure 7.

Applied to the input an amplitude, we will obtain the
following results.

As shown in Figure 8, the application of the state
feedback control to the system shows that the pendulum
returns to the vertical position _φ (zero defection) about 1.3
seconds. It can be seen that the response is smooth and no
longer aggressive.

5. Various Commands Available
for Stabilisation

Te control of the two-wheel inverted pendulum has been
realized based on diferent laws such as the following points:

(1) Te extended PDC (parallel distributed compensa-
tion) control gives simulation results illustrated in
Figure 9 [10]

(2) Control through adaptive backstepping [8]

6. Discussion of the Results Obtained and
Application of the PID-Fuzzy Combination

6.1. Discussion of the Results Obtained. Te application of
the extended PDC (parallel distributed compensation)
control to the system, as shown in Figure 9, demonstrates
that the Segway returns to its equilibrium position after
a certain response time (about 7.3 seconds) and with some
overshoot.

Figure 10 depicts the adaptive backstepping control for
the system, which shows that the Segway returns to its
equilibrium position after a certain response time (about
6.2 sec) and with some overshoot.

Te comparison of the applied commands (Figure 11)
shows that the state feedback command performs better than
the extended PDC (parallel distributed compensation)
command and the adaptive backstepping command.

Our method has a signifcant advantage over existing
ones in the literature (extended PDC control, adaptive
backstepping, and so on) in that it has a much lower error
margin, a faster response time (about 1.3 seconds), is gen-
erally smooth, and has a slight overshoot.

To improve the performance and stability of a Segway,
we will present another proposed control based on a fuzzy-
PID control loop in conjunction with a pole placement
controller in the following step.

6.2. A Fuzzy-PID Controller Modifes Feedback Control.
Te state feedback control modifes the closed-loop system’s
poles. However, the latter does not guarantee a zero position
error. A fuzzy-PID integrator is one option. Te PID uses
feedback (from sensors that measure the orientation and
movement of the Segway) to continuously adjust the output
of a system (motor). While the fuzzy logic controller will be
used to process the input variables (the orientation and
motion of the Segway) and apply fuzzy rules to calculate the
output variables, which will then be used to adjust the

u

K

x

yv x = Ax + Bu.

y = Cx + Du
+

-

Figure 6: Schematic representation of the concept of state feedback
control.
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U1 +-

x = Ax + Bu.

y = Cx+ Du

K’u

Figure 7: Simulink closed-loop feedback diagram.
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motors to achieve the desired Segway behavior. Te control
law is written as follows:

U � K’x + Kiv + Kd

d

dt
� K’x + Ki 􏽚

t

0
ε(θ) dθ + Kd

dε
dt

,

(14)

where K’ ∈Rn and Ki a scalar. Te deviation ε defned by
ε� y′− y, u is the control signal.

Te vectors K’ and Ki can be chosen by a pole placement
method. We specifed one more pole (n+ 1) to take into
account the presence of the integrator. We consider that y′ is
a step, then y′� 0 for about each instant of time and that the
step perturbation implies: limε⟶∞ε(t) � 0.

Hence, the position error is zero.

After applying the Laplace transformer, the PI controller
is given by the following transfer function C(s)�

K’ +Ki/s+Kds.
In order to implement a fuzzy logic controller, we defne

a set of fuzzy rules that describe how the system should
respond to various inputs.

For example, if the Segway leans left and moves forward,
a fuzzy rule might specify that the left motor should be set to
increase speed and the right motor should be set to decrease
speed to correct the lean an maintain balance.

Te optimal gains Kp, Ki, and Kd for a PID controller
were determined by several simulation tests are mentioned
in Table 2.

6.2.1. Fuzzy Ensemble. Fuzzy ensemble in fuzzy logic,
a subset A of B is defned by a membership function u A (x)
which can take diferent values between 0 and 1 depending
on the degree of membership of the element x to the subset A

uA(x) ∈ [0 1]. (15)

6.2.2. Variables and Linguistic Values. A linguistic variable
represents a regulated state in the system or a setting variable
in a fuzzy controller. In Figure 12, each value represents
a fuzzy set of the universe of discourse:

(i) Discourse universe: temperature from −10 to 14°C.
(ii) Linguistic variables: temperature.
(iii) Linguistic values: “cold” “hot.”
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Table 2: Parameters of the PID controllers.

Parameters
Angles

θ _θ φ _φ
K’ 1.2 2.8 5.2 1.8
Ki 2.8 25 2.8 3.8
Kd 1.8 30 2.7 1

Very
cold Cold Temperate Hot Very hot

0.0

0.4

0.8

1.2

25 35 4510 30205 150 40
Temperature (°C)

Figure 12: Variables and linguistic values.
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(iv) Membership function: We already know that fuzzy
logic is not a logic that is fuzzy but a logic that is
used to describe fuzziness. Tis fuzziness is best
characterized by its membership function.

In other words, we can say that the membership function
represents the degree of truth in fuzzy logic. Te mem-
bership functions are represented by graphical forms as
follows in Figure 13.
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6.2.3. A Fuzzy Controller’s Structure. Te most common
application of fuzzy logic is the fuzzy controller. Te fol-
lowing diagram (Figure 14) depicts the general structure of
a fuzzy controller.

Te fuzzy controller is made up of four major
components.

A fuzzy logic system includes a fuzzifcation block (used
to convert nonfuzzy numerical variables from inputs into
fuzzy linguistic variables), a rule base, an inference mech-
anism (used to simulate human decisions using fuzzy var-
iables transformed by fuzzifcation and inference rules to
create and determine fuzzy output variables), and a defuz-
zifcation block. Using the Sugeno–Takagi approach, we
developed the fuzzy logic controller. Angle, angular velocity,
location, and speed are the input values of the controller,
which are linguistic variables. All linguistic variable values
have been categorized as negative (N) or positive (P). Using
the set point and the measured output, the PID controller
was developed by computing the deviation between the set
point and the feedback.Te error is then utilized to compute
the three components of the PID controller (proportional,
integral, and derivative), which are then combined to
provide the control output. A fuzzy inference system is
utilized to create a fuzzy logic controller employing input
variables and fuzzy rules to determine output variables.
Using the outputs of the PID controller and the fuzzy
controller, the motors are fnally tweaked to obtain the
required Segway behavior.

Te fuzzy membership functions for the inputs and
outputs are shown in Figure 15.

Figure 16 illustrates the control surface of the fuzzy
control.

Te Simulink state feedback control diagram as modifed
by the PID-fuzzy controller is shown in Figure 17.

Here, KpKiKd the controller gains used to calculate the
output of the PID controller as a function of the error
between the target value and the measured value. Te in-
tegral of the error and the derivative of the error are also
considered in the output calculation.

 . Results and Interpretation

Te pole placement controller was used to calculate the
optimal actions to take based on the current system state and
desired poles, and then the fuzzy-PID algorithm was used to
adjust these actions based on the current error and system
response.

Figure 18 shows the fuzzy-PID-modifed state feedback
compared to the previous controllers.

Tis study has allowed through the simulation results
found, to notice a great improvement of the rapidity with
the intelligent control fuzzy-PID. Conversely, the system
achieves the desired stability without overshooting. Te
BP neural network’s robust nonlinear mapping capabil-
ities can enhance the controller’s fexibility. Table 3 shows
the system’s transient response characteristics are as
follows.

In order to evaluate the ability of the proposed controller
to compensate for external disturbances and thus test its
robustness, we perturbed the pendulum to observe the
behavior of the controller under these conditions. A dis-
turbance was applied to the system for four seconds, (from
18 to 22) seconds after the start of the simulation.Te results
of this evaluation are presented in Figure 19.

Te fgure shows the system response after the appli-
cation of an external disturbance. It can be observed that the
proposed method maintains a stable and precise response
despite these disturbances, with a limited increase in os-
cillation amplitude. Unlike other controllers, the proposed
method has a smoother profle, ascending and descending
with a smaller amplitude, suggesting a faster and more
precise response, as well as a better ability to adapt efectively
to external disturbances.

Tese results confrm the signifcant improvement of the
proposed method in terms of robustness, which is an es-
sential feature for many control applications in perturbed
environments. Te ability of the proposed method to
maintain a stable and precise response in the presence of
external disturbances suggests that it could be successfully
used in real-world applications. In conclusion, our proposed
method has signifcant advantages over other tested

Table 3: Controllers performance comparison.

Controllers Rise time (s) Setting time (s) Overshoot (%) Steady-state error (%)
Backstepping 2.08 6.2 5.33 1.2
PDC 0.79 7.3 6.16 1.06
Pole placement 0.06 1.3 0.84 0.9
Fuzzy-PID modifed pole placement Immediate 0.4 0 0
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Figure 19: Comparison between controllers under perturbation.
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controllers, and its robustness is an important advantage for
many control applications.

8. Conclusion

Tis research has enabled us to admit that extended PDC
(parallel distributed compensation) and adaptive back-
stepping control can produce some results, but they are still
unsatisfactory in terms of stability and speed. Furthermore,
the state feedback control is much better and results in
a stable system with a reduced error margin and a slight
overshoot; however, to improve the performance and ro-
bustness of this system, we implemented a fuzzy PID in-
tegrator, which corrected the error problem.

Finally, we can conclude that the intelligent controller
implementation is more complex than the classical con-
troller because of the right combination of controller “fuzzy
PID,” the form and intervals of the membership functions,
and the controller rules. Nonetheless, intelligent control
produces signifcantly better results in terms of system
stability, speed, and robustness in the face of external
disruption.

It should be noted that the desired poles and the cali-
bration of the fuzzy-PID controller parameters can have
a signifcant impact on system performance and stability.
Tese parameters may need to be updated in response to
changing system conditions and requirements.

Other more complex mathematical models of the Seg-
way can be tested in the future.
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https://theses.hal.science/tel-01469234.

[11] Z. Liu, Q. Li, Y. Chen, M. Lv, and R. Zuo, “Improved dynamic
surface control for a class of nonlinear systems,” in Pro-
ceedings of the IEEE Xplore. 12th Asian Control Conference
(ASCC), Kitakyushu, Japan, July 2019.

[12] X. Li, C. Gao, and J. Wu, “Neural network supervision control
strategy for inverted pendulum tracking control,” Discrete
Dynamics in Nature and Society, vol. 2021, Article ID 5536573,
14 pages, 2021.

[13] X. Deng, C. Zhang, and Y. Ge, “Adaptive neural network
dynamic surface control of uncertain strict-feedback non-
linear systems with unknown control direction and unknown
actuator fault,” Journal of the Franklin Institute, vol. 359, no. 9,
pp. 4054–4073, 2022.

[14] Y. Li, J. Zhang, X. Xu, and C. S. Chin, “Adaptive fxed-time
neural network tracking control of nonlinear interconnected
systems,” Entropy, vol. 23, no. 9, p. 1152, 2021.

[15] M. Masrom, N. A. Ghani, and M. Tokhi, “Particle swarm
optimization and spiral dynamic algorithm-based interval
type-2 fuzzy logic control of triple-link inverted pendulum
system: a comparative assessment,” Journal of Low Frequency
Noise, Vibration and Active Control, vol. 40, 2019.

[16] T. A. Mai, T. S. Dang, H. C. Ta, and S. P. Ho, “Comprehensive
optimal fuzzy control for a two-wheeled balancing mobile
robot,” Journal of Ambient Intelligence and Humanized
Computing, 2023.

[17] M. Llama, A. Flores, R. Garcia-Hernandez, and V. Santibañez,
“Heuristic global optimization of an adaptive fuzzy controller
for the inverted pendulum system: experimental compari-
son,” Applied Sciences, vol. 10, no. 18, p. 6158, 2020.

[18] J. Simon, “Fuzzy control of self-balancing, two-wheel-driven,
SLAM-based, unmanned system for agriculture 4.0 applica-
tions,” Machines, vol. 11, no. 4, p. 467, 2023.

[19] J. P. Smith and K. W. Johnson, “A comparison of control
strategies for the inverted pendulum problem,” Journal of
Robotics, pp. 1–12, 2017.

[20] Y. Zhang, J. Wang, and H. Wang, “Design of fuzzy PID
control for wheeled inverted pendulum based on improved
ant colony algorithm,” Journal of Robotics, pp. 1–8, 2018.

[21] K. C. Lin and K. Y. Lian, “Stabilization of underactuated
pendulum system via hybrid control combining sliding mode
control and LQR,” Journal of Robotics, pp. 1–9, 2019.

[22] K. Nader and D. Sarsri, “Modeling and simulation of an
underactuated system,”MATECWeb of Conferences, vol. 286,
p. 02009, 2019.

Journal of Robotics 13

https://theses.hal.science/tel-01469234



