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In view of the problems of A∗ algorithm in path planning, such as collision risk, the path is not necessarily optimal, and there are
numerous turning nodes.Terefore, this study proposes an improvedA∗ algorithm to improve the quality of the planned path. First, the
8-neighborhood children of the parent node are generated, and the security of the planned path is improved by further investigating the
properties of the neighbors of these children one by one to reasonably set virtual obstacles. Second, the heuristic function of A∗ algorithm
is ameliorated tomake it closer to the actual cost, so as to enhance the accuracy of the planned path; fnally, the planned path is smoothed
by using the cubic uniformB-spline curve to eliminate corner sharp points in the path.Te simulation results show that the improvedA∗
algorithm can not only ensure the safety and smoothness of the planned path but also obtain the shortest planned path in the static
environment with diferent obstacle rates. In addition, we combine the improved A∗ algorithm with the dynamic window algorithm to
enable mobile robots to realize real-time dynamic obstacle avoidance while ensuring the optimality of global path planning.

1. Introduction

Nowadays, mobile robots are becoming more and more
signifcant in a variety of felds. No matter how the appli-
cation scenario changes, one of the key problems that mobile
robots must solve is path planning. Path planning refers to
planning a collision-free, safe, and feasible optimal route
from the starting point to the target point for a mobile robot
in an obstacle environment while satisfying certain con-
straints [1]. Path planning can be broadly classifed into two
main approaches: traditional algorithm path planning and
intelligent bionic algorithm path planning.

Traditional algorithms include Sunita and Garg [2],
Floyd [3], RRT [4], A∗ [5], and D∗ [6]. In [7], in order to
improve the mobile efciency of robots in logistics ware-
houses and manufacturing workshop, a dynamic fusion
routing algorithm (DFPA) based on Delaunay triangulation
and improved A∗ is proposed. In [8], Lee proposed a path
planning algorithm for range-constrained multirobot tasks
based on hybrid tabu search and 2-opt path planning. In [9],

it is useful to enhance the classical Q-learning approach by
the APF method. Te proposed QAPF learning algorithm
can increase the efciency of learning using the combination
of Q-learning and the APF method. Intelligent bionic al-
gorithms include ant colony optimization [10], genetic [11],
particle swarm optimization [12]. Orozco-Rosas et al. [13]
proposed a hybrid path planning algorithm based on
membrane pseudobacterial potential feld (MemPBPF) to
improve the efectiveness of obstacle avoidance and
smoothness. In [14], the authors suggested an algorithm for
hybrid path planning to increase the efciency of hetero-
geneous mobile robots using the combination of CS and
BSO. In [15], the authors combined membrane computing
with a genetic algorithm and the artifcial potential feld
method for path planning.

In addition, there are some suggestions for applying the
A∗ algorithm to tackle path planning issues. Te A∗ algo-
rithm is a heuristic search algorithm [16], which has the
advantages of short search time, fast running speed, and
simple operation, so it is frequently used in mobile robot
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path planning [17]. However, in practical applications, the
classic A∗ algorithm is shown to have various drawbacks
[18], for example, not always ideal planning paths, numerous
turning nodes, near proximity to obstacles, and low security,
which are not conducive to the robot arriving at the fnal
point without incident [19].

Terefore, in order to obtain better planning paths, many
enhanced A∗ algorithms have been proposed.Te authors in
[20] proposed the JPS (A∗) algorithm, which used a jump
point search strategy to shorten the algorithm search time,
but most of the time, the path obtained by its planning was
not optimal. Based on the parent node’s signifcance to the
path search, the authors in [21] revised the weight coefcient
of the algorithm, which reduced the search time, but the
planned path had the risk of collision and was not smooth.
Te authors in [22] reduced the search space by weighting
the improved heuristic function in an exponential decay
manner but ignored the safe gap between the movable robot
and the obstacle. According to the study of [23], the state
hazard coefcient should be established in the environment
modeling to assure the safety of the intended path, and an
optimization approach should be used to eliminate any
unnecessary nodes, but the resulting path was not
a smooth curve.

It can be seen from the abovementioned analysis, al-
though numerous academics have improved the A∗ algo-
rithm from diferent perspectives to enhance its
performance, there are relatively few researches on achieving
optimal planning on the basis of ensuring security and
taking into account the smooth processing of the path. If the
size of the robot body is not taken into account, it is easy to
encounter obstacles in path search, and the optimal path
cannot be obtained. Terefore, we propose a node search
method to set virtual obstacles to avoid collisions between
the robot and the obstacles and eventually obtain a smooth
path through the B-spline curve.Te algorithm’s efcacy and
security are confrmed by simulation in both static and
dynamic obstacle settings. Before concluding this section,
the following are the main contributions of the study:

(1) An improved eight domain node search strategy is
introduced

(2) Te heuristic function of A∗ algorithm is ameliorated
to make it closer to the actual cost

(3) B-spline curve is used to smooth the planned path
(4) Te improved A∗ algorithm and dynamic window

algorithm are combined to realize real-time obstacle
avoidance

2. Grid Environment Modeling

When planning the path of a mobile robot, the establishment
of environment model is the basis of robot control. Because
of its straightforward structure, easy implementation, and
strong fault tolerance to sensors, the grid method is fre-
quently employed in robot path planning. In this study, the
grid map [24] is used to abstract the real environment in-
formation obtained by various sensors into a two-

dimensional plan, and it is divided into several square
grids of equal size. Using numbers 0, 1, 2, and 3 to set the
state of the grid based on environmental information,
0 represents the idle state, which is shown in white on the
map, meaning that the mobile robot can traverse this region.
1 indicates the occupied state, which is represented by black
on the map, this is the obstacle area, which means that the
mobile robot cannot pass through; 2 and 3 represent the
starting point and the goal point, respectively, which are
shown in yellow and red on the map [25] as shown in
Figure 1.

Suppose that the robot moves in a two-dimensional
plane area A with a limited number of obstacles and
takes the upper left corner of A as the coordinate origin, the
horizontal direction is theX axis, and the vertical direction is
the Y axis. A rectangular coordinate system X − Y is con-
structed as the robot motion space. Te maximum values in
the horizontal and vertical directions are xmax and ymax
separately, and the single step length of the robot is ρ, so the
number of grids in each row and column is nx � xmax/p and
ny � xmax/p.

For any grid in the two-dimensional plane area A, there
are certain coordinates and linear indices corresponding to
it, as shown in Figure 2. S � 1, 2, 3, · · · , nx ∗ ny  is defned as
the grid linear index set, take the upper left corner of the
coordinate area as the origin, set the linear index number of
each grid from top to bottom and from left to right, and the
relationship between the coordinates (xi, yj) and the index
number i is as follows:

xi � ceil
i

ny

 ,

yi � (i − 1)mod ny + 1.

(1)

3. Algorithm Introduction

Te A∗ algorithm is based on the Dijkstra algorithm. First of
all, we should understand the principles of Dijkstra algorithm
and A∗ algorithm. Te Dijkstra algorithm applies the greedy
algorithm method to resolve the shortest path problem [26]
which is applicable to the shortest path planning problem for
a single source, that is, the shortest path from a vertex to all
other nodes.Te basic idea is as follows: once the full network
has been explored, the node closest to the starting point and
not yet visited is selected as the parent of the subsequent cycle.
Terefore, it can always plan the shortest path from the
starting point to any designated target point; on the other
hand, because it is a blind search method, the algorithm
search process has a large amount of computation [27]. Es-
pecially for large networks, the algorithm will take a long time
to traverse the entire network.

In A∗ algorithm, the distance from the current location
to the target point is called the estimated cost, and then the
total cost function is formed together with the actual cost
from the starting node to the current node to determine the
search direction [28]. In each cycle, the algorithm de-
termines the movement costs of the 8-neighborhood
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children around the parent node in the grid map and selects
the child with the smallest cost value as the parent for the
next cycle until the target node is searched. Since the al-
gorithm does not need to traverse the entire network, its
search efciency is greatly improved compared with Dijkstra
algorithm [29].

Te total cost function of the A∗ algorithm is as follows:

f(m) � g(m) + h(m). (2)

In formula (2), g(m) is the actual cost from the starting
node to the current node m, and h(m) is the estimated cost
from the current node m to the target node. g(m) is
equivalent to the shortest path from the starting node in
Dijkstra’s algorithm and is a known fxed value, so the value
of the total cost f(m) is determined by the size of the
heuristic function h(m). Te key of the A∗ algorithm is to
select a reasonable value for h(m), which directly afects the
search efciency and solution quality of the algorithm.

4. Improved A∗ Algorithm

Tis section improves the A∗ algorithm by improving the 8
domain node search strategy and heurism function and
smoothing the path.

4.1. Virtual Obstacle Setting. When planning the path with
the traditional A∗ algorithm, the robot is considered to be
a moving particle, without considering the infuence of
factors such as robot volume, positioning accuracy, and
distance error. Terefore, although an ideal path can be
planned; there are certain potential security risks. For ex-
ample, in Figure 3, the robot may cross the vertex of the
obstacle in an oblique direction, resulting in a collision and
damage to the robot; In Figure 4, the robot passes through
the vertex between two obstacles. In actual road conditions,
it is impossible to get through here [25].

To confrm that the robot can safely and reliably cross the
obstacle area to the goal point. In [30], the A∗ algorithm is
used to search discrete 8 neighborhoods and expand to
infnity, which increases the search direction and improves
the performance index of path smoothness. However, the
increase in computational efort results in a signifcant
decrease in search efciency. Te authors in [31] set virtual
obstacles of a certain size around all obstacles to prevent
possible collisions between robots and obstacles. Although
this method is efective in avoiding collisions, the range of
obstacle regions in the map is enlarged due to the oversetting
of virtual obstacles, and there is a large gap with the actual
map, which afects how accurately the next path will be
planned. Terefore, we propose a modifed virtual obstacle
setting strategy in this paper.

When the current position of the robot is 5, it searches in
the eight directions shown in Figure 5. If the grid point in
this direction is a nonobstacle region, it can be considered as
a feasible path, and the next step is to investigate it. However,
in practical applications, not all nonobstacle regions are
accessible because the robot has a certain volume. As shown
in Figure 6, when judging whether a grid point 1 is reachable,
frstly, we need to judge whether the point is an obstacle area.
If it is a free area, we proceed to determine whether the
adjacent points 4 and 2 are obstacle areas. As long as any of
them is an obstacle region, grid point 1 is inaccessible and we
set it as a virtual obstacle, denoted by cyan in the map.
Similarly, the same strategy is used when deciding whether
the other three diagonal directions are reachable or not.

4.2. Improvement ofHeuristic Function. It is clear that the A∗
algorithm’s search efectiveness and solution quality are
determined by the h(m), and the closer to the actual value,
the higher the search efciency. However, in a complex map
environment, it is difcult for us to accurately estimate the
value of h(m). Tere are two main calculation methods for
h(m): Manhattan distance (equation (3)) and Euclidean
distance (equation (4)).

h(m) � xm − xn


 + ym − yn


, (3)

h(m) �

��������������������

xm − xn( 
2

+ ym − yn( 
2



. (4)

Manhattan distance is the heuristic function of the
standard A∗ algorithm, which allows only four directions of
movement up, down, left, and right. It is calculated as the
total absolute wheelbase of two points in the standard co-
ordinate system. Te Euclidean distance, which can be
moved at any angle, is the linear distance between two
points. However, in the case of obstacles, there will be a big
gap between the two calculation methods and the actual
distance. Te Euclidean distance is shorter than the actual
distance, and the Manhattan distance is larger than the
actual distance. In general, in order for the robot to reach the
desired place quickly and safely, its motion pattern is
generally a combination of oblique and horizontal motion as
shown in Figure 7. Terefore, this study uses diagonal

StartPos

GoalPos

Obstacle

Empty Area

Figure 1: Grid map.
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distance as a heuristic function h(m) to estimate the mobile
path cost [32].

Te distance of oblique movement is as follows:

h1(m) �
�
2

√
∗dy. (5)

Te distance of its horizontal movement is as follows:

h2(m) � dx − dy. (6)

Terefore, the total moving distance of the mobile robot
is as follows:

h(m) � h1(m) + h2(m) �
�
2

√
∗ dy + dx − dy . (7)

Te abovementioned discussion is based on the example
that the distance in the horizontal direction is greater than
that in the vertical direction, which is generalized to the
following general situations:

h(m) �
�
2

√
∗ min dy, dx  + dy + dx − 2∗ min dy, dx  ,

(8)

where dy � |ym − yn|, dx � |xm − xn|

(xm, ym) is the coordinate of the current node, and
(xn, yn) is the coordinate of the target node. In the complex
environment, the calculation result of the heuristic function
h(m) proposed is closer to the actual distance than the
Manhattan distance and Euclidean distance. In addition,
there are only some simple operations in the formula, and no

complex square and square root operations. Te amount of
calculation is small, which will not afect the efciency of
mobile robot path planning [33].

4.3. Path Smoothing Based on B-Spline Curve. After the
abovementioned improvement of the A∗ algorithm, the
quality of the planned path is greatly improved, but the path
still lacks smoothness. Frequent turns can easily cause the
robot to wobble, and the motion is not smooth. B-spline
curve [34] has many excellent properties such as geometric
invariance, convex hull, convexity preservation, local sup-
port, and so on. When the order is 3, the B-spline curve has
the characteristics of second-order continuity at the node
[35], which meets the requirements of the continuity of the
acceleration and velocity of the robot movement. Terefore,
the third-order B-spline curve is used for path smoothing in
this study.

Te defnition of the k-th degree B-spline curve equation
is as follows [36]:

Pm,k(t) � 
k

i�0
Pm+iGi,k(t), t ∈ [0, 1], (9)

where Pm,k(t)(m � 0, 1, · · · , n − k) is the k-th degree
B-spline curve segment of the m-th segment, there are n −

k + 1 curve segments in total, and the whole of these curve
segments is called the k-th degree B-spline curve;
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Figure 2: Relationship between coordinates and linear index.
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Figure 3: Path obliquely passes through obstacle vertices.
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can't pass!

Figure 4: Path passes through two obstacle vertices.
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Pm+j(m � 0, 1, · · · , n − k) is the vertex of the control
polygon, there are n + 1 in total; Gi,k(t) (i � 0, 1, · · · , k) is
called the basis function of the k-th B-spline curve, and its
expression is as follows:

Gi,k(t) �
1
k!



k−i

j�0
(− 1)

j
C

j

k+1(t + k − i − j)
k

t ∈ [0, 1], i � 0, 1, ..., k,

(10)

when k � 3, then:

G0,3(t) �
1
6

−t
3

+ 3t
2

− 3t + 1 ,

G1,3(t) �
1
6

3t
3

− 6t
2

+ 4 ,

G2,3(t) �
1
6

−3t
3

+ 3t
2

+ 3t + 1 ,

G3,3(t) �
1
6
t
3
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ∈ [0, 1]. (11)

Substituting (11) into (9), the equation of the 3-order
uniform B-spline curve is as follows:

Pm,3(t) �
1
6

1 t t
2

t
3

 

1 4 1 0

−3 0 3 0

3 − 6 3 0

−1 3 − 3 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pm

Pm+1

Pm+2

Pm+3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, t ∈ [0, 1].

(12)

By substituting the node coordinates of the planned path
into the above formula, the spline curve equation corre-
sponding to the control points can be determined [37]. With
the continuous value of t, a smooth B-spline curve can be
drawn, thereby realizing the smooth processing of the path
[38]. As shown in Figure 8, it is a cubic B-spline curve
controlled by fve control vertices, which consist of three B-
spline curve segments. Among them, each curve segment is
controlled by four vertices.

4.4. Application of Improved A∗ Algorithm in Path Planning.
Te process of path planning using the improved A∗ al-
gorithm is as follows:

Step 1: build the environment map and initialize
parameters.
Step 2: defne two lists: openList stores the nodes to be
investigated, closedList stores the investigated nodes,
and puts the starting node S into openList.
Step 3: the node in the openList with the least f(m)

value should be chosen as the parent, added to the close
list, and eliminated from the openList.

Step 4: judge whether the parent node is the goal node.
If yes, the search process ends and the planning path is
generated; otherwise, the 8-neighborhood children of
the parent are generated and the nodes in the obstacle
region and those already present in the proximity list
are excluded.
Step 5: further investigate the child nodes and set up
virtual obstacles according to the strategy in Section 4.1.
Step 6: judge whether the remaining child node in the
previous step is in the openList. If yes, recalculate the
movement cost f(m), compare it with the original
value, keep the smaller value, and update the path; if
not, append node m to openList, calculate its value of
f(m), and update the path.
Step 7: go back to Step 3 and enter the loop search until
the goal point G is searched.
Step 8: smooth the planned path by using the cubic
uniform B-spline curve.

Figure 9 shows the fow chart of the improved A∗
algorithm.

Algorithm 1 presents the improved A∗ algorithm
pseudocode. Te improved A∗ algorithm employs the next
input parameters: the starting point, S, and the goal point, G,
an openList of states for expansion, a closedList of states for
completion.

5. Experimental Simulation and Result Analysis

For the purpose of verifying the abovementioned theoretical
analysis and the efectiveness of the improvement of A∗
algorithm, the MATLAB 2018a experimental platform was
used to conduct simulation experiments. In the static ob-
stacle environment, the traditional A∗ algorithm (TAA), the
A∗ algorithm with virtual obstacle (AAO), the improved A∗
algorithm (IAA), Dijkstra algorithm and the algorithm in
reference [31] are, respectively, carried out four groups of
simulation experiments. Te grid map environment selects
30 ∗ 20 with a low obstacle rate, 50 ∗ 40 with a low obstacle

45
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0 10 20 30 40 50 60 70

Figure 8: Example of B-spline curve.
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rate and 50 ∗ 40 with a high obstacle rate, 100 ∗ 100 with
a high obstacle rate respectively. A set of simulation ex-
periments were implemented in a dynamic obstacle envi-
ronment. Te hardware platform is: Windows 10 operating
system, Intel Core i5-7200U @2.4 GHz with 8G RAM.

Algorithm description: in order not to afect the time-
liness of mobile robot path planning, the heuristic function
h(m) of the traditional A∗ algorithm and A∗ algorithm with
virtual obstacle is calculated as Manhattan distance; the
improved A∗ algorithm is contrasted with the Dijkstra al-
gorithm to further confrm its efcacy. Since the Dijkstra
algorithm is a blind search, its planned pathmust be optimal.
Moreover, for a better experimental comparison analysis, in
this study, we add virtual obstacles to the Dijkstra algorithm
to avoid collisions, and the path is also smoothed.

In order to exclude the infuence of other factors on the
experiment, we conducted 20 repeated experiments for each
group of experiments, and the experimental results showed
that the paths planned by each algorithm were consistent
each time. Furthermore, when processing the experimental
data, the time costs calculated by each algorithm were
recorded, and their average values were taken to eliminate
the interference of random errors.

5.1. 30 ∗ 20 Grid Environment with 15.8% Obstacle Rate.
First, create a grid map with dimensions of 30 ∗ 20. In the
map, the starting point is shown in yellow, the goal point is
shown in red, and the obstacle area is shown in black, and
the proportion of obstacles is 15.8%, green for the planned

Start

Build environment map

Select the node with the lowest f
value in openList as the parentNode

Whether the parentNode 
is G?

Generate planning path

N

Path smoothing with
B-spline curve

Generate the 8-neighborhood
childNodes of the parentNode, and

exclude the obstacles nodes and nodes
that already exist in the closeList

End

Further investigate the childNodes and
set virtual obstacles

Whether the childNodes
is in the openList?

N Append childNodes to
openList

Y

Y

Calculate (or update) the f value,
and update the path

Define openList and closedList,
and put S into openList

Figure 9: Flow chart of the improved A∗ algorithm.
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path, and cyan for the virtual obstacle. Te path planning
results obtained by each algorithm are shown in
Figures 10–14, respectively. At the same time, Table 1

displays the number of moving grids, path length, num-
ber of virtual obstacles, and search time of the fve
algorithms.

Input: S, G
Output: the optimal path

(1) initialize openList and closedList
(2) set Pn: the least costly node in the openList
(3) while true do
(4) fnd the 8 neighborhood nodes of Pn
(5) whether the neighborhood node is in the openList
(6) if in the openList then
(7) compute g(m), h(m) and f(m)
(8) else add to the openList
(9) end
(10) repeat search the least costly node in the openList
(11) if G in the closedList then
(12) break
(13) end
(14) path-smoothing with B-spline curve
(15) return the optimal path

ALGORITHM 1: A∗ pseudocode.

0 5 10 15 20 25 30
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5

0

Figure 10: Path planned by TAA (30 ∗ 20, 15.8%).
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Figure 11: Path planned by AAO (30 ∗ 20, 15.8%).
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Figure 12: Path planned by IAA (30 ∗ 20, 15.8%).
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Figure 13: Path planned by Dijkstra (30 ∗ 20, 15.8%).
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Figure 10 makes it evident that the path chosen by the
traditional A∗ algorithm is in close proximity to the obstacle,
there are multiple collisions, and in the actual map envi-
ronment, there is a risk that some paths will not pass at all.
Terefore, virtual obstacles are added on the basis of the
traditional algorithm to avoid the occurrence of the above
two phenomena, and Figure 11 displays the results of the
path planning. Te fgure shows that the virtual obstacle is
set so that the mobile robot is safely separated from the
obstacle, which guarantees the safety of the planned path.
However, this planned path has the problem of sharp turns
(large changes in curvature) between straight lines. Tus,
this paper uses cubic uniform B-spline curve to smooth the
planned path, as shown in Figures 12 and 13. A path
planning experiment that was completed using the enhanced
A∗ algorithm from the reference [31] is shown in Figure 14.

Table 1 demonstrates that when compared to the tra-
ditional A∗ algorithm, the number of moving grids planned
by the A∗ algorithm with virtual obstacles increases by 3, the
path length increases by 4.02%, and the search time increases
by 22.16%. Tis is primarily to guarantee the safety of path
planning; the efect of increasing the path length caused by
avoiding obstacles is unavoidable. Compared with the A∗
algorithmwith virtual obstacles, the number of moving grids
planned by the improved A∗ algorithm is reduced by 6, the
path length is reduced by 11.92%, and the search time is
basically the same. Tis is because the value of a heuristic
function h(m) in the improved A∗ algorithm is closer to the
real cost than the Manhattan distance, which makes the
search result closer to the optimal path. Moreover, by

comparing the improved A∗ algorithm with the Dijkstra
algorithm, we fnd that the two algorithms produce paths
with the same number of moving grids and length. We know
that the Dijkstra algorithm uses blind search, so its planned
path must be optimal. Terefore, so it is patently obvious
that the improved A∗ algorithm can obtain the optimal path
on this map scale, and its search time is 52.42% less than the
Dijkstra algorithm. Te algorithm in reference [31] not only
increases the robot’s security but also its running duration
and path length.

5.2. 50 ∗ 40 Grid Environment with 14.1% Obstacle Rate.
To further confrm the improved A∗ algorithm’s viability in
a large-scale map environment, a grid map with a size of
50 ∗ 40 and an obstacle rate of 14.1% was used as the ex-
perimental environment for the experiment. Te path
planning results obtained by each algorithm are shown in
Figures 15–19. Table 2 displays the data analysis.

From this experiment, we can see that in the environ-
ment of a large map with a low obstacle rate, the improved
A∗ algorithm, the A∗ algorithm with virtual obstacles and
the Dijkstra algorithm can all ensure the security of path
planning. Table 2 shows that under the 50 ∗ 40 map size, the
search time of the fve algorithms has increased to varying
degrees, and the Dijkstra algorithm has the largest increase,
which is 3.26 times that of the 30 ∗ 20 map size. Te length
of the improved A∗ algorithm’s planned path is equal to that
of the Dijkstra algorithm, indicating that the improved A∗
algorithm can also achieve the optimal planned path for the
50∗ 40 map size. Moreover, compared with the A∗ algo-
rithm with virtual obstacles, the path length of the optimal
path planned is reduced by 5.72%, and the search time is
reduced by 71.51% compared with Dijkstra algorithm.

5.3. 50 ∗ 40 Grid Environment with 38.9% Obstacle Rate.
Above, we have verifed that the improved algorithm has
achieved good performance under low obstacle rate grid
maps of 30 ∗ 20 and 50 ∗ 40. In order to verify the uni-
versality of the improved algorithm in the high obstacle map
environment, the map environment with the size of 50 ∗ 40
and the obstacle rate of 38.9% is selected for experiment.
Figures 20–24 display the results of the path planning, and
Table 3 displays a comparison of the data.

Table 3 shows that in the high obstacle map environ-
ment, although the length of the planned path of each al-
gorithm has increased compared with the previous group of

Table 1: Experimental results comparison of fve algorithms (30 ∗ 20, 15.8%).

Algorithms Number
of moving grids Path length Number

of virtual obstacles Search time (s)

TAA 36 41.6274 0 0.137
AAO 39 43.3848 15 0.176
IAA 33 38.2132 6 0.167
Dijkstra 33 38.2132 6 0.351
Reference [31] 40 42.3137 219 0.395
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Figure 14: Path planned by reference [31] (30 ∗ 20, 15.8%).
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experiments, the improved A∗ algorithm still shows its
advantages. First of all, it can still guarantee the path op-
timization on the basis of security; second, its search time is

reduced by 50.87% compared with the Dijkstra algorithm
which also obtains the optimal path; fnally, the planned path
is a smooth curve. At the same time, we can see that the
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Figure 15: Path planned by TAA (50 ∗ 40, 14.1%).
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Figure 16: Path planned by AAO (50 ∗ 40, 14.1%).
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algorithm in the study of [31] cannot plan a proper path in
this obstacle environment as shown in Figure 24.

5.4. 100 ∗ 100 Grid Environment with 30% Obstacle Rate.
In order to verify the universality of the improved algorithm
in the complex map environment, a map environment with
the size of 100 ∗ 100 was selected for the experiment.
Figures 25–29 display the results of the path planning, and
Table 4 displays a comparison of the data.

Te results can clearly be seen, and the improved A∗
algorithm has a good optimization efect on the path and can
also efectively improve the safety quality of the path and
generate smooth paths in complex environments. Te al-
gorithm in the study of [31] is only suitable for path planning
in low obstacle rate environments. A high obstacle rate can
lead to mission failure as shown in Figure 29.

5.5. Dynamic Obstacle Environment. In practice, there are
not only known static obstacles, but also unknown dynamic
obstacles that hinder the movement of the robot, which leads
to the failure of path planning. Aiming at the dynamic path
planning of robots in complex environment, the improved

A∗ algorithm and dynamic window algorithm (DWA) [39]
are combined to realize dynamic obstacle avoidance.

DWA converts the position constraint of the mobile
robot into a velocity constraint, establishes speed sampling
space based on constraints and predicts its running tra-
jectory in the next period of time. Finally, the trajectory with
the highest score is selected as the robot’s moving path based
on the evaluation function.Te DWA consists of three parts:
kinematics model, velocity sampling space, and evaluation
function.

5.5.1. Kinematics Model. Assuming that vt,ωt respectively
represent the linear velocity and angular velocity of the robot
at time t, and it approximately moves in a uniform straight
line within the sampling period ∆t, then its kinematics
model can be expressed as follows:

xt+1 � xt + vt∆t cos θt,

yt+1 � yt + vt∆t sin θt,

θt+1 � θt + ωt∆t.

⎧⎪⎪⎨

⎪⎪⎩
(13)

Table 2: Experimental results comparison of four algorithms (50 ∗ 40, 14.1%).

Algorithms Number
of moving grids Path length Number

of virtual obstacles Search time (s)

TAA 60 69.7696 0 0.141
AAO 69 75.8701 8 0.197
IAA 63 71.5269 11 0.316
Dijkstra 63 71.5269 10 1.109
Reference [31] 66 73.2843 335 1.533
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Figure 17: Path planned by IAA (50 ∗ 40, 14.1%).
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5.5.2. Sampling Space (Dynamic Window)

Constraint 1. Te movement speed of the robot

Vm � (v,ω)|v ∈ vmin, vmax ,ω ∈ ωmin,ωmax  , (14)

where vmin,ωmin are the minimum linear velocity and an-
gular velocity; vmax,ωmax are the maximum linear velocity
and angular velocity.

Constraint 2. Acceleration/deceleration of the motor
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Figure 18: Path planned by Dijkstra (50 ∗ 40, 14.1%).
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Figure 19: Path planned by reference [31] (50 ∗ 40, 14.1%).
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Vd �

(v,ω)|v ∈ vc − vb

• ∆t, vc + va

• ∆t ,

ω ∈ ωc − ωb

• ∆t,ωc + ωa

• ∆t 

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (15)

where v,ω represent current speed; va

•
,ωa

•
are maximum

acceleration; vb

•
,ωb

•
are maximum deceleration.

Constraint 3. Safety braking distance
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Figure 20: Path planned by TAA (50 ∗ 40, 38.9%).
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Figure 21: Path planned by AAO (50 ∗ 40, 38.9%).
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Figure 22: Path planned by IAA (50 ∗ 40, 38.9%).
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Figure 23: Path planned by Dijkstra (50 ∗ 40, 38.9%).
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Figure 24: Path planned by reference [31] (50 ∗ 40, 38.9%).

Table 3: Experimental results comparison of four algorithms (50 ∗ 40, 38.9%).

Algorithms Number
of moving grids Path length Number

of virtual obstacles Search time (s)

TAA 62 70.9411 0 0.226
OAA 80 88.9411 11 0.424
IAA 74 84.5983 9 0.592
Dijkstra 74 84.5983 12 1.205
Reference [31] — Failed — —
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Figure 25: Path planned by TAA (100 ∗ 100, 30%).
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Figure 26: Path planned by AAO (100 ∗ 100, 30%).
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Va � (v,ω)|v≤
�����������

2dist(v,ω)vb

•


,ω≤
������������

2dist(v,ω)ωb

•


 ,

(16)

where dist(v,ω) is the closest distance from the current
trajectory to the obstacle.

5.5.3. Evaluation Function

G(v,ω) � σ(αhead(v,ω) + βdist(v,ω) + cvel(v,ω)),

(17)

where head(v,ω), dist(v,ω), vel(v,ω) are the evaluation
functions for direction angle, distance, and velocity,

respectively; σ is the smoothing coefcient; α, β, c are the
weighting coefcients for these three items.

Te improved A∗ algorithm can obtain the optimal
solution of global path planning in static environment, but it
cannot avoid the unknown obstacles in time, but the DWA
has good local real-time obstacle avoidance ability. Tere-
fore, this paper gathers the advantages of both, frstly, the
improved A∗ algorithm is used to carry out global path
planning. When a dynamic obstacle is detected, a dynamic
window approach is involved to perform local path plan-
ning, which enables real-time dynamic obstacle avoidance
based on ensuring optimal global paths.

In order to verify the feasibility of the improved A∗
algorithm in a dynamic environment, a path planning
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Figure 27: Path planned by IAA (100 ∗ 100, 30%).
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Figure 28: Path planned by Dijkstra (100 ∗ 100, 30%).
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Figure 29: Path planned by reference [31] (100 ∗ 100, 30%).
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simulation experiment based on a dynamic environment
was conducted, as shown in Figures 30 and 30. Figure 30
shows the path planning diagram of the improved A∗ al-
gorithm in a static obstacle environment. Figure 31 shows

the path planning diagram of the improved A∗ algorithm in
a dynamic obstacle environment. Here, pink represents
dynamic obstacles and gray represents the planned path after
encountering dynamic obstacles. It is patently obvious that

Table 4: Experimental results comparison of four algorithms (100 ∗ 100, 30%).

Algorithms Number
of moving grids Path length Number

of virtual obstacles Search time (s)

TAA 113 147.2082 0 0.462
AAO 140 162.1960 129 0.761
IAA 133 158.0955 111 4.812
Dijkstra 133 158.0955 108 15.232
Reference [31] — Failed — —
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Figure 30: Static obstacle environment.
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Figure 31: Dynamic obstacle environment.
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the improved fusion algorithm can realize local path
planning, avoid dynamic obstacles, and obtain smooth and
safe planned paths.

6. Conclusion

Tis paper proposes a new improved A∗ algorithm to solve
the path planning problem of mobile robots by setting up
virtual obstacles, improving the heuristic function and
smoothing the path. In addition, we performed compre-
hensive simulation experiments and tested it in diferent
static and dynamic scenarios. Te results verifed the ac-
curacy, security and superiority of the improved A∗
algorithm.

Te future direction of the work is as follows:

(1) Test the proposed A∗ algorithm on a real
mobile robot

(2) Shorten the time of path planning and reduce the
length of path on the basis of path security
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