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Hedge–algebras (HA) theory provides a useful mathematical tool for modeling the linguistic values of a linguistic variable. These
values are quantified by real numbers between 0 and 1. Therefore, the HA-based controller (HAC) has many advantages over the
traditional fuzzy set theory-based controller (FC) in setup steps, control efficiency, computation time, and optimization. This study
aims to control the avoidance of obstacles in the workspace and move to the destination of an autonomous robot using HAC, in
which the HAC is optimized using the balancing composite motion optimization (BCMO) to return the optimal path. In which the
investigated model is inherited from a reference. The HAC is established and optimized to minimize the traveling distance of the
mobile robot and help it to avoid obstacles simultaneously. Simulations include one and two obstacle environments. Design
variables, when optimizing, include the fuzzy parameters of linguistic variables and the reference range of state variables. This work
is the first study in motion control of mobile robots based on the HA theory. The simulation data show that the proposed control
rule base suits the mobile robot models. Therefore, the control efficiency of HAC is higher than that of a FC both in terms of the
traveling distance of the robot and computation time (CPU time). Also, the establishment steps of the HAC controller show that
HAC is more explicit, easier to optimize, and simpler to operate than FC. Research results in the present work also indicate that
HAC can be developed and applied in motion control problems for different robot models with the advantages of a smaller
traveling distance and faster computation time.

1. Introduction

Mobile robot systems have increasing applications in indus-
try in general and in the field of automation in particular.
Studies on these systems are attracting considerable attention
from scientists to different types of mobile robots, such as
walking robots, wheeled robots, or mobile robots equipped
with manipulators [1–4].

Motion control of mobile robot systems is often based on
artificial intelligence (AI) algorithms in which controllers
based on the fuzzy set theory (FC) of Zahde play an essential
role in this research direction. In a study by Zhao et al. [5],
the research model was a three-wheel robot with nine sensors
that use two FCs to control obstacle avoidance motion based
on the distance from around the robot to the obstacles. The

fuzzy controller in a study by Yen and Cheng [6] was opti-
mized using the ant colony algorithm to find the shortest
path and avoid obstacles for a mobile robot. In a study by
Sun et al. [7], the motion of a three-dimensional autonomous
underwater vehicle was controlled by an optimized FC using
particle swarm optimization. A Mamdani fuzzy control was
used in a study by Chiu and Lin [8] to control the motion of
an omnidirectional spherical mobile robot. An adaptive fuzzy
neural controller was developed in a study by Kong et al. [9] to
control a multirobot system with robots’ unknown dynamics
and environment. Investigations in a study by Wu et al. [10]
focus on developing a backstepping algorithm based on the
fuzzy sliding technique to control a mobile robot with uncer-
tainty and noise. Aouf et al. [11] have developed the optimal
fuzzy controller for navigating a mobile robot in strange
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environments. In a study by Guo et al. [12], a path planning
algorithm was optimized based on fuzzy control to navigate
for a mobile robot, where the robot environment was unknown.
The fuzzy controller was investigated in a study by Hacene
andMendil [13] for a three-wheeled robot in an environment
of static and dynamic targets and obstacles. The robot per-
forms the tasks of approaching the target, avoiding obstacles,
and following the wall. The problem of controlling the speed
of a mobile robot using a fuzzy controller was presented in a
study by Hartono and Nizar [14], with the state variables
being speed and the change in the robot’s speed. A type 2
fuzzy controller was introduced in a study by Humaidi et al.
[15] for the trajectory tracking of a 3-Revolute–Revolute–Re-
volute planar parallel robot. The PD fuzzy controller was
proposed in a study by Jabeur and Seddik [16] to control
the motion of a two-wheeled robot and avoid damaging its
motor. The adaptive type 2 fuzzy controller proposed in a
study by Ha et al. [17] was for motion control of a wheeled
mobile robot with external disturbances, including wheel slip.
The fuzzy controller in a study by Kumar et al. [18] was
optimized to control multiple mobile robots in static and
dynamic environments. The above publications show the
popularity and efficiency of fuzzy control for mobile robot
models with their different environmental conditions.

The hedge–algebras (HA) theory has been developed
since 1990 with different approaches from fuzzy set theory
in modeling linguistic values of linguistic variables [19]. In
HA, linguistic values can be represented as real numbers with
magnitudes consistent with linguistic values’ natural seman-
tics [20]. This representation allows simplifying the compu-
tational steps in HA. Therefore, HA has been effectively
applied to problems in information technology and process
control fields, especially in the control of mechanical models,
for example, underactuated systems [21], earthquake-resistant
building models [22, 23], car suspension systems [24], and
industrial robot models [25, 26]. Research results in the above
publications show that HA-based controller (HAC) has many
advantages compared to FC, such as a more explicit setup,
more straightforward optimization, more efficient operation,
and significantly faster computation time.

Balancing composite motion optimization (BCMO) is a
recently published swarm-based optimization method. The
advantages of BCMO are no need for algorithm parameters,
fast convergence, and high optimal performance [27].

With the potential of HA in the field of control of
mechanical models proven through the above publication,
in this paper, HAC is applied for the first time to the motion
control problem of mobile robots in which a simple model of
an obstacle avoidance mobile robot is referenced. The pro-
posed control rule system of HAC is suitable for mobile
robot behavior. The HAC is optimized using BCMO to
help the robot find the shortest path while avoiding obstacles.
The main contributions of the present study include: (1) a
novel development in motion control of an autonomous
robot using the HAC, in which the HAC is optimized using
the BCMO to return the optimal path; (2) the controller
is designed to achieve two objectives simultaneously: minimizing
the traveling distance of the mobile robot and enabling obstacle

avoidance. The controller has been established and optimized to
balance these two goals effectively; (3) the comparison of the
proposed method with FC in terms of traveling distance and
computation time (CPU time) has shown the outstanding effi-
ciency of HAC; (4) in some scenarios, when using FC, the robot
encounters a stuck phenomenon when approaching an obstacle,
and HA still controls the robot reach the target successfully.

The remaining part of this paper has the following struc-
ture: Section 2 introduces the robot model. Section 3 presents
the proposed controller based on HA and the BCMO. The
numerical simulations are presented and discussed in Section 4.
Finally, a conclusion to sum up the paper and future works is
given in Section 5.

2. Investigated Model

In this study, themobile robotmodel [28] is used (see Figure 1).
The model includes a square moving environment with a size
of each side of 25m. The obstacle, target, and differential robot
are circular with a radius of 0.5m. The robot’s movement is
made by two unit force vectors ~Ft (directed from the robot’s
current position to the target’s position) and ~Fo (directed from
the robot’s current position to the obstacle’s position), as
shown in Figure 1.

Combining the above forces through a weight w will
produce a general control force ~F , as shown in Equation (1),
to bring the robot to the target position and help it to avoid
obstacles simultaneously.

~F ¼ w ~Fo þ 1 − wð Þ ~Ft ; 0 ≤ w ≤ 1: ð1Þ
The sharp changes in the direction of the mobile robot

are limited to [−π/4, π/4] for each control loop. Therefore,
the robot’s direction θr(k+ 1) in the (k+ 1)th control loop is

25

20

15

10

5

0
0 5 10

x (m)

y (
m

)

do

dt

Ft
→

Fo
→

θt,o

15 20 25

Obstacle
Target

Robot

FIGURE 1: Investigated model.
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calculated through θr(k) in the kth control loop as follows:

θr kþ 1ð Þ ¼ θr kð Þ þ Δθ; ð2Þ

Δθ ¼

π

4
if  θ − θr kð Þ> π

4

θ − θr kð Þ if   −
π

4
≤ θ − θr kð Þ ≤ π

4

−
π

4
if  θ − θr kð Þ< π

4

8>>>>><
>>>>>:

; ð3Þ

where θ is the angle between the control force ~F and the
x-axis and Δθ is the robot’s direction variation between the
kth and (k+ 1)th iterations. Let s be the robot’s speed and Δt
be the sample period. The change in position of the robot (xr,
yr) in the (k+ 1)th control loop compared to the kth loop is
given as follows:

xr kþ 1ð Þ ¼ xr kð Þ þ sΔt cos θr
yr kþ 1ð Þ ¼ yr kð Þ þ sΔt sin θr

: ð4Þ

Let α= do/dt be the ratio between the distance from the
robot to the obstacle (do) and the distance from the robot to
the target (dt) and θt,o is the angle between the directions
from the robot to the target and to the obstacle (see Figure 1).
In order for the robot to move to the target and avoid obsta-
cles, the weight w must follow the following observation:
weight w has a high value when α and θt,o are low to avoid
obstacles, and it has a low value for the remaining cases, so
that the robot quickly moves to the target. The weight w will
be determined through the proposed rule base of the HAC
controller, as shown in Section 3.

It is assumed that the robot has a constant velocity, no
dynamic constraints, and knows its current position and the
position of the obstacle to simplify the investigated problem.

3. Control Design

In HA, a HA structure of a linguistic variable X usually
consists of primary terms, hedges, and constants. For exam-
ple, C= (low, high)= (c−, c+), denoted by (L, H), are negative
and positive primary terms; H= (little, very)= (h−, h+),
represented by (l, v), are negative and positive hedges; and
(absolutely low, neutral, absolutely high)= (0, W, 1) are con-
stants. Linguistic values will be formed based on a combina-
tion of primary terms and hedges following the natural
semantic order of these linguistic values, for example, abso-
lutely L, vvL, vL, lvL, L, llL, lL, vlL, W, vlH, lH, llH, H, lvH,
vH, vvH, and absolutely H [29].

The notations fm(c−) and v(h−) are fuzziness measures of
the negative primary term and the negative hedge, respec-
tively, and their values range from 0 to 1. The theorems in
HA allow determining fuzzy measures φ (between 0 and 1)
of all linguistic values of a linguistic variable based on the
value of fm(c−) and v(h−) [29]. The basic formulas in HA
theory are expressed in Appendix A. In the case of fm(c−)
and v(h−) changing between 0.2 and 0.8, the variation range

of fuzziness measure values of several typical linguistic values
is shown in Figure 2.

As shown in Figure 2, the values have quite wide ranges
when fm(c−) and v(h−) change. Furthermore, the semantic
order of linguistic values is always strictly guaranteed. These
ranges are the basis for performing the HAC optimization
problem, as will be presented below.

The block diagram of the mobile robot control process is
shown in Figure 3. Because the robot knows its current posi-
tion and the position of the obstacle, the position and posture
of the robot and the position of the obstacle are determined
at any given time. These parameters allow easy determining
α and θt,o. The parameters α and θt,o are the inputs of the
HAC controller, as shown in Figure 4. The weight w from the
output of the HAC determines the general control force ~F
through Equation (1). Under the action of this force, the
robot will change direction (see Equations (2) and (3)) and
position (see Equation (4)). This process is repeated until the
robot meets the target or collides with the obstacles.

The control flowchart of HAC is shown in Figure 4(a) in
which the normalization and denormalization blocks have
the same role as the fuzzification and defuzzification steps of
a traditional fuzzy controller.

It is assumed that the variables α and θt,o have linguistics
values L, W, and H and the variable w has linguistics values
vvL, vL, L, W, lH, H, and vH. Hence, the variation ranges of
the fuzziness measure S of the variables α, θt,o, and w are [S
(L), S(H)], [S(L), S(H)], and [S(vvL), S(vH)], respectively.

The normalization step to convert the real values of the
variables α and θt,o to their fuzziness measure values S is
shown in Figure 4(b)–4(c) in which αs and θs are representa-
tions of α and θt,o in the fuzziness measure domain, and a
and b represent reference intervals in the real domain of the
variables α and θt,o. The HA’s rule base to determine the
weight w is proposed, as shown in Figure 4(d). This rule
base satisfies the analysis of the behavior of the weight w,
as described in Section 2. The geometrical representation of
this rule base is shown in Figure 4(e). From the data, as
shown in Figure 4(e), the value of ws (the notation of w in
the fuzziness measure domain) can be easily determined
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FIGURE 2: Fuzziness measure values φ of typical linguistic values.
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through a simple interpolation (using Matlab’s interp2 com-
mand). This interpolation scheme can be considered as the
inference step of HAC. Finally, the denormalization step, as
shown in Figure 4(f ), converts the value of w from the fuzzi-
ness measure domain to the real one.

Hence, it can be seen that the operating principle of HAC is
similar to a traditional fuzzy controller (FC). Function blocks of
HAC only use linear interpolation. In addition, when optimiz-
ing fuzzy parameters of HAC, only two design variables ( fm(c−)
and v(h−)) are needed for each linguistic variable. The constraint
on the semantic order of the linguistic values is ignored because
this order is always guaranteed (see Figure 2). Therefore, it can
be concluded that HAC is more explicit, easier to optimize, and
more straightforward to operate than FC.

The HAC controller will be optimized to improve the
mobile robot’s performance. The optimization problem is
expressed as follows:

(1) Objective function [28]:

Traveling distance robotð Þ ¼ >min: ð5Þ

(2) Design variables: fm(c−) and v(h−) of α, θt,o, andw and a
and b. Hence, the total number of design variables is 8.

(3) Constraints [28]:

Collision between robot and obstacle¼ 0: ð6Þ

Contact between robot and target¼ 1: ð7Þ

(4) Training data [28]: The initial position and direction
of the robot are [13 2] and π/2, the position of the
target is [13 22], and the positions of the obstacle are [3
12] and [13 18].

(5) Optimization tool: BCMO algorithm is used with
population size (denoted by NP) and number of gen-
erations (represented by maxGen) equal to 200. The
optimal algorithm flowchart is shown in Figure 5.

Hence, it can be seen that the controller’s parameters
include the following:

(1) As analyzed in Section 2, the number of input state
variables is 2 (α and θt,o), and the number of output
control variables (u) is 1.

(2) In HA-based controllers, the number of linguistic
values of input state variables is usually odd (3, 5,
or 7), representing the symmetry between the lin-
guistic values on both sides of the neutral element
(W). Therefore, the minimum number of linguistic
values of two state variables to be selected is 3. For the
control variable, the number and arrangement of lin-
guistic values in the rule base are determined by the
trial and error method in which a low value of w is
prioritized, and, therefore, the robot quickly moves
to the target.

(3) In addition, the reference ranges of variables are also
essential parameters and significantly affect the con-
troller’s performance. The reference range of the
control variable is normalized in the range [0, 1]
[28]. The reference ranges of state variables are deter-
mined from the optimization problem.

(4) Finally, the fuzzy parameters of the variables ( fm(c−)
and v(h−)) are also optimized to improve the control
efficiency of the HAC.

4. Numerical Simulation

4.1. Comparative Study with One Obstacle. This section pre-
sents the numerical simulation results in which the robot’s
speed s is 0.5m/s and the sample period Δt is 0.1 s. Simula-
tion results between HAC and FC [28] will be compared for
some typical scenarios. The parameters of the controller FC
[28] are presented in Appendix B.

The optimal values of the design variables of HAC are
shown in Table 1. From these values, the fuzziness measure
of the linguistic values of the variables is calculated and
shown in Table 2. The values, as shown in Table 2, are
brought into the rule base, as shown inFigure 4(d), to obtain
the optimal HA’s inference schema, as shown in Figure 4(e).
The simulated scenarios are given in Table 3.

Calculate α(k), θt,o(k)

HAC ⇒ w(k)

Equation (1) ⇒ F(k)
→

Equation (2) ⇒ θr(k + 1)

Equation (3) ⇒ xr(k + 1), yr(k + 1)

k = k + 1

Robot collides with
an obstacle?

Robot reaches
the target?

No

No

Yes STOP
(success)

STOP
(fail)

Yes

START
k = 1

xr(k), yr(k), θr(k)

FIGURE 3: The block diagram of the mobile robot control process.
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Simulation results for the above cases in this comparative
study are shown in Figures 6–9. Table 4 shows the traveling
distance of the robot when using the HAC and FC controllers.

As shown in Figures 6–9, the proposed HAC is imple-
mented and compared to FC through several test cases,
assuming that the robot is performing a respective mission

in a 25× 25 square meter working space. In each scenario,
the obstacles are generated with different positions, and the
robot has a similar start (magenta circle) and destination
point.

The results, as shown in Figures 6–9, also show that the
control goal is always achieved. That is, the robot reaches the
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FIGURE 4: Hedge–algebras-based controller. (a) Control flowchart of HAC, (b and c) normalization step of the input variables, (d) HA’s rule
base, (e) rule base’s geometrical representation, and (f ) de-normalization step of the output variable.
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target and avoids obstacles. The movement trajectory of the
robot when using HAC and FC is quite similar. However, the
robot’s trajectory in scenarios 2 and 4 in the case of using FC
encounters a stuck phenomenon when the robot approaches
an obstacle. In general, the trajectories of the robot in the
cases of using HAC are smoother than in the cases of using
FC. The traveling distance of the robot when using HAC is
slightly smaller than when using FC (more than a 3%
decrease on the average of all four scenarios). In addition,
the controllers’ computation time (CPU time) is also mea-
sured and listed, as shown in Table 5. It can be seen from
Table 5 that the CPU time of HAC is significantly reduced

compared to FC (about 44%). The CPU time proves that
HAC is improved considerably, resulting in a reduced
computational factor. In various real-time applications, the
computation of the robot controller is restricted, so a control
method with a lower computational cost, like HAC, is a
better option. Therefore, this approach has the potential
for many real-life robotic applications, such as autonomous
cars, military robots, agricultural robots, exploration robots,
and rescue robots in real-time control applications [30] in
which CPU time results are measured on the computer with
the configuration: CPU E5-1650 v3 @ 3.50GHz, 32.0GB RAM,
using Matlab software and Windows 10 operating system.

i = 1

ith population of eight design variables

ith optimal value of traveling distance

Optimal value of:
(1) Eight design variables
(2) Traveling distance

YesNo i > maxGen?

i = i + 1

BCMO

HAC (Figure 4)

Mobile
robot

FIGURE 5: The optimal algorithm block diagram.

TABLE 1: Optimal values of design variables.

fm(c−) of α v(h−) of α fm(c−) of θt,o v(h−) of θt,o fm(c−) of w v(h−) of w a b

0.2 0.570 0.266 0.534 0.8 0.708 1.996 2.259

TABLE 2: Fuzziness measure of linguistic values.

α θt,o w

L W H L W H vvL vL L W lH H vH

0.086 0.2 0.936 0.127 0.266 0.921 0.02 0.068 0.234 0.8 0.841 0.941 0.983

TABLE 3: The simulated scenarios in the comparative study.

Scenario Obstacle position (m) Robot’s initial position (m) Robot’s initial direction (rad) Target position (m)

1 11 12½ � 13 2½ � π/2 13 22½ �
2 13 18½ � 13 2½ � π/2 13 22½ �
3 10 10½ � 5 20½ � −π/2 15 4½ �
4 8 8½ � 19 19½ � −π 5 5½ �
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4.2. Study in the Case of Two Obstacles. Next, an obstacle is
added to the investigated model to validate the effectiveness
of the proposed HAC. It is noted that the parameters of the
HAC are kept the same as in Subsection 4.1. To suit the new
environment, the HAC just adds one condition as follows:
the obstacle to be concerned about (avoid) is the obstacle
whose distance to the robot is smaller. The simulation

scenarios in this subsection are shown in Table 6. The simu-
lation results are shown in Figures 10–13.

The result, as shown in Figures 10–13, shows that, in the
case of the environment with two obstacles, the robot still
meets the control objectives, including avoiding obstacles
and reaching the target. The robot’s trajectory is smooth,
and the robot’s traveling distance is quite optimal.

25

20

15

10

5

0
0 5 10

x (m)

y (
m

)
HAC

Traveling distance = 19.3 m

Obstacle = [11 12]
Robot = [13 2 pi/2]
Target = [13 22]

Obstacle = [11 12]
Robot = [13 2 pi/2]
Target = [13 22]

15 20 25

25

20

15

10

5

0
0 5 10

x (m)
y (

m
)

FC

Traveling distance = 19.7 m

Obstacle
Target

RobotObstacle
Target

Robot

15 20 25

FIGURE 6: Scenario 1.

25

20

15

10

5

0
0 5 10

x (m)

y (
m

)

HAC

Traveling distance = 19.65 m

Obstacle
Target

Obstacle = [13 18]
Robot = [13 2 pi/2]
Target = [13 22]

Robot

15 20 25

25

20

15

10

5

0
0 5 10

x (m)

y (
m

)

FC

Traveling distance = 20.4 m

Obstacle
Target

Robot

15 20 25

Obstacle = [13 18]
Robot = [13 2 pi/2]
Target = [13 22]

FIGURE 7: Scenario 2.

Journal of Robotics 7



25

20

15

10

5

0
0 5 10

x (m)

y (
m

)
HAC

Traveling distance = 18.2 m

15 20 25

25

20

15

10

5

0
0 5 10

x (m)
y (

m
)

FC

Traveling distance = 18.7 m

Obstacle
Target

RobotObstacle
Target

Robot

15 20 25

Obstacle = [10 10]
Robot = [5 20 –pi]
Target = [15 4]

Obstacle = [10 10]
Robot = [5 20 –pi]
Target = [15 4]

FIGURE 8: Scenario 3.

25

20

15

10

5

0
0 5 10

x (m)

y (
m

)

HAC

Traveling distance = 19.5 m

Obstacle = [8 8]
Robot = [19 19 –pi]
Target = [5 5]

Obstacle = [8 8]
Robot = [19 19 –pi]
Target = [5 5]

15 20 25

25

20

15

10

5

0
0 5 10

x (m)

y (
m

)

FC

Traveling distance = 20.4 m

Obstacle
Target

RobotObstacle
Target

Robot

15 20 25

FIGURE 9: Scenario 4.

TABLE 4: The traveling distance (m) of the robot.

Scenario 1 2 3 4 Mean value

HAC 19.30 19.65 18.20 19.50 19.16
FC 19.70 20.40 18.70 20.40 19.80

TABLE 5: CPU time (s).

Controller HAC FC Reduction ratio (%)

CPU time (s) ∼0.318 ∼0.566 ∼44
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TABLE 6: The simulated scenarios with two obstacles.

Scenario Obstacle position (m) Robot’s initial position (m) Robot’s initial direction (rad) Target position (m)

5 12:5 10; 14:5 18½ � 13 2½ � π/2 13 22½ �
6 10 12:5; 17 15½ � 1 13½ � 0 22 13½ �
7 9 10; 9 15½ � 5 20½ � −π/2 15 4½ �
8 8 10; 14 13½ � 19 19½ � −π/1.5 5 5½ �
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5. Conclusion

In this study, the motion control problem of a mobile robot to
avoid obstacles and reach the target using theHAC is performed.
This work is the first time the HA theory using the BCMO
optimization algorithm has been developed for a mobile robot
application. In order to prove the effectiveness of the proposed
method, two numerical simulations are implemented, and the
simulation results between HAC and FC [28] are compared.
These observations highlight differences between the HAC
and FC approaches regarding trajectory smoothness, obstacle
handling, and traveling efficiency. The smoother trajectories
and reduced traveling distance with HAC can indicate more
efficient and optimized robot movements such as a 3% reduc-
tion in traveling distance in case the environment has one
obstacle, and especially the CPU time of HAC is much faster
than that of FC, reducing the computation time by 44% com-
pared with the FC controller by using BCMO optimization
algorithm for HAC. When changing the simulation environ-
ment (switching from one to two obstacles), the HAC still
gives good control performance with a minor additional con-
dition. Especially in some scenarios, when using FC, the robot
encounters a stuck phenomenon when approaching an obsta-
cle, HA still controls the robot to reach the target successfully.
These advantages of HAC allow developing and applying
HAC in more complex navigation problems of mobile robot
systems with many applications in life, such as agricultural,
exploration, or military robots.

This study’s limitations include as follows: the robot model is
simple, the number of obstacles is small, complex shapes of
obstacles have not been considered, ignoring the robot’s dynamic
model and unknown and dynamic obstacles, and many simpli-
fied assumptions of the robot’s velocity and sensor and dynamic
constraints of the model are used. Simulations under different
conditions, such as the effect of different dimensions on through-
put and navigation time, have not been evaluated. In addition,
experimental studies on a real mobile robot in a real-time envi-
ronment have not been performed to verify the simulation results.
These limitations, as well as the disturbance and model verifica-
tion, are the issues that need to be addressed in future investiga-
tions of this research direction. Moreover, it is also necessary to
evaluate the proposed control algorithm’s computational com-
plexity and compare it with other control algorithms, such as the
type 2 fuzzy controller. In addition, the proposed method can
be integrated with a machine learning algorithm to increase
the robot system’s intelligence to solve robot navigation in
complex environments with different conditions. In this
sense, other optimization techniques, for example, the whale
optimization algorithm (WOA) [31] or the particle swarm
optimization (PSO) [32], should also be considered in the
optimization design of controllers based on HA theory.

Appendix

A. The Basic Formulas in HA Theory

This section presents the basic formulas in HA theory for the
case that the HA structure of the linguistic variable X consists
of two hedges h− and h+.

The fuzziness measure of primary terms fm 2 [0, 1] is
given as follows:

fm c−ð Þ þ fm cþð Þ ¼ 1 and ∑
h2H

fm huð Þ ¼ fm uð Þ; for 8u 2 X;

ðA:1Þ

For the constants 0;W and 1; fm 0ð Þ ¼ fm Wð Þ ¼ fm 1ð Þ ¼ 0;

ðA:2Þ

For 8x; y 2 X; 8h 2 H;  
fm hxð Þ
fm xð Þ ¼ fm hyð Þ

fm yð Þ ¼ v hð Þ ðA:3Þ

The notation v(h) is called the fuzziness measure of the
hedge h. From Equation (A.3), we have:

fm hxð Þ ¼ v hð Þfm xð Þ; for 8x 2 X; ðA:4Þ

fm h−cð Þ ¼ fm cð Þ; c 2 c−; cþf g; ðA:5Þ

fm h−xð Þ ¼ fm xð Þ; ðA:6Þ

v h−ð Þ ¼ α; v hþð Þ ¼ β;  in which α; β>0; αþ β ¼ 1: ðA:7Þ

The function Sign: X → −f 1; 0; 1g is defined as follows:

Sign c−ð Þ ¼ −1; Sign cþð Þ ¼ þ1; ðA:8Þ

Sign hcð Þ ¼ −Sign cð Þ; if  h is negative with respect to c; ðA:9Þ

Sign hcð Þ ¼ þSign cð Þ; if  h is positive with respect to c;
ðA:10Þ

Sign h0hxð Þ ¼ −Sign hxð Þ; if  h0hx
≠ hx and h0 are negative with respect to h;

ðA:11Þ

Sign h0hxð Þ ¼ þSign hxð Þ; if  h0hx
≠ hx and h0 are positive with respect to h;

ðA:12Þ

Sign h0hxð Þ ¼ 0 if  h0hx ¼ hx: ðA:13Þ

The fuzziness measure S: X→ [0,1] of linguistic values is
defined as follows:

S Wð Þ ¼ γ ¼ fm c−ð Þ; S c−ð Þ ¼ γ − αfm c−ð Þ
¼ βfm c−ð Þ; S cþð Þ ¼ γ þ αfm cþð Þ; ðA:14Þ

S hjx
À Á¼ S xð Þ

þ Sign hjx
À Á

∑
j

i¼Sign jð Þ
fm hixð Þ − ω hixð Þ − fm hixð Þ

( )
;

ðA:15Þ

where h−1= h−, h1= h+, and ω(hjx)= 0.5[1+ Sign(hjx)Sign
(hphjx)(β–α)].
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For example, when linguistic values are modeled sym-
metrically, fm(c−)= v(h−) 0.5, the fuzziness measure S of
several linguistic values is calculated as follows, where (c−,
c+)= (L, H) and (h−, h+)= (l, v), as described in Section 3:

v(L)= α= 0.5; v(H)= β= 1 – v(L)= 0.5; fm(L)= 0.5; fm
(H)= 1 – fm(L)= 0.5.

S(W)= fm(L)= 0.5.
S(L)= fm(L) – αfm(L)= 0.5–0.5× 0.5= 0.25.
S(vL)= S(L)+ Sign(vL)× ( fm(vL) – 0.5fm(vL))= 0.25+

(−1)× 0.5× 0.5× 0.5= 0.125.
S(lL)= S(L)+ Sign(lL)× ( fm(lL) – 0.5fm(lL))= 0.25+

(+1)× 0.5× 0.5× 0.5= 0.375.
S(H)= β+ αfm(H)= 0.5+ 0.5× 0.5= 0.75.
S(vH)= S(H)+ Sign(vH)× ( fm(vH)– 0.5fm(vH))= 0.75+

(+1)× 0.5× 0.5× 0.5= 0.875.
S(lH)= S(H)+ Sign(lH)× ( fm(lH) – 0.5fm(lH))= 0.75+

(−1)× 0.5× 0.5× 0.5= 0.625.
S(vvL)= S(vL)+ Sign(vvL)× ( fm(vvL) – 0.5fm(vvL))=

0.125+ (−1)× 0.5× 0.5× 0.5× 0.5= 0.0625.
S(lvL)= S(vL)+ Sign(lvL)× ( fm(lvL) – 0.5fm(lvL))=

0.125+ (+1)× 0.5× 0.5× 0.5× 0.5= 0.1875.
S(vlL)= S(lL)+ Sign(vlL)× ( fm(vlL) – 0.5fm(vlL))=

0.375+ (−1)× 0.5× 0.5× 0.5× 0.5= 0.3125.
S(llL)= S(lL)+ Sign(llL)× ( fm(llL)– 0.5fm(llL))= 0.375+

(+1)× 0.5× 0.5× 0.5× 0.5= 0.4375.
S(llH)= S(lH)+ Sign(llH)× ( fm(llH) – 0.5fm(llH))=

0.625+ (−1)× 0.5× 0.5× 0.5× 0.5= 0.5625.
S(vlH)= S(lH)+ Sign(vlH)× ( fm(vlH) – 0.5fm(vlH))=

0.625+ (+1)× 0.5× 0.5× 0.5× 0.5= 0.6875.
S(lvH)= S(vH)+ Sign(lvH)× ( fm(lvH) – 0.5fm(lvH))=

0.875+ (−1)× 0.5× 0.5× 0.5× 0.5= 0.8125.

S(vvH)= S(vH)+ Sign(vvH)× ( fm(vvH) – 0.5fm(vvH))=
0.875+ (+1)× 0.5× 0.5× 0.5× 0.5= 0.9375.

B. The Parameters of the Controller FC

This section presents the parameters of the controller FC
[28]. The control flowchart of FC is similar to that of HAC,
as shown in Figure 4(a). The normalization and denormaliza-
tion blocks have the same role as the FC fuzzification and
defuzzification steps. The number of control rules and the
parameters of the input functions of FC were optimized using
genetic algorithms. The fuzzification diagram of the variables
of FC is shown in Figure 14.

The rule base of FC contains two control rules as below:
IF α is “low” and θt,o is “low” then w is “high.”
IF θt,o is “high” then w is “low.”
The Mamdani style and the centroid method are used for

the FC’s inference engine and defuzzification.
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