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To enable mobile robots to efectively complete path planning in dynamic environments, a hybrid path planning method based on
particle swarm optimization (PSO) and dynamic window approach (DWA) is proposed in this paper. First, an improved particle
swarm optimization (IPSO) is proposed to enhance the exploration capability and search accuracy of the algorithm by improving
the velocity update method and inertia weight. Secondly, a particle initialization strategy is used to increase population diversity,
and an addressing local optimum strategy is used to make the algorithm overcome the local optimum. Tirdly, a method of
selecting navigation points is proposed to guide local path planning. Te robot selects the appropriate navigation points as the
target points for local path planning based on the position of the robot and the risk of collision with dynamic obstacles. Finally, an
improved dynamic window approach (IDWA) is proposed by combining the velocity obstacle (VO) with the DWA, and the
evaluation function of the DWA is improved to enhance trajectory tracking and dynamic obstacle avoidance capabilities. Te
simulation and experimental results show that IPSO has greater exploration capability and search accuracy; IDWA is more
efective in trajectory tracking and dynamic obstacle avoidance; and the hybrid algorithm enables the robot to efciently complete
path planning in dynamic environments.

1. Introduction

In recent years, mobile robots have been applied in a wide
range of felds. As a key technology of robotics, path
planning has become a research hotspot in robotics [1].
Tere are two types of path planning methods for robots:
global path planning and local path planning. Global path
planning is based on the entire environmental information,
such as the shape and size of obstacles, and their distribution
on themap. On the other hand, local path planning has some
unknown environmental information, such as the size and
position of dynamic obstacles [2].

Currently, several algorithms have been applied to the
global path planning of robots. Te A∗ algorithm [3] is
a heuristic approach capable of theoretically determining the
global optimal path. However, its computational complexity
scales with the complexity of the environment, which can
result in a considerable increase in execution time. Te ant
colony optimization (ACO) [4] is a heuristic algorithm that

can efectively solve path planning problems. However, it
sufers from limitations such as slow convergence speed and
a tendency to converge towards the local optimum, which
can impair its ability to fnd the global optimal solution. Te
genetic algorithm (GA) [5] is an intelligent algorithm known
for its robustness and parallelism, and it is commonly used
in path planning. However, it is susceptible to limitations
such as early convergence, poor convergence path quality,
and poor population diversity, which can restrict its efec-
tiveness in fnding the global optimal path. Te slime mould
optimization algorithm (SMOA) [6] is an intelligent algo-
rithm that mimics the behavioral and morphological
changes observed during the foraging process of slime
mould. Although it can be used to solve path planning
problems, it sufers from limitations such as slow conver-
gence speed, and a tendency to converge towards the local
optimum. Te salp swarm algorithm (SSA) [7] is a recently
developed intelligent algorithm that draws inspiration from
the foraging behavior of the salp. While it exhibits strong
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performance in solving path planning problems, it sufers
from drawbacks such as slow convergence speed, conver-
gence towards local optimum, and poor population di-
versity. Te particle swarm optimization (PSO) [8] is an
intelligent algorithm that boasts several advantages, in-
cluding a simple structure, few parameters, easy imple-
mentation, and fast convergence. However, the algorithm
also has limitations such as low search accuracy, poor
population diversity, and convergence towards the local
optimum [9]. Existing literature shows that intelligent al-
gorithms used for path planning often sufer from limita-
tions such as low accuracy, poor diversity, and the local
optimum. Tese limitations can restrict the ability of the
algorithm in meeting the demands of global path planning.
Consequently, many scholars have focused on improving
these algorithms. Ji et al. [10] proposed improvements to the
pheromone update strategy and state transfer strategy of the
ACO to increase the randomness of the path selection by the
ant colony, thereby enhancing the global exploration ability
and reducing the probability of the algorithm trapping in the
local optimum. Additionally, they introduced a local optimal
escape strategy to efectively address the problem of local
optimum in the ACO. Zhai and Feng [11] proposed
a method to integrate simulated annealing into the GA,
which can efectively mitigate the issue of the search process
getting stuck in the local optimum. Te approach also in-
cludes adaptive operators for crossover and mutation
probabilities, which help to maintain population diversity
and enhance the algorithm’s global exploration capability.
Wang et al. [12] proposed a learning technique based on
orthogonal lensing opposition in SSA to enhance the al-
gorithm’s ability to escape the local optimum and fnd higher
quality paths. Additionally, they 4introduced a scheme to
adaptively adjust the number of leaders and a dynamic
learning strategy to improve the global exploration capa-
bility and convergence speed. Wang et al. [13] enhanced the
traditional SSA algorithm by incorporating inertia weight,
designing a velocity clamping strategy, and designing an
adaptive transformation parameter strategy. Tese modif-
cations were aimed at achieving a better balance between the
global exploration capability and local search accuracy of the
algorithm. Agarwal and Bharti [14] proposed an improved
version of the SMOA with improved slime mould weights.
Te proposed method maintains a specifc perturbation rate
in the early stage of the algorithm to avoid premature
convergence towards the local optimum and a reduced
perturbation rate in the later stage of the algorithm to ac-
celerate convergence. Additionally, the authors designed
a multiobjective ftness function that considers both path
minimization and obstacle avoidance. Tis approach im-
proves the performance of the algorithm and enables it to
achieve better results. Zhang et al. [15] proposed im-
provements to the linearly decreasing inertia weight and
learning factors in PSO to balance the exploration capability
and search accuracy of the algorithm. Te authors also
introduced a measure of population diversity using ftness
variance. However, the issue of premature and local opti-
mum in the algorithm was not addressed. Zhong et al. [16]
proposed an improved PSO that enhances the global

exploration capability and diversity of the population. In the
initialization phase, mutations were introduced to the
particle positions to increase the search space coverage.
Furthermore, a multi-particle competition mechanism was
incorporated to promote population diversity in later stages
of the algorithm. Wang et al. [17] proposed a more efective
quantum swarm optimization algorithm that enhances both
the population diversity and global exploration capabilities
of the algorithm. Li et al. [18] proposed a modifed PSO
algorithm that utilizes hierarchical random disturbance to
increase population diversity and improve the algorithm’s
local search capability by modifying particle positions.
Additionally, a random positive feedback factor is included
to further enhance the algorithm’s performance. Tan et al.
[19] proposed a method to determine the excellence of
particles and populations by calculating their evolutionary
capabilities. Tey then adjusted the inertia weight and
learning factors based on the evolutionary ratio to improve
the global exploration capability and convergence speed of
the algorithm. Te aforementioned improvements in PSO
aim to enhance the exploration capability and search ac-
curacy of the algorithm, yet they fail to address the issue of
local optimum in PSO, leading to longer convergence path
lengths. Terefore, this paper proposes an improved particle
swarm optimization (IPSO) to address the limitations of
PSO, including premature and local optimum, which can
lead to long convergence path lengths. IPSO overcomes
these drawbacks by improving the velocity update and in-
ertia weight of the algorithm, as well as using an initialization
strategy and addressing the local optimum strategy, resulting
in a shorter convergence path length.

Teoretically, the aforementioned algorithms can obtain
the shortest global path, but in practical environments,
dynamic obstacles may render the obtained global path
useless. In the context of dynamic environments, local path
planning has good adaptability and can better handle dy-
namic obstacles. Some of the well-known local path plan-
ning algorithms include the BUG algorithm [20], the
artifcial potential feld algorithm [21], the dynamic window
approach (DWA) [22], etc. Te DWA algorithm, which
takes into account the dynamic constraints of the robot, is
considered a practical local path planning method [23].
However, due to the absence of global path guidance, DWA
is susceptible to getting trapped in the local optimum and is
unable to avoid fast-moving obstacles [24].

Many scholars divide the path planning of robots into
two phases: global path planning and local path planning.
Te global path planning phase aims to obtain a collision-
free global path, which is used to guide local path planning.
Te local path planning phase is guided by the global path to
obtain a path that avoids dynamic obstacles and satisfes the
robot dynamics constraints [25]. Liu et al. [26] proposed
a fusion algorithm that combines Jump A∗ and DWA to
improve the smoothness of the path and reduce the number
of turn points. By improving the DWA, the efciency of local
path planning and obstacle avoidance is increased. Ji et al.
[27] proposed a fusion algorithm that can be applied in
complicated environments. Te algorithm incorporates the
weight information of the road surface into the heuristic
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function of the A∗ algorithm, allowing the robot to avoid
bumpy roads. Finally, DWA is utilized to accomplish local
path planning to enhance the robot’s ability to avoid dy-
namic obstacles. Jin et al. [28] proposed a hybrid algorithm
that combines the A∗ algorithm and the DWA.Tey added
the target pose and orientation information to the A∗ al-
gorithm to obtain a more suitable global path for robot
orientation.Tey improved the evaluation function of DWA
to make the robot’s orientation more adaptive to the curved
global path and avoid dynamic obstacles. Tis algorithm is
suitable for complicated environments and can efectively
increase the robot’s global path planning and obstacle
avoidance capabilities. Yang et al.[29] proposed a hybrid
algorithm that utilizes the global path generated by the
improved ACO as the navigation information for local path
planning. Te authors improved the sampling window and
evaluation function of the DWA to enhance the path
tracking ability, dynamic obstacle avoidance ability, and
motion stability of the robot. Jin et al. [30] improved ACO by
dynamically adjusting the pheromone concentration to
expedite convergence, followed by a secondary planning
phase to reduce the global path length. Finally, the authors
introduced various response strategies based on the motion
trajectory of dynamic obstacles to enable successful avoid-
ance of dynamic obstacles in the environment. In this paper,
a fused path planning method is proposed that combines
IPSO with IDWA. Te proposed approach involves
obtaining the global path by using IPSO and selecting
navigation points in the global path to guide local path
planning. IDWA is then used for local path planning and the
avoidance of dynamic obstacles in the environment.

Te main contributions of this paper are as follows: (1)
an adaptive selection strategy is proposed to enhance the
global exploration ability and search accuracy of PSO by
enabling some particles to select the corresponding inertia
weight and velocity update methods based on their per-
formance. (2) A positive feedback factor is added to PSO to
adjust the particle positions, enhance the search accuracy,
and accelerate the convergence speed of the algorithm. (3) A
particle initialization strategy is proposed to increase the
diversity of the population and use the strategies of adding
random perturbation and random crossover to make the
algorithm more capable of addressing the local optimum,
thereby enhancing the exploration ability of PSO. (4) IDWA
is proposed to enhance global path guidance and obstacle
avoidance by combining with VO and improving the
evaluation function. (5) A hybrid path planning method is
proposed to complete the path planning task for mobile
robots in dynamic environments.

Te structure of the remaining part of this paper is as
follows: Section 2 describes the path planning problem and
models the path planning problem and obstacles. Section 3
introduces the traditional PSO. Sections 4 and 5, re-
spectively, introduce IPSO and IDWA. Section 6 introduces
the process of algorithm fusion. Section 7 verifes the su-
periority and efectiveness of IPSO, IDWA, and the fusion
algorithm through simulation experiments. Section 8
summarizes and concludes this study.

2. Problem Statement and Model Construction

2.1. Modelling of Path Planning. To ensure the safety of
robots and reduce energy consumption, the goal of global
path planning for mobile robots is to fnd a collision-free
path with the shortest length in the environment [31]. Robot
global path planning is usually seen as fnding the set P of
points generated by the robot moving through the envi-
ronment, and the connection between adjacent points does
not cross static obstacles. Te set of points P can be
expressed as the following equation:

P � S, p1, p2, · · ·, pm, T􏼈 􏼉, (1)

where (p1, p2, · · ·, pm) is the sequence of points in the en-
vironment, S is the starting point, T is the target point, L is
the length of the path, and L is calculated by the following
equation:

L � 􏽘
n−1

i�1
l(i,i+1), (2)

where l(i,i+1) represents the distance from point i to point
i + 1 and n represents the number of elements of P.

To make the global path more suitable for mobile robots,
this paper uses the third spline interpolation method to
optimize the global path, so that the global path is smoother
and the turning angle is smaller [32]. Te method for
generating a cubic spline curve path between points pi and
pi+1 is as follows.

(1) Generate m interpolation points between points pi

to pi+1 using cubic spline interpolation (pi1, pi2, · · · ,

pim).
(2) Connecting (pi1, pi2, · · · , pim) together to obtain

a continuous path is called a cubic spline
interpolation path.

Te length Cubl(i,i+1) of the cubic spline interpolation
path between points pi to pi+1 can be calculated from the
following equation:

Cubl(i,i+1) � l(i,i1) + 􏽘
m−1

k�1
l(ik,ik+1) + l(im,i+1). (3)

Te cubic spline interpolation path length L can be
calculated from the following equation:

L � 􏽘
n−1

i�1
Cubl(i,i+1). (4)

2.2. Modelling of Obstacle. To simplify the obstacle avoid-
ance problem in the robot’s working environment, it is
common to consider the infuence range of obstacles as the
outer circle of the obstacle. Here the infuence radius is Robs.
To ensure the safety of the robot, the safety distance d is
added to the radius of infuence of the obstacle, which
depends on the size of the robot. d is added to the radius of
infuence of the obstacle, as shown in Figure 1.
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Te obstacle’s real radius of infuence R can be calculated
by the following equation:

R � Robs + d. (5)

3. PSO

Te fundamental concept of PSO is based on the cooperative
learning of particles to achieve optimal solutions. Te particle
has two properties: velocity and position. Te velocity de-
termines the direction and size of the particle movement, and
the position represents the solution to the problem. Te
particle updates its velocity by learning from the position of
the global optimal particle and its historical optimal position
and fnds the optimal solution by updating the particle’s
velocity and position for multiple iterations. Te velocity and
position update equations of the particle i at the t + 1 th
iteration are calculated by equations (6) and (7), respectively.

Vi(t + 1) � ω∗Vi(t) + C1 ∗R1 ∗ P
i
best − Xi(t)􏼐 􏼑

+ C2 ∗R2 ∗ Gbest − Xi(t)( 􏼁,
(6)

Xi(t + 1) � Xi(t) + Vi(t + 1), (7)

where ω is the inertia weight, C1 is the self-learning factor,
which denotes the weight coefcient for learning towards its
historical optimal position; C2 is the global learning factor,
which denotes the weight coefcient for learning toward the
global optimal position; R1 and R2 are random numbers
from 0 to 1; Pi

best is the historical optimal position of particle
i; Gbest is the current global optimal position; Vi(t) denotes
the velocity of particle i at moment t, and Xi(t) denotes the
position of the particle i at moment t.

To improve the search accuracy and global exploration
ability of PSO, an improved IPSO is proposed in this paper.

4. IPSO

4.1. Adaptive Selection Strategy. Te concept of inertia plays
a crucial role in PSO, as it refects a particle’s ability to
maintain its previous momentum. A higher inertia weight

can enhance the global exploration capability of PSO,
allowing particles to discover high-quality solution regions.
Conversely, reducing the inertia weight can increase the
local search ability of PSO, enabling particles to improve
their search accuracy in a specifc region [33]. However, the
global and local search capabilities of PSO are contradictory
due to this property.

To solve the above problems, many scholars have pro-
posed adaptive inertia weights to balance the exploration
ability and search accuracy of the algorithm. For instance,
Wang et al. [34] and Ding et al. [35] introduced adaptive
inertia weight to adjust the position of followers, thereby
enhancing the exploration ability and search accuracy of
the SSA.

We proposed an adaptive inertia weight. Some particles
will select the corresponding inertia weight based on their
performance, calculated as in the following equation:

ωi � ωmin + ωmax − ωmin( 􏼁∗
Fi(t) − FGbest( 􏼁

Fave − FGbest( 􏼁
, Fi(t)≥Fave,

ωi � ωmin + ωmax − ωmin( 􏼁∗
Fave − FGbest( 􏼁

Fi(t) − FGbest( 􏼁
, Fi(t)<Fave,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

where ωmin is 0.4, ωmax is 0.9, ωi is the inertia weight of the
particle i, Fi(t) is the ftness of the particle i at time t, Fave is
the average ftness of the population, and FGbest is the ftness
of the current global optimal particle. When the Fi(t) is
larger than Fave, the particle i is considered to perform
poorly, and the inertia weight coefcient of the particle is
increased to fnd more high-quality solution regions. When
the Fi(t) is smaller than Fave, the particle is considered to
perform better, and its inertia weight coefcient is reduced to
enhance the local search accuracy of the particle.

Traditional PSO solely computes the particle’s velocity
based on its historical optimal position and global optimal
position, which cannot exploit the potential of each particle
in the population. To address this issue, we proposed a ve-
locity update strategy with adaptive selection, in which some
particles can select the velocity update method based on
their performance, which can be calculated by the following
equation:

Vi(t + 1) � ωi ∗Vi(t) + C1 ∗R1 ∗ P
i
best − Xi(t)􏼐 􏼑

+ η∗C2 ∗R2 ∗ Gbest − Xi(t)( 􏼁, Fi(t)>Fbad,

Vi(t + 1) � ωi ∗Vi(t) + η∗C1 ∗R1 ∗ P
i
best − Xi(t)􏼐 􏼑

+ C2 ∗R2 ∗ Gbest − Xi(t)( 􏼁, Fi(t)<Fgood,

Vi(t + 1) � ωi ∗Vi(t) + C1 ∗R1 ∗ P
i
best − Xi(t)􏼐 􏼑

+ C2 ∗R2 ∗ Gbest − Xi(t)( 􏼁, Fgood ≤Fi(t)≤Fbad,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where Fbad is the ftness threshold of the poorly performing
particles and Fgood is the ftness threshold of the well-
performing particles, η is a random number from 0 to 1.
Te poorly performing particles tend to search around their

d

R

Rob
s

Figure 1: Te actual radius of infuence of the obstacle R.
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historical best position to enhance their global exploration
ability. Te well-performing particles tend to search around
the global best position to enhance local search accuracy and
the algorithm’s convergence speed. Particles with average
performance learn from the historical optimal position and
the global optimal position to fnd more high-quality so-
lution regions.

4.2. Positive Feedback Factor. Li et al. [18] adds a positive
feedback factor to the traditional PSO, which increases the
local search capability of PSO by adjusting the position of the
particles based on their ftness after iteration compared with
that before iteration. In this paper, we improve the positive
feedback factor proposed by [18], as in the following
equation:

Xi(t + 1) � Xi(t + 1) + θi, Fi(t + 1)≥Fi(t),

Xi(t + 1) � Xi(t + 1) + θi, Fi(t + 1)<Fi(t)&Fi(t + 1)≥Fave,

Xi(t + 1) � Xi(t + 1) +
1
2
∗Rand∗ θi, Fi(t + 1)<Fi(t)&Fi(t + 1)<Fave,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where θi is the positive feedback factor of the particle i, Rand
is a random number from 0 to 1, and t is the number of
current iterations. When Fi(t + 1) is lower than Fi(t) but
higher than Fave, the particle i moves θi length to speed up its
entry into the high-quality solution region. When Fi(t + 1)

is lower than Fi(t) and lower than Fave, particle i moves
1/2∗Rand∗ θi length increasing the local search accuracy
by reducing the extra step added due to the positive feedback
factor while accelerating the entry into the high-quality
solution region.

4.3. Initialization Strategy. In PSO, the diversity of the
population plays a crucial role in determining the quality of
the solution obtained. However, as the algorithm runs, the
diversity of the population tends to decrease, especially in the
later stages of the algorithm when particles cluster together,
leading to premature convergence. To improve the diversity
of the population, this paper uses an initialization strategy
that classifes particles into excellent-performing, average-
performing, and poor-performing based on their ftness
values. At the beginning of each iteration, the initialization
operation is performed on some of the poorly performing
particles to increase the diversity of the population and
prevent the algorithm from maturing prematurely.

4.4. Addressing the Local Optimum Strategy. Trapping in the
local optimum has been a shortcoming of PSO that is dif-
fcult to overcome. Terefore, this paper proposes a method
to address local optimum by adding a random perturbation
and random crossover.

If the global optimal particle stays the same for a long
period, the algorithm is judged to be in the local optimum,
and a random perturbation of length δ is added to the global
optimal particle.Ten, check whether the ftness after adding
the perturbation is lower than the ftness before adding the
perturbation. If the ftness is lower, the perturbed particle is
saved as a new global optimal particle. Otherwise, the
perturbation is discarded, and the same operation is re-
peated in the next iteration. Te δ can be calculated by the
following equation:

δ � β∗Rand, (11)

where β is the value assigned based on the FGbest. β is 0.2 if
the current global optimal particle is in the high-quality
solution region. Te β is 0.5 if the current global optimal
particle is in the inferior solution region. Te process of
adding random perturbations to make the algorithm address
the local optimum is shown in Figure 2.

Besides adding random perturbations, a random
crossover strategy is designed to make the algorithm address
the local optimum.

After judging that the algorithm is trapped in the local
optimum, replace a point in the global optimal particle with
a point at the corresponding position of a random particle.
Te random crossover process is shown in Figure 3.

5. IDWA

5.1. Fusion with VO. VO has the ability to predict whether
a robot will collide with dynamic obstacles and has been
widely used in recent years for robot avoidance of dynamic
obstacles [36]. Te principle of VO prediction collision is
shown in Figure 4 where Vrob and Vobs are the velocities of
the robot and the dynamic obstacle, respectively. Vr is the
relative velocity of the robot and the dynamic obstacle, and
Rrob and Robs are the radius of the robot and the dynamic
obstacle, respectively.

Te relative velocity Vr of the robot to the obstacle can be
calculated by the following equation:

Vr � Vrob ⊕ − Vobs, (12)

where ⊕ is the Minkowski sum. Defne a ray starting from
the robot center Pr along the Vr as the following equation:

λ Pr, Vr( 􏼁 � Pr + Vrt|t≥ 0􏼈 􏼉, (13)

where t denotes time, so ray λ(Pr, Vr) represents the real-
time relative position of the robot and the obstacle if the
robot and the obstacle maintain their motion without
changing. Defne the set Vr as the relative collision cone
(RCC), the mathematical representation of the RCC is as in
the following equation:
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RCC � Vr

􏼌􏼌􏼌􏼌λ Pr, Vr( 􏼁∩Obstacle≠∅􏽮 􏽯, (14)

where Obstacle is the infuence range after the obstacle
radius Robs expansion Rrob.

If λ(Pr, Vr) is within the RCC, it indicates the risk of
collision between the robot and the dynamic obstacle. In this
paper, we use a fusion of VO and IDWA for dynamic
obstacle avoidance.

5.2. Improving the heading (v,ω) Function. Te
heading(v,ω) function of conventional DWA is calculated
by the following equation:

heading(v,ω) � 180 − α, (15)

where α is the angular deviation of the robot orientation at
the end of the trajectory from the target point. Te tradi-
tional DWA heading(v,ω) function may cause the situation
in Figure 5. It can be seen that the robot is in a better state
after one unit of time following trajectory 1 than after one
unit of time following trajectory 2. However, the calculation
results based on the heading(v,ω) function shows that
trajectory 2 has a higher score, which is unreasonable.

To solve this problem, we proposed an improved
Heading(v,ω) function. When the robot approaches the
target point, the heading(v,ω) function no longer calculates
the angle between the robot’s orientation at the end of the
trajectory and the target point but instead calculates the
angle between the robot’s orientation after moving one unit
of time and the target point, as shown in Figure 6.

5.3. Improving the dist(v,ω) Function. When modelling for
the static obstacles, the infuence range of the static obstacles
is increased based on the size of the robot, so they do not
collide when the global path is close to the obstacles. Te
dist(v,ω) function causes the robot to select the trajectory
movement away from the static obstacles, which not only
weakens the guidance efect of the global path on local path
planning but also increases the path length of local path
planning, as shown in Figure 7.

To address these problems, the dist(v,ω) function has
been improved as the following equation:

Before adding random perturbation
Afer adding random perturbation
Start
Target
Random perturbation

Figure 2: Te process of adding random perturbation.

A random particle
Global best particle
Path afer crossover
Points in a random particle
Points in global best particle

Figure 3: Te process of random crossover.

Vrob

Vobs

-Vobs

Vr

Rrob

Robs

Rrob

Robs+Rrob

RCC

Pr

Po

Figure 4: Te principle of VO prediction collision.
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Dist(v,ω) �
1,

�������������������������

xrob − xobs( 􏼁
2

+ yrob − yobs( 􏼁
2

􏽱

>R,

0.1,

�������������������������

xrob − xobs( 􏼁
2

+ yrob − yobs( 􏼁
2

􏽱

≤R,

⎧⎪⎪⎨

⎪⎪⎩

(16)

where xrob, xobs, yrob, and yobs represent the horizontal and
vertical coordinates of the robot and the static obstacle,
respectively, and R is the radius of infuence of the obstacle.
Te improved Dist(v,ω) function allows the robot to select
a trajectory that is close to but without collision with static
obstacles, which enhances the guidance efect of the global
path on local path planning.

5.4. Adding the vh(v,ω) Function. To make IDWA more
efective in avoiding dynamic obstacles, the vh(v,ω) func-
tion is added to the evaluation function to calculate the
change in angle diference with the obstacle before and after
robot movement. Te vh(v,ω) function can be calculated by
the following equation:

vh(v,ω) � |VA(t + 1) − VA(t)|,

VA(t) � 0, VA(t) � π,

vh(v,ω) � VA(t + 1) − VA(t),

VA(t)≠ 0, VA(t)≠ π,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

where VA(t) and VA(t + 1) denote the angular diference
between the velocity of the robot and the velocity of the
dynamic obstacle before and after motion, respectively. After
adding the vh(v,ω) function, the algorithm will select tra-
jectories for the robot that increase the angular diference
between the velocity of the robot and the velocity of the
dynamic obstacle, as shown in Figure 8.

Te evaluation function of IDWA is stated in the fol-
lowing equation:

G(v,ω) � σ(αHeading(v,ω) + βDist(v,ω)

+ cvel(v,ω) + λvh(v,ω)),
(18)

where σ is a normalization operation. Te α, β, c, and λ are
the weighting factors of Heading(v,ω), Dist(v,ω), vel(v,ω),
and vh(v,ω), respectively. Te λ is calculated as in the
following equation:

λ �
3
2
∗ α, is collision � 1,

λ � 0, is collision � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

where is collision is the judgment result of VO, and the value
of is collision is 1 if the robot will collide with the dynamic
obstacle, otherwise is collision is 0.

6. Algorithm Fusion

To complete the path planning of mobile robots in dynamic
environments, this paper proposes a hybrid algorithm
combining IPSO and IDWA. In the proposed hybrid al-
gorithm, multiple navigation points are identifed in the

Trajectory 1

Trajectory 2

α1

Robot

Target

α2
P1

P2

Figure 5: Analysis of unreasonable heading(v,ω) function.

Trajectory 1
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α1

Robot

Target

P1

P2

α2

Figure 6: Improved Heading(v,ω) function.

Start

Target

Static Obstacle

Global Path
Local Path

Figure 7: Analysis of unreasonable dist(v,ω) function.
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global path generated by IPSO. Te robot selects the most
suitable navigation point as the target point for IDWA based
on its current position and the risk of collision with obstacles
and iteratively updates its target point until reaching the global
target point. Selecting navigation points is crucial for IDWA. If
the selected navigation point is too far away from the robot, it
may not efectively guide the robot, while if the selected
navigation point is too close to the robot, it may not efectively
avoid dynamic obstacles. For this reason, we proposed
a method for selecting navigation points on global paths.

Tis paper uses the cubic spline interpolation to optimize
the global path, assuming there are Num points in the global
path, and the robot’s location is the i th point. If the distance of
the robot from dynamic obstacles does not reach the obstacle
avoidance distance or reaches the obstacle avoidance distance
but the robot will not collide with dynamic obstacles, the i + n

th point will be chosen as the navigation point for IDWA. If the
distance of the robot from dynamic obstacles is less than the
obstacle avoidance distance and the robot will collide with the
dynamic obstacle, the i + kn th point will be chosen as the
navigation point for IDWA. Where the n depends on the
velocity of the robot, and the k depends on the obstacle
avoidance distance and the size of the dynamic obstacle.

Te steps of the hybrid algorithm are as follows.

Step 1: Modelling of the robot’s working environment.
Step 2: Get the global path by using IPSO.
Step 3: Divides the global path into multiple navigation
points.
Step 4: Use the above method to select the navigation
points in turn as the target points for local path
planning, and use IDWA to complete the local path
planning.
Step 5: Te robot reaches the global target point, and
the path planning ends.

Te fow chart of the fusion path planning method is
shown in Figure 9.

7. Simulation Experimental Analysis

To determine the efectiveness of the IPSO, IDWA, and
hybrid algorithm, we use the MATLAB 2021a software to

conduct simulation experiments on a computer withWin 10
and 8GB RAM.

7.1. Simulation Experimental of IPSO. To determine that
IPSO has strong exploration ability and search accuracy, this
paper conducts simulation experiments and data compar-
isons with traditional PSO, [18] improved particle swarm
optimization (IPSO1), and [19] improved particle swarm
optimization (IPSO2) in 10∗ 10 and 15∗ 15 environments,
respectively.

To minimize the efect of the randomness of the in-
telligent algorithm, 50 simulation experiments are con-
ducted in two environments, and the average path length
and shortest path length of the four algorithms are
compared.

Te average path length and shortest path length can
refect the exploration ability and search accuracy of the
algorithm, respectively. Te coordinates of the start and
target points of Environment 1 and Environment 2 are (0, 0),
(10, 10) and (0, 0), (15, 15), respectively. Te start and target
points are represented by yellow squares and green squares,
respectively. Te relevant parameters set in this paper are as
follows: the number of populations is 50, the maximum
number of iterations is 300, and the learning factor
C1 � C2 � 1.5, the inertia weight ωmin � 0.4, and ωmax � 0.9.

Te simulation experimental data of the four algorithms
in environment 1 and environment 2 are described in Ta-
bles 1 and 2, respectively.

Te shortest paths of the four algorithms in Environ-
ment 1 and Environment 2 are shown in Figures 10 and 11,
respectively.

Te simulation experimental data demonstrate that the
average path length and shortest path length obtained by
IPSO are superior to the other three algorithms in both
environments. Tis is attributed to the superior exploration
ability and search accuracy of IPSO.

To determine the efectiveness of the address local op-
timum strategy and the faster convergence speed of IPSO,
the convergence curves in the two environments are shown
in Figure 12(a) and Figure 12(b), respectively. In this ex-
periment, the number of populations is 150, the maximum
number of iterations is 500, and the learning factor
C1 � C2 � 1.5, the inertia weight ωmin � 0.4, and ωmax � 0.9.

(a) (b)

Figure 8: Comparison of the efect of dynamic obstacle avoidance. (a) Te Conventional DWA dynamic obstacle avoidance. (b) Add
vh(v,ω) function dynamic obstacle avoidance.
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Te convergence curves in Figure 12 demonstrate that
IPSO outperforms PSO, IPSO1, and IPSO2 in terms of
convergence speed and convergence path length in envi-
ronments 1 and 2. Te convergence path length of IPSO in
environment 1 and environment 2 are reduced at the 343th

and 387th iteration, respectively, proved the efectiveness of
the address local optimum strategy. Te convergence path
length in two environments is shown in Table 3.

7.2. Simulation Experimental of IDWA. To determine the
obstacle avoidance capability of IDWA, the simulation ex-
periments of avoiding dynamic obstacles were compared
using DWA and IDWA, respectively.

Te radius of the robot in this experiment is 0.1m, the
maximum linear velocity is 1m/s, the maximum acceleration
is 0.2m/s2, the maximum rotational velocity is 40/s, the
maximum rotational acceleration is 40/s2, the initial

Start

Modeling of the environment

Use IPSO to get the global
path

Divide the global path into
multiple navigation points

Select the i+k*n th navigation
points as local path planning

targets

Reaching obstacle
avoidance distance? Will it collide?

Select the i+n th navigation
point as the local path planning

target

Reaching global 
target?

End

Local path planning with
IDWA

Global Path Planning Local Path Planning

YES

YES
NO

NO

NO

YES

Figure 9: Flow chart of the fusion algorithm.

Table 1: Simulation experimental data of environment 1.

Environment 1 Average
path length (m)

Shortest
path length (m)

PSO 15.7687 14.9860
IPSO1 [18] 15.5512 14.7632
IPSO2 [19] 15.4805 14.6825
IPSO 15. 966 14.5374
Te bold values are the smallest among the four groups, representing the average path length and the shortest path length, respectively.

Table 2: Simulation experimental data of environment 2.

Environment 2 Average
path length (m)

Shortest
path length (m)

PSO 22.4382 21.8782
IPSO1 [18] 22.2542 21.8041
IPSO2 [19] 22.2667 21.6564
IPSO 22. 474 21.2866
Te bold values are the smallest among the four groups, representing the average path length and the shortest path length, respectively.
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Figure 10: Te shortest path of four algorithms in environment 1. (a) PSO in environment 1. (b) IPSO1 in environment 1. (c) IPSO2 in
environment 1. (d) IPSO in environment 1.
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Figure 11: Continued.
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Figure 11: Te shortest path of four algorithms in environment 2. (a) PSO in environment 2. (b) IPSO1 in environment 2. (c) IPSO2 in
environment 2. (d) IPSO in environment 2.
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Figure 12: Te convergence curves in two environments. (a) Convergence curve of environment 1. (b) Convergence curve of environment 2.

Table 3: Convergence path length and number of convergence iterations in environment 1 and environment 2.

Convergence path length
in environment 1

(m)

Number of convergence
iterations in environment

1

Convergence path length
in environment 2

(m)

Number of convergence
iterations in environment

2
PSO 14.8496 169 21.7977 171
IPSO1 [11] 14.7031 138 21.5781 159
IPSO2 [12] 14.6513 140 21.5085 166
IPSO 14.5134 94 21.295 137
Te values in bold represent the best of the four sets of values.
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orientation angle is 90°, the radius of the dynamic obstacle is
0.6m, and the velocity is 0.6m/s.Te results of the simulation
experiments are shown in Figures 13 and 14, respectively.

Te dist(v,ω) function of conventional DWA drives the
robot to turn to the side with the same direction of motion as
the dynamic obstacle, and the distance of the robot from the
dynamic obstacle is too close, leading to an empty set of
velocity sampling space, resulting in obstacle avoidance
failure, as shown in Figure 13.

If the robot is judged to be at risk of collision with the
dynamic obstacle by using VO, the vh(v,ω) function in the
IDWA evaluation function drives the robot to turn in the
direction opposite to the dynamic obstacle’s motion di-
rection, which not only successfully avoids the dynamic
obstacle but also shortens the path length increased by
avoiding the dynamic obstacle, as shown in Figure 14.

7.3.AlgorithmFusion. Te above experiments demonstrated
the efectiveness of IPSO and IDWA. To further assess
whether the fusion algorithm is efective for robot path
planning in the dynamic environment, it will be verifed in
a dynamic environment of 25∗ 25.

In this experiment, the robot has a radius of 0.1m,
a maximum linear velocity of 1m/s, a maximum acceleration
of 0.2m/s2, the maximum rotational velocity of 40/s, a rota-
tional acceleration of 40/s2, and an initial orientation angle of
36°. Te coordinates of the starting point are (0, 0) and the
coordinates of the global target point are (23, 23), which are
represented as yellow and green squares, respectively, the red
∗ is navigation point for IDWA.Te radius of both dynamic
obstacles is 0.6m and the velocity is 0.8m/s. Te process and
results of the fusion algorithm for robot path planning in
dynamic environments are shown in Figure 15.
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Figure 13: Results of DWA avoidance of dynamic obstacles. (a) Robot detects dynamic obstacle 1. (b) Robot avoidance of dynamic obstacle
1 failed. (c) Robot detects dynamic obstacle 2. (d) Robot avoidance of dynamic obstacle 2 failed.
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Figure 14: Results of IDWA avoidance of dynamic obstacles. (a) Robot detects dynamic obstacle 1. (b) Robot avoids dynamic obstacles 1.
(c) Robot detects dynamic obstacle 2. (d) Robot avoids all dynamic obstacles.

25

20

15

10

5

0

0 5 10 15 20 25

(a)

25

20

15

10

5

0

0 5 10 15 20 25

(b)
Figure 15: Continued.

Journal of Robotics 13



Te black line is the global path planned by IPSO, the
green line is the trajectory of IDWA, and the red line is the
trajectory of two dynamic obstacles.

From the experimental results, it can be seen that the
global path and the local path ft closely when there are no
dynamic obstacles. Under the direction of the global path,
IDWA successfully completes the dynamic obstacle avoid-
ance and path planning tasks.

8. Conclusion

Tis paper proposes a hybrid algorithm for the path plan-
ning of robots in dynamic environments.

To improve the traditional PSO, IPSO is proposed to
enhance the exploration ability, search accuracy, and ad-
dress the local optimum to obtain a shorter global path.
Firstly, the exploration capability and search accuracy of
PSO are increased using an adaptive selection strategy and
a positive feedback factor. Secondly, the initialized particle
strategy is used to increase population diversity. Finally, the
strategy of adding random perturbation and random
crossover is used to help the algorithm address the local
optimum. In addition, the global path is optimized using
cubic spline interpolation to make the global path smoother
and have smaller turning angles. Simulation experiments
prove that the IPSO has better exploration ability and
search accuracy.

To improve the disadvantages of DWA trapped in local
optimums and insufcient obstacle avoidance, an IDWA is
proposed. Firstly, the global path is used to provide global
guidance for the robot, which improves the problem of
DWA getting stuck at the local optimum due to the lack of
global guidance. Secondly, the Heading(v,ω) and Dist(v,ω)

functions are improved to enhance the guidance of the
global path to the local path planning. Finally, VO is used to
determine whether the robot will collide with dynamic
obstacles, and the vh(v,ω) function is added to the evalu-
ation function to improve the ability of the algorithm to

avoid dynamic obstacles. Te simulation experiments prove
that IDWA can efectively complete the path planning of the
robot in a dynamic environment with the guidance of the
global path.
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