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One of the essential tasks required from a mobile robot is the autonomous and safe navigation of its working environment.
However, in many cases, a model of the environment or map is not available to execute this task. Indeed, navigation requires
a permanent estimation of the location for a map, which is not available for unknown environments. In such a scenario, the robot
must have extended capabilities to solve, concurrently, the problems of localization and mapping. Te simultaneous solution of
these two problems is known as SLAM (simultaneous localization and mapping) and is a complex problem, not yet fully solved by
the scientifc community. Tis is due to the fact that localization requires a map that is not yet available since it is still under
construction. In turn, the elaboration of a map requires the estimation of the robot’s location. Tis is the reason why SLAM has
been categorized as similar to the chicken and egg problem. In the case of a robot facing an unknown environment, it would be
something like what to solve frst, localization or mapping? Te answer to this question is that the robot will have to solve both
problems at the same time. Tis article presents a study of some of the most representative open source visual SLAM (vSLAM)
methods, beginning from an analysis of their characteristics and presenting criteria selection for an experimental design that
allows contrasting their advantages and disadvantages. Two of the most representative algorithms for solving vSLAM were
considered (RTAB-Map and ORB-SLAM2). Te experiments were validated with a robotic system designed for this purpose,
which is fully compatible with ROS (robot operating system).

1. Introduction

One of the biggest challenges faced by robotics research is
the incorporation of advanced levels of autonomy in robotic
systems, understanding autonomy as the capacity of a sys-
tem to carry out its processes and operations with no human
intervention. Navigation is perhaps the problem most
closely linked to the concept of autonomy in mobile robots.
Precisely, some of the tasks that defne a mobile robot as an
autonomous entity are a safe navigation of its environment
and path planning [1].

In robotics, the terms location, pose, and localization refer
to the coordinates and orientation of a robot with regards to
a global spatial representation system [2]. Localization and

mapping, which is the ability of some robots to model their
environment, are two fundamental problems in robotics and
are closely related [3]. When a representation of the envi-
ronment is not available, it must be constructed autono-
mously by the robot. Tis is a nontrivial problem; since in
order to build models of the environment, it is necessary to
establish a precise location in relation to a model that is not
yet available. Similarly, in order to obtain a good estimate of
the location, a map is required. Consequently, when a robot
faces an unknown environment, it will have to simultaneously
solve two problems that cannot be solved independently:
localization and mapping [4]. Tese two problems are so
strongly correlated that it is not possible to establish which of
them is the cause and which is the efect. Te need to solve
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both problems concurrently results in the simultaneous lo-
calization and mapping (SLAM) problem.

To successfully carry out these two tasks, the robot must
have extended capabilities to reliably estimate its localization
(x, y, and θ)T and be able to elaborate relatively accurate
representations of its environment (mapping). Traditional
methods employed in solving SLAM are based on using
probabilistic techniques. In such techniques, parameters and
measures are treated as random variables, and the un-
certainty in localization estimation is modelled by using
probability density functions.

Tis article is addressed to the problem of localization
and mapping simultaneous of indoor environments based
on vSLAM methods, under controlled conditions that allow
highlighting the diferential aspects of two of the most
representative approaches, namely, RTAB-Map (real-time
appearance-based mapping) and ORB-SLAM2 (oriented
FAST and rotated BRIEF simultaneous localization and
mapping 2). Both RTAB-Map and ORB-SLAM2 are rep-
resentative methods of the current state of the art in vSLAM
(visual SLAM). However, while the frst produces dense
maps, the latter generates a sparse one. Equally, the robot
trajectory and the three-dimensional structure of the en-
vironment are estimated. In the authors’ criteria, the con-
tributions of this article are the following: (1) a holistic view
of vSLAM methods that incorporates conceptual and pro-
cedural elements that support the selection of the most
convenient method for the development of robotic appli-
cations. (2) A detailed discussion of simple experimental
settings under controlled conditions that tend toward re-
peatability is provided, facilitating comparison of methods.
(3) A complete interpretation of the models obtained from
each approximation is provided in real environments to
which a wide variety of objects that provide complex
characteristics are incorporated.

Tis paper is distributed as follows: in the second section,
materials and methods established for this research are
discussed.Te third section presents the qualitative selection
method proposed in this study. Te fourth section describes
the experiments performed and discusses the results ob-
tained. Finally, in the last two sections, conclusions are
drawn and references are presented.

2. Materials and Methods

In recent years, robotics research and the development of
robotic systems have experienced signifcant growth, widely
due to the emergence of new modelling, estimation, opti-
mization, and control methods, and advances in computing,
sensing, mechatronics, and communications. Tis scenario
is conducive to the arising of new applications of robotics in
various areas of daily life [5, 6] and the need for versatile and
powerful tools for the design, simulation, and development
of functional robotic systems.

Robots are now considered complex distributed systems
that include a wide variety of hardware and software com-
ponents, which is why this research incorporates the highest
possible degree of modularity in the design and imple-
mentation of the experimental robotic system, both at the

hardware and software levels. Althoughmodular design poses
additional integration, communication, and interoperability
problems, these can be solved by using an intermediate
software layer or middleware for distributed robotic systems
[7]. Generally, the latest generation of open source middle-
ware facilitates integration with libraries and packages widely
used in computer vision, point cloud processing, 3D geom-
etry, and simulators. Tey greatly ease the development,
testing, and debugging of algorithms with rigorous security
and robustness requirements, mainly in applications where
a close interaction with people is needed, such as assistance
and educational and logistic robots for goods delivery [8–10].

As for hardware, several companies around the world
(Clear-path Robotics, Fetch Robotics, PAL robotics, and
Hokuyo Automatic) develop and supply a wide range of
robotic platforms and sensing, perception, and actuation
systems for research, learning, and development of in-
dustrial and commercial applications compatible with dif-
ferent middlewares.

Te following four tools were used in the experiments
conducted in this work (robot operating system-ROS, ga-
zebo, turtlebot2, and workstation) [11].

2.1. Robot Operating System (ROS). Middleware, which has
been well accepted in academic and industrial environments,
has positioned itself, de facto, as a standard for robotic
application development [12–14]. ROS is an open-source
middleware for robotic application development, which
provides a distributed programming environment for both
real and simulated platforms. It also provides hardware
abstraction, low-level control, message transfer between
processes, and software package management [15]. ROS was
conceived considering the following criteria (Table 1):

2.2. Gazebo. Simulators are compatible with ROS middle-
ware. Preliminary tests of the implemented teleoperation
algorithms were carried out with this tool, which ofers a 3D
simulation environment that requires a computer with good
graphics processing capabilities, as the ones supported by
GPUs (graphics processing unit) [17, 18].

2.3.Turtlebot2. It is an open hardware platform for research,
testing, and development of methods, algorithms, and ap-
plications in robotics [12, 14, 15]. It holds the necessary
perception, control, and actuation systems to start with the
development of ROS-supported applications. Some low-cost
modifcations were carried out to improve the processing
and autonomy of the platform [19].

2.4. Processing and Communications. Computers were
available, one of the high performances that we call as
workstation, which was used for system supervision through
GUI (Graphical User Interfaces) and for the execution of
high computational cost processes. Te other equipment, of
lower performance and that we call Robot-PC, was in-
corporated into the mobile robot to execute processes of
lower computational cost, mainly those associated with
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proprioception, exteroception, and efector control of the
turtlebot2 robot. Te connectivity of both the devices was
executed through a router.

Features of the hardware used are as follows (Table 2):
Te experimental mobile robot prototype was named

RobSLAM. It was developed from the TurtleBot2 Personal
Robot, an open-source platform supported by ROS (Fig-
ure 1). Te robot incorporates an RGB-D exteroceptive
sensor, trays, and brackets that allow incorporating new
equipment, and as the main component, the iClebo Kobuki
mobile base. It integrates proprioceptive sensing, low-level
processing, and locomotion systems.

Te intermediate tray was removed from the original
platform to reduce the height of the robot and keep its center of
gravity low. Four 13mm diameter by 51mm high aluminium
spacers were available, the length of which was extended by
20mm high acrylic cylinders. Tese spacers were used to
anchor the NUC minicomputer (Robot-PC) to the bottom of
the upper tray, for which a 130×150mm rectangular support
base with its fxing screws was provided. Te hardware ar-
chitecture of the RobSLAM system is shown in Figure 2.

Since the 19.1 V DC@ 2A voltage available on one of the
Kobuki base connectors was insufcient to power the NUC
minicomputer, a regulated power supply system was
designed that includes a 12V battery @ 5.5Ah, a DC/DC
converter to boost the voltage to 19.0V DC, and a fxing
structure to prevent the battery from shifting. Te system
was anchored to the robot’s bottom tray so as not to displace
its center of gravity. Te design allowed a convenient power
supply for the Robot PC and energy autonomy of up to three
and a half hours under full battery charge conditions, with
sufcient time to advance the proposed experiments and
collect data for analysis. Figure 3 shows the fnal appearance
of the mobile robot.

2.5. Criteria for the Selection of vSLAMMethods. Tis section
presents the qualitative criteria that support this study. Te
types of sensors and detectors/descriptors used by each of the
methods and the environment model kind were considered.
Finally, the associated specifc aspects were presented, such as
2D and 3Dmodelling support, model dimensions, map reuse,
path detection, and global optimization.

Table 3 presents some of the most popular vSLAM al-
gorithms, which are classifed according to the type of visual
sensors they support and the type of detector/descriptor they
use. MonoSLAMwas the frst real-time vSLAM algorithm to
use a camera as the only sensor. In this method, feature-
based sparse probabilistic maps are produced by estimating
camera states, features, and associated uncertainties. PTAM
(parallel tracking and mapping) is a monocular algorithm
also used in augmented reality. It often does not deliver full
maps but instead produces small maps that include a single
physical object in the environment. Both MonoSLAM and
PTAM were developed in the last decade and are now
considered somewhat long-outdated, which is why they were
discarded.

Figure 4 summarizes a classifcation based on the
method of extracting information from the image sequence
and the type of map produced. Sparse maps consider small
subsets of pixels, precisely those associated with the detected
features and their neighborhood. In contrast, dense maps
use most or all of the pixels in the image. Two of the most
representative vSLAM algorithms for dense mapping are
DTAM (dense tracking and mapping) and RTAB-Map
(real-time appearance-based mapping), while RTAB-Map
is classifed as an indirect method, DTAM is considered
a direct one. In indirect methods, features of interest are frst
extracted from the image, and from them, the camera is
located and the map is constructed. On the other hand, in
direct methods, the intensity of the pixels is considered
without taking into account a preliminary stage of feature
extraction.

An important matter to consider is that DTAM is
designed for small and localized scenes or spaces [20], while
RTAB-Map supports 2D and 3D mapping of large di-
mensions and long term. Another direct method worth
highlighting is LSD-SLAM (large-scale direct monocular
SLAM), which considers areas with higher intensity gradient
than those considered by DTAM. In this sense, LSD-SLAM
ignores regions with low or no texture for which it is difcult
to estimate depth. For this reason, it is considered a semi-
dense method [21]. A recently proposed algorithm is DSO.
In this approach, it is sought to minimize the photometric
error of the set of pixels between images, instead of mini-
mizing the geometric back-projection error. DSO performs

Table 1: Selected criteria for ROS.

Criteria Features

Peer-to-peer Processes connected at runtime without fxed clients and servers. Processes behave
as both clients and servers

Distributed processing Processes (nodes) can run on diferent hosts and communicate across the network
Lightweight system ROS provides a lightweight packaging mechanism for third-party libraries

Multilanguage
Although ROS supports diferent languages such as Octave, LISP, Lua, and Java, the
APIs (application programming interface) with the best support are those of C++

(roscpp) and Python (rospy)
Free and open source Te entire ROS source code is in the public domain

Tool-based
ROS design is based on a microkernel in which a large number of small tools are
used to build and execute various ROS components, as opposed to a monolithic

development and execution environment
Source: [16].
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a joint probability optimization of all model parameters
[22, 23]. ORB-SLAM2 is an extension of its predecessor
ORB-SLAM [24] that supports not only monocular but also
stereo and RGB-D cameras (Table 3). ORB-SLAM2 includes
map reuse, closed path detection, and relocation capabilities.
It operates in real time on standard processing systems and
in a wide variety of environments, from small indoor en-
closures with short sequences of images captured with
a handheld RGB camera, through industrial environments
with sequences captured from drones to large sequences
obtained from automobiles driving in urban environments
[25]. Based on previous data, the methods selected to
conduct the experiments are ORB-SLAM2 in its monocular
component [26] and RTAB-Map in its RGB-D component,
which are highlighted with green circles in Figure 4. For this
purpose, it was considered that [11] both methods are part of
the current state of the art in visual SLAM. DSO (direct
sparse odometry) is also part of the most recent algorithms;
however, it does not perform global optimization and
closed-loop detection, both of which are supported by ORB-
SLAM2 and RTAB-Map. DTAM is applicable only for lo-
calized and small-scale environments, while ORB-SLAM2
and RTAB-Map allow SLAM to be solved for both small and
large-scale environments. MonoSLAM does not perform
global optimization, and as with PTAM (parallel tracking
and mapping), it does not perform closed-loop detection

either. Moreover, these methods date back to 2003 and 2007,
respectively. Te development of RTAB-Map dates back to
2013, and its extension dates back to 2017. Concerning ORB-
SLAM, it dates back to 2014 and its extension ORB-SLAM2
dates back to 2016. Although the development of
LSD-SLAM (large-scale direct monocular SLAM) dates back
to 2013, it is considered a semidense system, located halfway
between the sparse and dense paradigms.

2.6. Other Four Reasons Why Tese Two Methods Are Often
Preferred Over Others

2.6.1. Accurate and Robust Performance. RTAB-Map and
ORB-SLAM2 have demonstrated high accuracy and ro-
bustness in various challenging environments, including
low-light conditions, fast movement, and dynamic
environments.

2.6.2. Real-Time Performance. Bothmethods are designed to
provide real-time performance, making them suitable for
applications where real-time feedback is critical, such as in
autonomous vehicles, drones, or industrial automation.

2.6.3. Feature-Based. Both RTAB-Map and ORB-SLAM2
are feature-based SLAM methods, meaning that they rely
on extracting distinctive features from the environment to
construct a map and estimate the robot’s pose. Tis ap-
proach has been shown to be efective in many scenarios.

2.6.4. Availability and Support. Both methods are open-
source and have a large community of users and de-
velopers, making themwell documented and well supported.
Tis ensures that users can access help and resources if they
encounter any issues during their application development.

2.7. Disadvantages of RTAB-Map

2.7.1. High Computational Requirements. RTAB-Map can
be computationally intensive, particularly when using large
datasets. Tis can result in slower processing times and
higher hardware requirements.

2.7.2. Difculty with Large-Scale Environments.
RTAB-Map may struggle to accurately map large-scale
environments due to the accumulation of errors over time.

Table 2: Features of the hardware.

Elements Technical specifcations

Workstation ASUSN56J series computer with intel® core™ i7-4700HQCPU@ 2.4GHz× 8, 8GB
RAM, 1TB hard drive and NVIDIA® GEFORCE GTX® 760M GPU

Robot-PC Intel® NUC6i3SYH mini-computer (19V DC @ 3.43A) with intel® Core™
i3-6100U CPU @ 2.3GHz× 4, 4GB RAM, 500GB hard disk

Router TP-link 3G/4G TL-MR3420
USB camera Logitech® C270 with video capture up to 1280× 720 pixels @ 30 fps
Source: [11].

Figure 1: TurtleBot2: base platform of the RobSLAM experimental
system.
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2.7.3. Limited Accuracy. RTAB-Map may not produce as
accurate maps as some other SLAM methods, particularly in
dynamic environments where the scene is constantly changing.

2.8. Disadvantages of ORB-SLAM

2.8.1. Limited Robustness. ORB-SLAM can struggle in low-
texture environments or when there are few distinctive
features, as it relies heavily on feature detection and
matching.

2.8.2. Difculty with Dynamic Scenes. ORB-SLAM may
struggle to accurately track the location of the camera in

dynamic scenes, where objects are moving and the envi-
ronment is constantly changing.

2.8.3. Difculty with Large-Scale Environments. ORB-SLAM
may struggle to accurately map large-scale environments,
particularly when there are many repeated patterns or textures.

3. Results and Discussions

Visual SLAM experiments are conducted using the selected
methods (RTAB-Map and ORB-SLAM), and their advan-
tages and disadvantages are weighed. Te experiments were
conducted in an indoor ofce environment, whose plan is

Workstation
ASUS N56J
Processor: i7 – 4700 HQ@ 2,4 GHz x 8
RAM: 8 GB
HD: 1 TB
GPU NVIDIA GEFORGE GTX 760M

Teleoperation
uart 57600 bauds

Joystick

Arduino Mega

Router +5 +5 VRx

WiFi IEEE 802.11 g/b VRx VRy

12 V @ 1.5 A

VRy

Robot PC
Intel NUC6i3SYH
Processor: i3 – 6100 U @ 2,3 GHz x 4
RAM: 6 GB
HD: 500 GBUSB cam

Battery

Converter
DC - DC

19 V @ 3.4 A

12 V @ 5.5 AH
12 V @ 1.5 A

Kobuki base
Bumper switches: lef – center - right
Abyss sensor: lef – center - right
Wheel fall sensor: lef – center - right
Odometry: 11,7 ticks/mm
Gyroscope sensor: 1 axis 110°/s

A0

A1+

-

+

-

Figure 2: RobSLAM robotic system hardware architecture.
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shown in Figure 5. Te space consists of 14 modules of
2.44m× 1.75m located on either side of a central corridor in
which two beams are located. Each cubicle is denoted by

a literal (A to N), and there is only one access door located at
one end of the enclosure. In the path of robot movement,
cubicles H and J were considered in the section of the
corridor that connects them.

3.1. ORB-SLAM2 Hand-Held Experiment. Figure 6 shows
the test environment for the ORB-SLAM2 algorithm in its
monocular component together with its dimensions. It
corresponds to the desk located in cubicle J of the ofce
space in Figure 5. Some of the possible positions adopted by
the camera during the experiment are indicated from the
starting point to the endpoint.

Te experiment is conducted by holding the camera with
one hand and following a trajectory close to the one in-
dicated by the orange dashed line in Figure 6. Tis type of
SLAM experiments is known in the literature as hand-held
reconstruction [27, 28]. During the path, the camera was
aimed at the desk at all times, at a height of approximately
130 cm with respect to the foor. Diferent objects were
placed on the desk to provide texture to the algorithm and
the possibility of detecting and tracking diferent features. A
round-trip path was designed, starting at the point labelled
start, on the far left of Figure 6, advancing to the point
labelled end, and fnally returning to the starting point.

Figure 7 shows the working environment for this ex-
periment, which includes a desktop and diferent objects
placed on it, providing texture and a variety of features to the
algorithm.Te experimental setup for the SLAM experiment
of the considered environment is shown in Figure 8. In this
case, the moving platform is not required since the camera
moves manually over the scene.

(a) (b)

Figure 3: Mobile robot component of the RobSLAM system. (a) Rear view where the regulated power system can be seen and (b) front view
where the robot-PC and the Kinect sensor can be seen.

Table 3: Visual SLAM algorithms’ classifcation.

Algorithm Sensors Detector/descriptor
MonoSlam Mono Shi-Tomasi
PTAM Mono FAST
DSO Mono, stereo N.A. degree of intensity
ORB-SLAM2 Mono, stereo, RGB-D ORB
LSD-SLAM Mono N.A., semidense
RTAB-map Stereo, RGB-D SURF, bag-of-words
DTAM Mono N.A., pixel-wise
N.A.: not applicable. It does not use a detector/descriptor because it is
a direct method.

Indirect

PTAM

Mono
SLAM

Scattered map

ORB–
SLAM2

LSD–
SLAM

RTAB–
Map

Dense map

DSO DTAM

Direct

Figure 4: Some of the most recent open source vSLAM methods.
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Figure 9 shows the map displayed by the ORB-SLAM2
algorithm by using its monocular component, according to the
criteria of [25]. Te library can be compiled with or without
ROS; in this experiment, it is used in combination with this
middleware. To run ORB-SLAM2 with ROS, we proceed to
open from the workstation PC three terminals with remote
access from the NUCPC via SSH; thus, it is possible tomonitor
the process from the workstation PC (Figure 8). Subsequently,
the commands in Table 4 are entered in the remote terminals:

Te frst two commands are straightforward.Te frst one
executes the ROS Master, and the second one launches the
usb_cam_node, a ROS driver for USB cameras, in this case the

Logitech C270 device shown in Figure 8. Tis last command
launches the Mono node of the ORB-SLAM2 package, which
starts mapping the environment from the sequence of images
provided by the camera. In this way, a real-time monocular
SLAM process is implemented. Te command requires two
parameters. Te frst parameter indicates the location of the
bag-of-words vocabulary contained in the OR-Bvoc.txt fle,
and the second one indicates the location of the ASUS.yaml
fle containing the camera parameters.

Te mapping starts by extracting ORB features from the
sequence of images to build an initial map (map initiali-
zation) on which to estimate the camera position. In the frst

Starting point. Coordinates (0, 0).
Start. Proceed to the access door.
Return. Advance towards the bottom of the enclosure.
Return. Back to the starting point.

1 m

Figure 5: Architectural plan of the experimental environment and route designed for the teleoperation of the robot.

60 cm

30 cm

150 cm

150 cm
start

end

Figure 6: Desktop environment in “L” pattern for experiments with the ORB-SLAM2 algorithm in its monocular component. Some of the
positions that the camera can take (in green) are indicated during tours that approach the trajectory considered in orange (dotted line).
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Figure 7: Te objects arranged on the desktop, a work environment that ofers diferent possibilities for detecting and tracking several
representative features.

Router

WiFi IEEE 802.11 g/b
LAN: Wireless - bone
Password: beaglebone

IPaddress: 192.168.1.103 IPaddress: 192.168.1.103

NUC PC
Workstation PC

Logitech C270

Figure 8: Experimental setup for a hand-held mapping with the ORB-SLAM2 method.

8 Journal of Robotics



two images of Figure 9(a) (upper left corner), we can see how
the system detects a set of relevant features of the envi-
ronment, which is indicated by the green line segments on
the observed objects. At this stage, the GUI (graphical user
interface) of the system displays the message “trying to
initialize” in the image fow window. Once the algorithm
manages to build an initial map, it proceeds to estimate the
location of the camera on it. Te system is now in the SLAM
mode, which is indicated by displaying the message “SLAM
mode” in the image fow window. In addition, the feature
signaling changes to small diamonds enclosed by squares, as
seen in the third image of Figure 9(a).

Each point pj of the ORB feature cloud stores the
three-dimensional position xwj in the world coordinate
system [24]. Te camera direction nj corresponds to the
mean unit vector extracted from the rays joining the

point with the optical center of the observed keyframes.
A representative Di descriptor, corresponding to the
ORB descriptor whose hamming distance is the mini-
mum between all the keyframes where the point is ob-
served. Te maximum and minimum distances (dmax
and dmin) from which the point can be observed,
according to the scale invariance limits of the ORB
features.

Each keyframe stores Tiw position, which corresponds to
a rigid body transformation of the world points to the
camera coordinate system [24]. Te intrinsic parameters of
the camera, which include the focal length and the co-
ordinates of the main point. All ORB features extracted from
the image, whether or not associated with a map point and
whose coordinates are undistorted or, if distorted, a dis-
tortion model is available.

Table 4: Commands to run ORB-SLAM2 using ROS.

Task Commands
T1 $roscore
T2 $rosrun usb_cam usb_cam_node usb_cam/image_raw:�/camera/image_raw

T3
Rosrun ORB_SLAM2 mono\

/Home/turtlebot/ORB_SLAM2/vocabulary/ORBvoc.txt\
/Home/turtlebot/ORB_SLAM2/examples/ROS/ORB_SLAM2/Asus.yaml

(a)

(b)

Figure 9: Sparse map made with ORB-SLAM2. In (a), the detection of characteristics prior to the initialization of the map (green line
segments) and their follow-up after drawing up the frst map (small rhom-buses enclosed by squares) is observed. In (b), the scattered point
cloud corresponding to the map can be seen.

Journal of Robotics 9



Figure 10 summarizes the previous information. Te xwj
coordinates of the red and black points are part of the cloud.
Te red points correspond to the current local map and the
black points to the global map. Te keyframes are shown in
blue, and the estimated Tiw trajectories of the camera are
shown in green.

ORB-SLAM2 is a GraphSLAM method in which closed-
loop detection is performed based on the optimization of the
position graph (Figure 4). Te optimization problem of the
3D structure, the camera position, and its intrinsic pa-
rameters are solved by employing iterative nonlinear opti-
mization, which aims to minimize the distance between the
back projection of the 3Dmodel and the associated points in
the image [29]. In the position graph, the keyframes cor-
respond to the nodes and the camera trajectories correspond
to the arcs (Figure 10). Figure 11 establishes the corre-
spondence of some objects in the scene with the sparse point
cloud or map.

3.2. RTAB-Map Hand-Held Experiment. Te same “L”
shaped desktop environment (Figure 5) was considered to
perform hand-held mapping experiments with RTAB-
Map. In this particular case, a Kinect sensor was used,
which delivers both depth and RGB images. Figure 12(a)
shows one of the 3D maps obtained, highlighting the dense
point cloud that gives a realistic appearance to the model.
Te pose graph is shown in Figure 12(b) together with the
initial and fnal coordinates of the frame linked to the
sensor.

Te graph nodes store camera odometry, along with
visual information from depth images, RGB images, and
SURF features quantized into an incremental visual dic-
tionary (visual words), used by the closed-loop detection
algorithm [30, 31]. Te algorithm allows establishing
matches between the current camera location and previous
locations of already visited sites employing the bag-of-words
method [32].

Figure 13 shows the visual odometry and closed loop
detection implemented by the RTAB-Map method.

3.3. Dispersed Mapping Experiment with the RobSLAM
System. Figure 14 shows the working environment for the
visual SLAM mapping experiments conducted with the
RobSLAM system. Cubicles H and J of the enclosure in
Figure 5 were considered. Te designed path, which consists
of three sections, is indicated in green. Te frst section of
0.86m with an orientation of 150° with respect to a line
parallel to the outer edge of the cubicles, the second section,
on the same parallel, at a distance of 1.02m with respect to
the edge and 2.55m long, and fnally, a third section that is
symmetrical with the frst and of the same length.

Monocular SLAM systems estimate depth by tri-
angulating corresponding key points in consecutive images,
thus requiring lateral camera displacements that generate
baselines of sufcient length for depth calculation (Fig-
ure 15). For such a reason, for robot displacements only
forward or backward, they tend to fail [33]. In order to allow
lateral displacements, the camera was located on the right
side of the mobile robot, as shown in Figure 14.

Te robot was teleoperated along the trajectory shown in
Figure 14 using the hardware designed for this purpose,
which is shown in Figure 2 of the Materials and Methods

Xwj ∈ R3 Tiw ∈ SE (3)

keyframes

Figure 10: Interpretation of a sparse map made with ORB-SLAM2.

Figure 11: Object identifcation in the ORB point cloud.
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(a) (b)

Figure 12: Mapmade with RTAB-Map. In (a), the dense point cloud gives the model a realistic appearance.Te position graph in (b) shows
the edges or estimated trajectory of the camera (line segments in blue), nodes (blue points), and the detection of closed loops (line segments
in red).

(a) (b)

Figure 13: Visual odometry (a) and closed loop detection (b) carried out by the RTAB-Map system.

Begin

1.02 m

150º
0.86 m

2.55 m
150º 0.86 m

End Column

H J

1 m

Trajectory

Figure 14: Path for mapping with ORB SLAM2. Te total length of the route is 4.27m.
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section. Figure 16 shows some stages of the map con-
struction process with ORB-SLAM2. Figure 16(a) shows the
beginning of the map construction (right), being necessary
to incorporate a chess pattern impression to the frst division
observed by the camera (left). In fact, given the lack of
texture of the divisions found in the environment, it was
essential to locate this type of pattern in several of them;
otherwise, the algorithm would not identify a sufcient
number of features to perform the tracking.

As the robot teleoperation progresses, the trajectory of
the camera and the 3D map are simultaneously estimated
(Figures 16(b) and 16(c)). As some features are left behind,
new ones are incorporated for tracking. Sites already visited
and whose features are not part of the current scene appear
in black in the point cloud and become part of the global
map. Te red points in the cloud are part of the features of
the local map that is in the making.

Figures 16(d) and 16(e) show the mapping and locali-
zation process almost at the end of the tour. It can be seen
how the estimation of the camera trajectory fts the designed
tour and how the 3D reconstruction refects the geometrical
structure of the environment, in general terms. Te fnal
map is shown in Figure 17, which also shows a checkerboard
pattern attached to a desk, adding texture to the scene.

Figure 18 shows that although the estimated trajectory of
the camera is close to the robot’s odometry (pink line), this
estimate does not correspond to the robot’s tour, which is
indicative of the uncertainty in both estimates.

In this section, the algorithms ORB-SLAM2 and RTAB-
Map were employed in hand-held mapping experiments, in
which the sensor was manually moved through a working
environment consisting of an “L” desk, obtaining three-
dimensional maps with sparse and dense point clouds, re-
spectively. Te environment provided a sufcient and varied
number of features to maintain visual odometry and to be
able to elaborate its three-dimensional model [30].

An additional experiment using the RobSLAM system
and the ORB-SLAM2 algorithm was conducted in an ofce
building. A teleoperation of the robot was performed along
two contiguous modules with objects such as chairs, tables,
and partitions with wood veneer. In this case, a lack of
texture was evident, mainly in the partitions, which caused
a frequent loss of visual odometry and a failure in the ex-
periment, even when the robot was slightly moved back to
try to recover the odometry.

One solution to the problem of the lack of texture was to
adhere to a checkerboard pattern to the divisions, such as
those used in camera calibration. Although feature tracking
and visual odometry were improved, a second problem was
detected. It consisted of the fact that the boards observed in
the middle of the tour were considered as previously visited
sites. Indeed, the boards observed at the beginning of the
survey and those observed later were considered as closed
loops by the parallel loop detection process of ORB-SLAM2.
Tis problem led to false camera location estimates and
maps that did not refect the geometrical properties of the
environment. It was solved by rotating some of the boards
and adding new objects to the scene. With this, it was fnally
possible to obtain consistent three-dimensional maps.

Both ORB-SLAM2 and RTAB-Map are GraphS-LAM
algorithms, from which the following are obtained: (1)
a point cloud and (2) a position graph. However, while ORB-
SLAM2 produces sparse maps, RTAB-Map delivers a dense
point cloud, which implies the need for hardware with
higher processing capabilities.

Te main advantages of ORB-SLAM2 are as follows: (1)
the map can be initialized with only the frst pair of images
and (2) it is globally consistent, yet closing loops can result in
large jumps in position estimation. Disadvantages include
the following: (1) a trained bag-of-words vocabulary is re-
quired, (2) the localizationmode requires an integrated map,
and it is highly dependent on the relocation, and (3) the
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Figure 15: Main elements of epipolar geometry.
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(a)

(b)

(c)

(d)

(e)

Figure 16: Diferent stages in the process of building a 3D-map with the RobSLAM system and the monocular algorithm in real-time ORB-
SLAM2. Note: the incorporation of checkerboard-like patterns to add texture to the modular partitions of the enclosure.

Journal of Robotics 13



absolute scale is observable for the stereo and RGB-D
components of the algorithm but unknown for the
monocular.

4. Conclusions

Te growing worldwide demand for service, logistics, per-
sonal assistance, and companion robots, as well as the need
to increase their levels of autonomy has made SLAM a key
player in robotics. In addition, its methods have been ex-
tended to the autonomous driving of all types of vehicles:
land, air, and water-borne.

Tis article considered some of the algorithms that
constitute the current state of the art in visual SLAM.
Systematic review and comparison of two of the most
representative open source algorithms for solving SLAM led
to the choice of the ORB-SLAM2 and RTAB-Map methods.

Both algorithms were employed in hand-held mapping
experiments, in which the sensor was manually moved
around the environment to be mapped, which was the “L”
desk of an ofce, providing a convenient number of features
for visual odometry.

An additional experiment was conducted with the ORB-
SLAM2 algorithm based on the lateral arrangement of
a camera in the RobSLAM system and its teleoperation on
a predefned trajectory.

Te lack of texture of partitions and panels led to loss of
visual odometry and detection of closed loops in previously
unobserved parts of the environment. Both situations led to
failures in the algorithm execution, which was fnally solved
by adhering to some checkerboard patterns with diferent
orientations on the partitions and adding mark-rich and
texture-rich objects in the scene.

Tis work focused on the study of the problem of si-
multaneous mapping and localization in unknown envi-
ronments or SLAM, specifcally on the state-of-the-art open-
source algorithms available for three-dimensional envi-
ronment modelling. Also, a robotic system (RobSLAM) was

designed and built for the experimental validation of the
considered algorithms. Te system is versatile enough to
support the research and development of robotic applica-
tions, ofering good energy autonomy and extended capa-
bilities of processing and external sensing. RobSLAM takes
advantage of the hardware and software abstraction features
ofered by ROS, which is one of the fastest growing and most
pervasive middleware in the robotics community.
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F. Quisaguano, and A. Limaico, “Real-time 3Dmodelling with
a RGB-D C and on-board processing,” in Proceedings of the
International Conference on Augmented Reality, Virtual Re-
ality and Computer Graphics, pp. 410–419, Sendai, Japan,
September, 2017.

[31] G. Popović, I. Cvišić, G. Écorchard, I. Marković, L. Přeučil,
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