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Aiming at the problem of limited payload and endurance of micro-UAV, the target tracking algorithm based onmonocular vision
is proposed. Since monocular vision cannot directly measure distance between the UAV and the target, triangulation and triangle
similarity are used to calculate the distance information. Ten, a target tracking method based on Kalman flter and KCF is
designed. Te tracking result of KCF is modifed by Kalman flter to solve the problem of target occlusion. Finally, the position of
the target in the world coordinate system is calculated through the coordinate transformation matrix, which is used to control the
UAV for tracking the moving target. In order to verify the feasibility of the algorithm, target size estimation and target tracking
algorithms are carried out. Te experimental results show that the proposed algorithm can track the moving target efectively
under the condition of short-term occlusion.

1. Introduction

In recent years, with the rapid development of vision
technology, communication technology, and fight control
technology, unmanned aerial vehicles (UAVs) have been
widely used in real-time monitoring, investigation, trafc
control, and civil photography [1–5]. According to the UAV
dimension, the UAV can be classifed into micro-UAV,
small-UAV, and large-UAV. Due to its small dimension,
light weight, good mobility, and strong concealment, the
microunmanned aerial vehicle (MAV) has unique advan-
tages in target tracking [6]. However, the MAV is limited by
payload and endurance, making it impossible to carry a large
computer and huge detection sensors. One of the hot re-
search problems is how to study accurate and robust target
tracking algorithms for MAV platform.

Compared with other detection sensors, cameras with
optical sensors as the core component receive more in-
stitution feedback on environmental information and key
points. Moreover, the camera has the characteristics of low
cost and light weight, so it has great potential in the feld of
target tracking. Cameras with optical sensors as the core
component can be classifed into monocular cameras,

binocular cameras, and depth cameras based on the sensors
they carry. All of these types of cameras have been used in
target tracking. Aiming at the problem of inaccurate ac-
quisition of depth images caused by UAV jitter, Tayyab
Naseer’s team of Technical University of Munich presented
to simultaneously carry depth camera, monocular camera,
and other sensors in the UAV system. And the team used
a monocular camera and label positioning methods to assist
the depth camera to obtain accurate depth image in-
formation for human motion tracking [7]. However, the
system is currently only suitable for indoor environments
and small-scale movements. Liu et al. presented to use
a UAV equipped with a three-axis pan-tilt for tracking the
target, which could flter the noise caused by UAV jitter and
expand the feld of view [8]. However, due to the large size of
the three-axis pan-tilt, it cannot be carried on a MAV.

Target tracking algorithms can be divided into generative
methods and discriminant methods. Te generative methods
only focus on the target feature, ignore the background in-
formation, and match the detected images by establishing
a target model. Discriminant methods fnd the optimal region
in the next frame of image by training a classifer to achieve
the purpose of target tracking. Te generative methods
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assume that the target features remain constant for a period,
so these methods cannot track the target motion in complex
situations. Discriminant methods based on correlation flter
and deep learning can adapt to complex application scenarios.

In [9], the researcher used the correlation fltering al-
gorithm to track the target and presented a minimum output
sum of squared error (MOSSE) algorithm.Te tracking speed
of this algorithm can reach more than 600 frames per second,
and it has the function of resisting illumination and the shape
change of the target, which improves the tracking robustness.
Henriques et al. presented the Kernelized Correlation Filter
(KCF), which replaces the gray features of the original fltering
method with histograms of oriented gradients (HOG) fea-
tures [10]. Furthermore, the nonlinear classifcation problem
is mapped to a high-dimensional space to make it linearly
separable, and the computational complexity is reduced by
applying kernel functions and the diagonalizable properties of
circulant matrix. In order to solve the edge efect, Danelljan
et al. presented a spatially regularized discriminative corre-
lation flters (SRDCF) algorithm [11]. In [12], the researchers
used real shifts to generate negative samples, used real
samples to train flters, and expanded the search area to
improve the tracking efect. However, the algorithm is easy to
lose the target when the appearance of the target changes
greatly. In order to further improve the performance of the
correlation flter tracking algorithm, many algorithms extract
deep features to represent the target [13, 14]. Although the
tracking efect is improved, the tracking speed of the corre-
lation flter algorithm based on deep features is slow and not
suitable for the computing resources of the UAV platform.
Aiming at the problem of background noise generated by
UAV in fight, Huang et al. presented an aberrance repressed
correlation flter (ARCF) algorithm, and the experiment re-
sults show that ARCF performs well on most UAV data sets
[15]. However, it is difcult to efectively deal with tracking
failure caused by target occlusion and size change.

With the rise of deep neural network technology, it has
received extensive attention in the feld of target tracking.
Convolution neural network has strong target expression
ability because of the deep features obtained by learning,
which gradually replaces traditional manual features. It has
been introduced into the target tracking task and has made
great progress [16–18]. Siamese instance search tracker
(SINT) creatively uses Siamese neural network to measure the
similarity between template images and search images, which
provides a new idea for target tracking [19]. To solve the
problem of poor real-time performance of deep learning in
target tracking, Bertinetto et al. proposed the fully-
convolutional Siamese network (SiamFC) algorithm [20].
Due to the complex network structure of the deep learning
tracking algorithm, it cannot achieve both speed and accuracy
to a certain extent. In [21], the researchers presented a Sia-
mese region proposal network (Siam-RPN) tracking algo-
rithm. Due to the limited data set, the training quality of the
Siam-RPN network is not high. Aiming at the tracking ac-
curacy problem of Siam-RPN, Yu et al. presented a dis-
tractor-aware Siamese region proposal networks
(DaSiamRPN) tracking algorithm based on Siam-RPN, which
improved the anti-interference and discrimination ability of

tracking and achieved a tracking speed of 160 frames per
second [22]. Although deep learning tracking algorithms have
made great progress, the lack of training samples makes it
difcult to train high-quality neural networks for diferent
tracking scenarios. In addition, deep neural networks have
very high requirements for computer hardware resources,
which also afect the application of the MAV platform.

In summary, the MAV target tracking mainly faces the
following challenges:

(1) Limited by the structural characteristics of the MAV,
ensuring target tracking accuracy and reducing the
complexity of the algorithm are key problems that
need to be resolved

(2) During the fight of UAV, the airframe jitter may
cause camera shake, target blur, and other problems.

In addition, there may be short-term obstacles between
the UAV and the target, which will lead to target drift and loss
in tracking. Terefore, it is difcult to achieve stable and
robust tracking of the UAV. Tis paper proposes a target
tracking algorithm of MAV based on monocular vision to
solve the abovementioned problems. Firstly, aiming at the
problem that monocular camera cannot measure the depth
information between the UAV and the tracking target, the
initialization method of triangulation is proposed to measure
the target size. Ten, the triangle similarity method is applied
to estimate the depth between the target and the camera to
solve the two-dimensional limitation of the monocular
camera. Secondly, aiming at the defciencies of the KCF flter
algorithm, a target tracking algorithm based on Kalman flter
and KCF fusion is proposed. Te tracking results of KCF are
corrected by Kalman flter to improve the tracking accuracy
and robustness. Finally, the position of the target in the world
coordinate system is calculated by the coordinate trans-
formation matrix, which is used as the expected input of the
position to control the UAV to track the moving target.

2. System Architecture

In order to perform the tracking task, the UAV carries the
monocular camera for image acquisition. As the optical fow
sensor can measure the horizontal velocity of the UAV, the
UAV usually uses it to achieve fxed-point fight indoors, and
it also can be used in conjunction with GPS in outdoor
environments. In addition, the Nvidia Jetson Nano is applied
as an onboard computer; its Quad-core ARM A57 CPU and
4GB RAM can fully meet the experimental requirements.
Te compact size of 100mm× 80mm× 29mm can perfectly
adapt to the size of the UAV. For fight control system, the
UAV utilizes Holybro Pixhawk 4 as the UAV attitude
control unit. Its PX4 frmware can run Ofboard mode and
execute upper control instructions. Te UAV target tracking
system is shown in Figure 1.

Concerning software, the robot operating system (ROS) is
installed on the airborne computer to establish communication
connections between multinodes, multitasks, and multi-
processes.Te softwaremainly includes the followingmodules:
(1) target tracking module fused with KCF and Kalman flter,
(2) target position calculation, (3) position control, (4) the data

2 Journal of Robotics



collection module for sensor, and (5) MAVROS software
package. Te UAV acquires images of the tracking target
through the monocular camera; the fusion KCF and Kalman
flter are used to track the dynamic target. Te three-
dimensional motion information of the target is calculated
by position solution and sent to the fight control as the ex-
pected input of the position controller to perform the target
tracking task. In the meantime, the QGroundControl (QGC)
and the remote desktop can monitor the fight attitude and
mission command of the UAV in real time. Te software
architecture is shown in Figure 2.

3. State Estimation of the Target

Te prerequisite for performing target tracking is to estimate
the position motion information of the target. Te target
tracker based on discriminant is used to generate the 2D
motion information of the target in the image, and then the
Kalman flter is established to fuse the abovementioned 2D
motion information to obtain the fnal target tracking result.

3.1.TeKCFTarget Tracking Algorithm. TeKCF (kernelized
correlation flters) algorithm is a discriminative target tracking
algorithm based on online learning. Te initial frame is used to
generate training sample sequences through circulant matrix
shift. Te target is detected by the ridge regression training
classifer, and the areawith the largest response is the target area.
Although the KCF algorithm needs to generate multiple virtual
samples through circulant matrix in the process of target
tracking, there are plenty of matrix inversion calculations in the
process of training the classifer.Te algorithmmakes use of the
property that the circulant matrix can be diagonalized and
applies the discrete Fourier matrix to diagonalize the sample set.
Due to the diagonal matrix operation only needing to calculate
the nonzero elements on the diagonal line, it can greatly reduce
the occupation of CPU and memory resources. In addition, the
KCF algorithm introduces the Gaussian kernel function to map
the nonlinear problem to the high-dimensional space and
converts it to the linear problem, which greatly improves the
calculation speed and meets the demands of the MAV for fast
response and lightweight in the tracking process.Te algorithm
procedure is shown in Figure 3.

To obtain more training samples, a training sample set is
generated by the circulant matrix. Te n× 1 dimensional
vector x � [x1, x2, . . . , xn]T is used as the basic sample, and
the sample vector x is shifted by the permutationmatrix L for
n times. Te training sample set of the current frame is
formulated as follows:
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Te defnition of the circulant matrix L is as follows:
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Figure 1: UAV target tracking system.
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In order to improve the calculation speed, the discrete
Fourier matrix is used to diagonalize the sample set as
follows:

X � Fdiag(x)F
H

, (3)

where x is the discrete Fourier transform of the basic sample
x, diag(x) is the diagonal matrix, F is the Fourier matrix, and
FH � (F∗)T represents the complex conjugate transpose
matrix.

We created the classifer f(z) � ωTz with the ridge
regression model, where z is the candidate sample. Te goal
is to minimize the squared error over training samples xi and
regression targets yi, which can be written as follows:

min
ω


i

f xi(  − yi( 
2

+ λ‖ω‖
2
, (4)

where ω is the weight coefcient of the classifer and λ is the
regularizing term coefcient. In order to improve the
generalization ability of the classifer and prevent the
overftting phenomenon of the classifer, a regularizing term
λ‖ω‖2 is used to control the overftting.

By setting the partial derivative of ω to zero, the ex-
pression of ω is as follows:

ω � X
T
X + λE 

− 1
X

T
y, (5)

where E is the unit matrix and y is the column vector
composed of the regression label yi of each sample. We
converted equation (5) into the complex feld, which can be
written as follows:

ω � X
H

X + λE 
− 1

X
H

y. (6)

Using the diagonalizable property of the circulant ma-
trix, the expression of equation (6) in the frequency domain
can be represented as follows:

ω �
x⊙ y

x⊙ x
∗

+ λ
, (7)

where ω and y represent the Fourier transform of ω andy,
respectively, and x∗ represents the conjugate matrix of x.

As the target tracking is a nonlinear problem, the sample
x can be mapped to a high-dimensional space through the
mapping function φ (x) to make the nonlinear problem
linearly separable. Te weight coefcient ω of the classifer
can be expressed as follows:

ω � 
i

αiφ xi( , (8)

where αi is the linear combination coefcient, and the kernel
function k is defned as follows:

k x, x
′

  � k
xx′

� φ(x)
Tφ x
′
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Te n × n dimensional kernel matrix K composed of
kernel functions between the samples is expressed as follows:

Kij � k xi, xj . (10)

Ten, the ridge regression function can be expressed as
follows:

f(z) � 

n

i�1
αik z, xi( . (11)

Te expression of α can be derived as follows:

α � (K + λE)
− 1

y, (12)

where α is a coefcient vector composed of αi. Te Fourier
transform of equation (12) can be expressed as follows:

α �
y

k
xx

+ λ
, (13)

where α is the Fourier transform form of α and k
xx

is the
Fourier transform form of the frst row of matrix K.

After training the classifer with numerous samples
obtained by the circulant matrix, the target can be detected
and located. First of all, the kernel matrix Kz between the
sample x and the candidate sample z is calculated to match
the position results.
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where C(kzx) represents the circulant matrix of vector kzx.
Te regression function of the candidate sample is as

follows:

f(z) � K
z

( 
Tα. (15)

Equation (15) is converted into the frequency domain,
which can be expressed as follows:

f(z) � k
xz
⊙ α. (16)

In particular, the Gaussian kernel k(x, x′) � exp(−1/
σ2‖x − x′‖2) is selected as the kernel function; the Gaussian
kernel function can be obtained as follows:

k
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− 1
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By Fourier transforming, the matrix inversion process is
avoided. Te time complexity of the algorithm is reduced
from O (n2) to O (nlogn), which realizes fast detection and
reduces the dependence on computer performance.

3.2. Design of Target Tracking Algorithm Based on Kalman
Filter. In the previous section, a good balance between speed
and accuracy is achieved by using the KCF flter to track the
target and obtain the target motion state while the camera is
stationary. However, the UAV tracking target is a dynamic
process and the position estimation based on the previous
section is not robust enough for this process. During the
tracking process, it is not guaranteed that the target is always
within the feld of view of the camera, and occasionally the
target may be partially or fully occluded, leading to target
loss. Although the complete loss of the target caused by long-
term occlusion may not be solved, the proposed method can
deal with small-scale occlusion problem in a short time.
Based on the abovementioned situation, this section applies
Kalman flter to establish the linear motion model of the
target and fuses the tracking results of KCF, while consid-
ering camera jitter as Gaussian noise. According to the input
and output of the model, the optimal estimation of the
motion state of the target can predict the target motion
position at the next moment, so as to improve the tracking
accuracy and robustness.

Te Kalman flter is widely applied in the state estimation
of target motion [23–25]. Due to noise during the mea-
surement of target motion, Kalman flter can efectively
remove noise by using the motion information of the target
and obtain the optimal estimation of the target position.

Firstly, due to the high sampling frequency of the
camera, the time interval between adjacent frames of the
image is very short, the motion of the target between two
frames can be regarded as uniform motion, and the accel-
eration of the target obeys Gaussian distribution. Te state
space vector of the system can be expressed as follows:

xk � xik yik _xik _yik 
T
, (18)

uk � €xik €yik 
T
, (19)

where xk and uk are the state vector and control vector of the
system at time k, respectively; xik and yik represent the
position of the target at time k in I, respectively; _xik and _yik

represent the velocity of the target at time k in I, respectively;
and €xik and €yik represent the acceleration of the target at
time k in I, respectively.

Te motion state equation of the system is as follows:

xk � Akxk−1 + Bkuk + wk, (20)

whereAk is the state transitionmatrix of the system at time k,
xk-1 is the state vector of the system at time k-1, Bk is the
control input matrix of the system at time k, uk is the control
vector of the system at time k, and wk is the noise of the
system at time k.

Assuming that the motion of the UAV tracking target is
uniform, the specifc forms of A and B are as follows:
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0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

B �

∆t2

2
0 ∆t 0

0
Δt2

2
0 ∆t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
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TeKCF tracking result can be used as the observation of
Kalman flter. Te observation equation can be written as
follows:

zk � Hkxk + vk, (23)

where zk is the target tracking result at time k, Hk is the state
observation matrix, and vk is the measurement noise at
time k.

Te specifc form of H is as follows:

H �
1 0 0 0

0 1 0 0
 . (24)

During the process of estimation, Kalman flter can be
divided into two stages: prediction stage and iterative update
stage. Te specifc processes are as follows:

(1) Prediction stage
From the motion state equation,

x
−
k � Akxk−1 + Bkuk−1,

P
−
k � AkPk−1A

T
k + Q,

(25)

where x−
k is the prior state estimation of the target at

time k, xk−1 is the posterior state estimation of the
target at time k-1, P−

k is the prior estimation co-
variance matrix, Pk−1 is the optimal estimation
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covariance matrix, and Q is the process noise co-
variance matrix.

(2) Iterative update stage

Kk � P
−
kH

T
HP

−
kH

T
+ R 

− 1
,

xk � x
−
k + Kk zk − Hx

−
k( ,

Pk � E − KkH( P
−
k ,

(26)

where Kk is the Kalman gain matrix, R is the mea-
surement noise covariance matrix, and E is the unit
matrix.

In summary, the tracking process based on the KCF and
Kalman flter is shown in Figure 4. Firstly, the KCF target
tracking algorithm and Kalman flter are initialized, and the
target state prediction value at the current moment is cal-
culated from the optimal estimation value of the target state
at the previous moment. Ten, the predicted covariance at
the current time is calculated from the optimal estimated
covariance matrix at the previous time and the process noise.
In the update stage, the KCF algorithm is applied to track the
selected target. After the target tracking result zk is obtained,
the forecasting result x−

k is corrected by Kalman gain. Finally,
the optimal estimate xk of the current target state is
obtained.

4. Three-Dimensional Position Solution

After obtaining the target’s plane motion coordinates in the
two-dimensional image from Section 3, the coordinates are
converted into three-dimensional space using the following
method, so that the UAV can track dynamically.

As shown in Figure 5, the world coordinate system, body
coordinate system, camera coordinate system, image co-
ordinate system, and pixel coordinate system are defned,
and the relative motion relationship between the UAV and
the target is described. Among them, W � ow, xw, yw, zw  is
the world coordinate system, B� {ob, xb, yb, zb} is the body
coordinate system, C� {oc, xc, yc, zc} is the camera coordinate
system, I� {oi, xi, yi} is the image coordinate system, G �

og, u, v  is the pixel coordinate system, and the unit is the
pixel. Te pixel coordinate system takes the left vertex of the
image as the origin, u as right axis, and v as down axis.

Suppose the coordinate of the target point M in W is
(xw, yw, zw), the coordinate of its projectionm in I is (xi, yi),
and the coordinate of the origin oi of I in G is (u0, v0). Ten,
the relationship betweenG and I can be expressed as follows:

u
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where dx and dy are the physical dimensions of the unit pixel
on the xi axis and the yi axis, respectively.

Let the coordinate of the target pointM in C be xc, yc, and
zc. According to the projection transformation, the re-
lationship between I and C can be expressed as follows:
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where f is the focal length of the camera, which is determined
by the internal parameters of the camera.

Invoking equation (18) with equation (19), the re-
lationship between G and C can be written as follows:
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where fx � f/dx andfy � f/ dy represent the horizontal
pixel focal length and vertical pixel focal length, respectively,

and let S �

fx 0 u0
0 fy v0
0 0 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ be the camera internal parameter

matrix.
Ten, the coordinate of M in W can be expressed as

follows:
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where RB
C is the transformation matrix from C to B, RW

B is the
rotation matrix from B to W, and rij is determined by the
attitude angle of the UAV. Te specifc forms are as follows:
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(31)

Invoking equation (21) with equation (20), the re-
lationship between G and W can be written as follows
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After determining the coordinates of the target point M
in the image sequence, its position coordinate in W can be
calculated. However, as the monocular camera cannot ob-
tain the depth information zc, the similar triangle estimation
method is used to estimate the depth information of the
target. Te premise of the estimation is to know the actual
height of the target, so the height of the target is measured by
the triangulation method. Te triangulation method is
shown in Figure 6.
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For images I1 and I2, with the left image as a reference,
the camera optical centre moves horizontally from oc1 to oc2.
During the movement, it is assumed that the camera does
not rotate and the displacement of the zc axis and yc axis are
negligible. Suppose I1 has the feature point m1 and its co-
ordinate in C is xc1, yc1, and zc1. Te feature point in I2 ism2,
and its coordinate in C is xc2, yc2, and zc2. According to the
defnition of epipolar geometry [26], the coordinate re-
lationship can be expressed as follows:

zc2Pc2 � zc1Pc1 + t12, (33)

where Pc1 � xc1/zc1 yc1/zc1 1 
T andPc2 � xc2/zc2 yc2/

zc2 1]T are respectively the normalized coordinates of m1
and m2 in C, t12 is the translation vector from oc1 to oc2, and
its value is known. Left multiply P∧c2 on both sides of the
equation, where r̂epresents the outer product operation, and
the following relationship is formulated as follows:

zc2P
∧
c2Pc2 � 0 � zc1P

∧
c2Pc1 + P

∧
c2t12. (34)

According to the right side of the equation, zc1 can be
calculated, and the depth value of the target in I1 can be
calculated. Te actual height of the target is calculated
according to the similar triangle, as shown in Figure 7.

Assuming that Hm is the actual height of the target, hm is
the height of the target in the image, then Hm can be
expressed as follows:

Hm �
zc1 × hm

f
. (35)

After estimating Hm based on the frst two frames, the
depth value zc of the target in the subsequent frames is
formulated by the similarity relationship as follows:
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zc �
Hm × f

hm
. (36)

5. Experiment and Analysis

Te fight experiment was carried out in an open outdoor
environment. During the experiment, As the UAV and the
target are in motion, the difculty of pose estimation is
increased. In addition, during the occlusion experiment, the
fight parameters of the UAV are set to prevent the UAV
from large-scale manoeuvring in this paper. Te fight pa-
rameters are shown in Table 1.

First, the ground station is applied to check the sensor
data of the UAV after power on. Ten, the UAV is switched
to fxed-point mode by using a 2.4GHz remote controller,
and the UAV is unlocked and controlled to hover at a fxed
point after taking of to a certain height. After selecting the
tracking target, in order to estimate the three-dimensional
position coordinate of the target, the size of the target is frst
measured and estimated to provide a reference for sub-
sequent depth estimation. In this paper, the sizes of three
diferent types of targets are estimated. Te matching results
are shown in Figure 8, and the estimation results are shown
in Table 2.

It can be seen from Table 2 that the proposed estimation
method can efectively estimate the size of diferent types of
targets. Te estimation errors are within 100mm, which is
completely acceptable for depth estimation. To verify the
depth estimation algorithm proposed in this paper, targets
with diferent distances are selected for depth estimation.

Table 3 shows the estimated distances of Person, Car, and
UAV at diferent distances. It can be seen that the estimation
errors of the algorithm are within 0.2, and the estimation
errors do not change greatly with the increase of distance.
After that, the target tracking experiment can be carried out.

As the tracking process is processed in real time on an
onboard computer, the outputs of the tracking system send
control instructions to the fight control system through
serial communication. Limited by the processing speed of
the onboard computer, this paper uses the remote control to
make the fight control system enter the Ofboard mode
when switching the Ofboard mode. Te tracking algorithm
is automatically started to track the target when the target is

selected. Te frst perspective tracking view of the UAV is
shown in Figure 9, where the green border is the KCF
tracking result, and the yellow border is the Kalman fore-
casting result.

Tracking experimental results of target occlusion are
shown in Figure 10. It can be seen from the results that even
when the tracked target is completely occluded or partially
occluded, the KCF tracking result will drift, but the algo-
rithm proposed in this paper can still track the target
efectively.

When the tracking target is occluded, using only the KCF
algorithm results in signifcant position estimation errors.
However, using the KCF algorithm to fuse the Kalman flter,
the errors are within the allowable range. Te experimental
results are shown in Figure 11.

In Figure 11, the tracking target is occluded at 120 s and
220 s. It can be clearly seen that the proposed algorithm
improves the tracking efect in the occlusion process and
efectively reduces the position estimation errors of the
target. Te position estimation error of the x-axis and y-axis
is reduced from about 0.8m to about 0.3m, and the position
estimation error of z-axis is reduced from about 0.2m to
0.1m.

To further evaluate the system, the dynamic position of
the target and the estimated results are compared, as shown
in Figure 12.Te system can efectively estimate the position
of the target in three-dimensional space for most of the time.
Despite jitter and occasional drift, the proposed algorithm
can still relocate the target in a short time.

Te errors between target position and estimated posi-
tion in x-, y-, and z-axes are shown in Figure 13. For most of
the time, the errors of the estimation results on the x-axis are
mostly kept within 0.6m, and the errors on the y-axis and z-
axis are kept within 0.2m. Te RMSE (root mean square
error) and MAE (mean absolute error) are further calcu-
lated, and the results are shown in Table 4. Te experimental
results show that the proposed algorithm can track the target
efectively.

Compared with the 3D target pose estimation system in
the paper [27], it is robust enough for real-time dynamic
position estimation. In addition, in order to analyze the
efect of the distance between the UAV and the target object
on the accuracy of the target position estimation, several of
target trajectory estimation experiments were performed. As
shown in Table 5, it can be concluded that the performance
of the proposed method does not deteriorate signifcantly
when the distance between the UAV and the tracking object
increases.

hm Hm

Camera
Light

Center

Camera Field of View

zc1

oc

og
u

v

f

Figure 7: Similarity estimation.

Table 1: List of fight parameters.

Parameter Value
x-axis maximum fight velocity 0.5m/s
y-axis maximum fight velocity 0.5m/s
z-axis maximum rising velocity 1.0m/s
Maximum landing velocity 0.5m/s
Maximum yaw angular velocity 15 deg/s
Safety fence radius 10m
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Person

Drone

Car

Figure 8: Matching results.

Table 2: Target size estimation results.

Target type Actual size (mm) Estimated size (mm) Error (mm)
Person 1750× 500 1816× 587 66× 87
Car 1450×1859 1523×1957 73× 98
Drone 400× 450 484× 527 84× 77

Table 3: Target depth estimation results.

Target type Actual distance
(m)

Estimated distance
(m)

Actual distance
(m)

Estimated distance
(m)

Actual distance
(m)

Estimated distance
(m)

Person 2.00 2.08 3.00 3.12 4.00 4.15
Car 2.00 2.11 3.00 3.11 4.00 4.18
Drone 2.00 2.17 3.00 3.18 4.00 4.20
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Figure 9: UAV frst perspective tracking view.

Figure 10: Tracking experimental results of target occlusion.
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6. Conclusion

Te payload and endurance of MAV are limited, and it is
impossible to carry a large onboard computer to run
complex visual tracking algorithms. Aiming at the above
problems, this paper proposes a MAV target tracking al-
gorithm based onmonocular vision.Temain contributions
are as follows:

(1) For the problem of measuring the distance between
the MAV and the target, a triangulation algorithm
has been designed for a monocular camera to esti-
mate the object’s size. Based on this, the triangle
similarity can measure the distance between the
micro-MAV and target;

(2) To address the problem of target occlusion, the paper
proposes a target tracking algorithm based on KCF
and Kalman flter. Te algorithm combines the
tracking results with the Kalman flter, solving the

short-term occlusion problem and improving the
anti-interference ability in the tracking process;

(3) Te proposed target tracking algorithm is evaluated
through numerous experiments in a real environ-
ment. Te experimental results demonstrate the
feasibility and robustness of the proposed algorithm.
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