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Aiming at the problem that the robot is difficult to locate in the oil-immersed transformer, a visual positioning of the robot is
proposed for internal inspection. First, in order to solve the problem of blur, distortion, and low contrast of the image obtained by
the camera in the deteriorated and discolored transformer oil, an image enhancement algorithm based on multiscale fusion is
developed to provide a reliable data source for robot localization. Then, the FAST key points are extracted and the BRIEF
descriptors are calculated from the enhanced images, and the pose transformation of the robot between image frames is calculated
by using polar constraint and EPnP method. A pose optimization model of the robot is designed to improve the positioning
accuracy. Finally, to verify the effectiveness of the proposed methods, function tests are carried out by using the real continuous
image sequence acquired by the robot in Mitsubishi transformer. The experimental results show that the trajectory of the robot in
the transformer can be accurately drawn, the position data of the robot can be efficiently obtained, and autonomous positioning of
the robot in the transformer can be well achieved.

1. Introduction

Oil-immersed transformers are key equipment of the national
power grid and have the advantages of excellent performance
and low price. Because transformer oil has the characteristics
of low viscosity, good insulation, and good heat transfer per-
formance, it can protect transformer cores and windings well.
However, with increasing transformer use time, failure will
occur more frequently [1]. To solve the problems of low effi-
ciency and high cost of manually inspecting internal faults of
transformers, scholars have designed internal fault detection
robots for oil-immersed transformers, which are based on
vision [2–4]. The robots make use of their vision system to
obtain the internal image of the transformer for judging the
fault type. However, the internal structure of transformers is
complicated, and the location information of the faults cannot
be accurately obtained only through the image. In addition,
these robots do not have autonomous localization ability and
cannot realize autonomous operation. Therefore, transformer
fault detection can only be achieved by manual manipulation,
which is inefficient.

The oil-immersed transformer has a closed shell, com-
pact interior structure, and full transformer oil. The complex
transformer structure brings difficulties to robot positioning.
The research on submersible transformer inspection robots
is still limited, and there are few research results on the
positioning method of robots under transformer oil. Consid-
ering that both transformer oil and water belong to the fluid
medium and that the motion characteristics of robots in fluid
are similar, this paper mainly refers to the positioning meth-
ods of underwater vehicles [5, 6].

According to the different measuring principles of sen-
sors, underwater vehicle positioning technology is divided
into underwater acoustic positioning methods, dead reckon-
ing methods, and vision-based positioning methods [7–12].
In underwater acoustic localization, the position of the
underwater vehicle can be calculated by the transmission
time and phase difference of the acoustic wave between the
underwater robot and acoustic beacon. It can be divided into
long baseline, short baseline, and ultrashort baseline based
on the length of the baseline. In the dead reckoning method,
the position of the underwater vehicle can be obtained by
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integrating the time according to the pose and speed of the
underwater vehicle measured by the inertial navigation and
Doppler velocity log (DVL), but accumulated errors exist in
this method, which must be eliminated by the underwater
acoustic positioning method. An underwater locationmethod
based on a particle filter was proposed by Martínez-Barberá
et al. [13]. This method processes and fuzes the data of several
underwater sensors, which improves the positioning accuracy
of underwater robots. An ultrashort baseline positioning
method based on a Kalman filter was proposed by Luo et al.
[14], which effectively improved the positioning accuracy.

The underwater acoustic positioning method needs to
arrange the acoustic beacon array in advance. However, the
structure of the oil-immersed transformer is closed, which
does not have the conditions to arrange the array. There are
many obstacles in the transformer, and acoustic communi-
cation cannot be realized, so underwater acoustic positioning
cannot be applied in oil-immersed transformers. In addition,
the dead reckoning method requires high-precision inertial
navigation and DVL. Considering the cost and volume of the
transformer internal inspection robot, the sensors mentioned
above are not suitable for a transformer internal inspection
robot.

In underwater location methods based on vision, under-
water vehicles can be located with image information [15–18],
which is obtained by inexpensive vision sensors. An underwa-
ter vision positioning technology based on refraction correc-
tion was provided by Suresh et al. [19], which uses refraction
correction and triangulation to locate underwater vision by
observing aerial landmarks in the water. An underwater local-
ization method based on binocular vision was proposed by Du
et al. [20]. The method takes advantage of the combination of
feature extraction and back-end global optimization to verify
the feasibility of binocular vision positioning in underwater
environments. An improved front-end method of underwater
visual SLAM based on binocular cameras was given by Wang
et al. [21]. The histogram equalization algorithm was used to
improve image sharpness for feature point extraction and
tracking, and the Rtab-map algorithm was used to optimize
its tracking and positioning process. The feasibility of achiev-
ing accurate positioning by the visual sensor in a small under-
water area has been verified by the above methods. However,
most underwater positioning methods based on vision use
binocular vision sensors. Considering the size of the robot
and the cost of fault detection, binocular cameras are not
suitable for submersible transformer inspection robots. In
addition, the environment in the transformer oil is different
from the underwater environment, and the transformer oil has
the problems of deterioration and discoloration when being
used high pressure and high-temperature environments for a
long time. Therefore, the internal image of the transformer
obtained by the robot has the problem of low contrast and
color distortion, which brings new challenges to the visual
positioning method of the submersible transformer inspection
robot.

In recent years, scholars have conducted relevant research
on the positioning of inspection robots inside oil-immersed
transformers. A high-precision detection model for transformer

components based on the Fast R-CNN structure was provided
by Liu et al. [22]. This model employs the dual feature mapping
method, enabling automatic detection of the category and loca-
tion of various transformer components in the detection image.
However, this position information is only relative between
components and cannot provide global positioning within the
transformer. In addition, the R-CNN model-based approach
demands significant computational power for transformer
inspection robots, making it unsuitable for real-time detection
and localization. Zhang et al. [23] implemented robot auton-
omous navigation through path planning based on the open-
source Cartographer algorithm. Oil levels were acquired using
a depth camera, and YOLOv4 was employed to train and
learn oil level states under various weather conditions. This
method is suitable for single inspection tasks such as oil level
detection but is not applicable to fault detection and localiza-
tion tasks that require more visual information. Moreover,
significant measurement errors are introduced in the mea-
surement of infrared light emitted by the depth camera in
transformer oil. In the face of various complex environmental
stresses, Pan et al. [24] conducted an analysis of the perfor-
mance failure mechanisms of internal inspection robots. They
completed a study on improving the reliability of internal
inspection robots and their control systems, effectively
enhancing the reliability of the internal inspection robotic
arm. However, no analysis was performed on the positioning
of internal inspection robots within transformers. A position-
ing method for an oil-immersed transformer internal inspec-
tion robot was proposed by Feng et al. [25]. In this method,
the robot’s position within the transformer is measured and
analyzed using a detection instrument and laser radar carried
by the inspection robot. However, high-precision require-
ments are imposed on the accuracy of laser radar measure-
ments in this method, and there is a lack of abundant visual
information.

In summary, the visual-based positioning method for the
transformer internal inspection robot proposed in this paper
does not require expensive high-precision radar. After image
enhancement, it is capable of providing abundant visual
information. Achieving visual positioning and utilizing
images for fault detection simultaneously, waste of robot
computational resources is avoided, and real-time position-
ing of the internal inspection robot is achieved.

The specific implementation process of the algorithm in
this paper is as follows: first, the image enhancement method
based on multiscale fusion is used to enhance the image
acquired by a monocular camera to improve the brightness
and contrast of the image in the transformer oil. Second, the
enhanced image is converted into grayscale to improve the
efficiency of extracting features from accelerated segment
test (FAST) key points to ensure that each image can be
tracked quickly. Then, the position and pose transformations
of different camera positions were solved by the epipolar
geometry constraint and efficient perspective-n-point (EPnP)
algorithm. Finally, the nonlinear optimizationmethod is applied
to optimize the position and attitude of the robot to obtain a
more accurate trajectory. The experimental results show that
the autonomous positioning of the submersible transformer
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inspection robot can be realized, and the problem of robot
position initialization failure and tracking loss caused by the
lack of image information can be solved.

2. Framework of the Visual Localization for the
Oil-Immersed Transformer

2.1. Oil-Immersed Transformer Structure. The structure of
the oil-immersed transformer is shown in Figure 1. The struc-
ture of the transformer (510 cm× 230 cm× 350 cm) is mainly
composed of an oil tank, core, winding, bushing, cooler, man-
hole, and conservator. The core andwinding are located in the
center of the transformer. There are a large number of locking
nuts, screws, and cables in the transformer, which may inter-
fere with robotmotion. The tank is filled with 25# transformer
oil, which is mainly used for insulation, heat dissipation, and
arc extinction. The internal structure of the transformer is
compact, and the space is narrow, so it is difficult to realize
robot positioning by arranging external sensors.

According to the structural characteristics of the trans-
former, our research group has designed a submersible trans-
former inspection robot, as shown in Figure 2. The diameter
of the robot is only 19 cm, and the propulsion system, wire-
less communication system, control system, sensing and
detection system, and power supply system are integrated
inside. The robot is propelled by the propulsion system,
which has six oil-jet thrusters. The sensor detection system
mainly includes single-line laser radar, monocular camera,
electronic compasses, and other sensors. The laser radar can
only detect the distance between the robot and the obstacle,
and it is influenced by the transformer oil and Lidar hull, so
the measurement error is large. The electronic compass is
affected by the oil-jet thruster and the closed structure of the
transformer, so the measurement data are not accurate.
Therefore, the robot can only rely on the images obtained
by monocular vision to realize autonomous positioning.

2.2. The Proposed Framework. According to the above anal-
ysis, constrained by the internal structure of the transformer
and the size of the robot, this paper uses a monocular camera
to achieve robot positioning. Compared with the depth cam-
era, which can obtain the distance information directly, the
monocular camera can only estimate the depth by feature
matching from the adjacent images obtained by the camera
position change. For this reason, image feature extraction is
very important in the positioning process. However, with

increasing transformer working time, the transformer oil
color gradually changes from pure transparent and light yel-
low to light brown. The image obtained by the camera in the
degraded and discolored oil exhibits distortion, discoloration
and low contrast, which increases the difficulty of image
feature point extraction and registration. Therefore, a visual
localization method of the submersible transformer inspec-
tion robot based on image enhancement is proposed. The
flowchart of this method is shown in Figure 3 and is elabo-
rated as follows:

(1) The image enhancement method based on multiscale
fusion is applied to process the original image obtained
by the robot to improve the brightness and contrast of
the image to increase the number and speed of image
feature point extraction.

(2) To improve the extraction efficiency of FAST key
points, the enhanced image is converted to a gray-
scale image.

(3) The binary robust independent elementary features
(BRIEF) descriptors of the feature points are calcu-
lated to compare the similarity of the features of the
two frames for feature matching.

(4) The epipolar geometry constraint method is used to
initialize the motion process of the robot, and the
EPnP algorithm is applied to solve the pose transfor-
mation of the robot between image frames.

(5) To solve the pose between image frames, the tracking
process of the robot is optimized by a nonlinear
optimization method to realize more accurate track-
ing and positioning.

3. The Proposed Algorithms

3.1. Image Enhancement in Transformer Oil. Because the
transmittance of artificial light in transformer oil of different

FIGURE 1: The structure of the oil-immersed transformer.
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FIGURE 2: The transformer internal inspection robot.
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years is different, the image quality under transformer oil
cannot be improved by restoring the optical imaging model
under transformer oil. Consequently, the image enhance-
ment method under transformer oil based on a multiscale
fusion strategy is adopted.

To solve the problem of color distortion in the trans-
former oil image [26], a color correction method based on
a perfect reflection algorithm is adopted to correct the image
color channel to balance the image color. The correction
formula can be expressed as follows:

K ¼Max Rmax;Gmax;Bmaxð Þ
R0 ¼ K

R
× R

G0 ¼ K

G
× G

B0 ¼ K

B
× B

8>>>>>>>>><
>>>>>>>>>:

; ð1Þ

where R;G, and B indicate the values of each channel of the
original picture pixel. Rmax;Gmax, and Bmax are the maximum
values of each of the three channels R;G, and B in the image,
respectively. The histogram of the sum of three channels for
each pixel R;G, and B in the image is traversed backward,
and the pixel with values in the top 10% is found as the white
point to find the threshold T of the white point. Where R;G,
and B indicate the average values that the sums of pixel
points R;G, and B are greater than T. R0;G0, and B0 are the
correction results of each channel value of the pixel in the
picture.

To solve the problem of low-image contrast caused by
different attenuation speeds of different colors of light in
transformer oil, the adaptive gamma correction method is
devoted to improving the image contrast. The gamma cor-
rection can be expressed as follows:

G Ið Þ ¼ Iγ; ð2Þ

where γ indicates the adjustment parameter of gamma cor-
rection. I is the input image. To avoid the same intensity
change after correction, the weighted modified probability
density and distribution statistics are constructed. The adap-
tive gamma correction method is obtained as follows:

G sð Þ ¼ Smax ×
s

Smax

� �
γ

γ ¼ 1 − ∑Smax
s¼0

Gpdm sð Þ
∑Smax

s¼0Gpdm sð Þ

8>>><
>>>: ; ð3Þ

where GðsÞ is the constructed adaptive gamma calibration,
s indicates the image intensity, and Smax is the maximum
intensity.

To further improve the image quality, the color-corrected
images and contrast-improved images are normalized by
saliency weighting and brightness weighting. The process
can be expressed as follows:

Wm x; yð Þ ¼ pμ − pε x; yð Þ 
∑m pμ − pε x; yð Þ ¼ wm x; yð Þ

∑mwm x; yð Þ ; ð4Þ
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FIGURE 3: The proposed framework the visual localization for the oil-immersed transformer.
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Wm x; yð Þ ¼ pμ − pε x; yð Þ þ exp −

pmg x; yð Þ − 0:5
� �

2

2σ2

0
@

1
A

¼Ws x; yð Þ þWE x; yð Þ;
ð5Þ

where pμ indicates the eigenvector of the image and pεðx; yÞ
is the corresponding pixel vector value of the original image
after Gaussian blur processing. pmg ðx; yÞ describes the pixel
position of the input image pm to grayscale image pmg , and σ is
the standard deviation. Wmðx; yÞ is the required normalized
weight and Wmðx; yÞ is the sum of saliency weighting and
brightness weighting.

Finally, the images after the white balance of perfect
reflection correction and adaptive gamma correction are
processed by the multiscale fusion method. The fusion for-
mula is represented as follows:

Fk x; yð Þ ¼ ∑
m
Lk pm x; yð Þ½ �Gk Wm x; yð ÞÂ Ã

; ð6Þ

where Fkðx; yÞ indicates the final output image pyramid, k is
the number of pyramid layers, m is the number of images to
be fuzed, Lk½pmðx; yÞ� indicates that the input image is
decomposed by the Laplacian pyramid, and Gk½Wmðx; yÞ�
indicates that the standardized weight image is decomposed
by the Gaussian pyramid. The fuzed pyramid is upsampled
to enhance the transformer oil image.

3.2. Feature Extraction and Matching. The submersible
transformer inspection robot has a small size and limited
computing power. To reduce the computation time and
improve the efficiency of key point detection, the FAST
key points and BRIEF descriptors are selected as the
feature points in the feature extraction of the transformer
oil image [27]. The processes of extracting FAST key
points are as follows: a certain pixel point p is selected in
the image, its brightness is set to Ip, the threshold is set to
T ¼ 0:2Ip, and 16 pixel points on a circle with point p as the
center and three pixels as the radius are selected. If there are
12 consecutive points in these 16 pixels and their brightness
is in the range of Ip Æ T , then the point p is a key point. In
this method, only the brightness difference between pixels is
compared, which is efficient.

The moving direction of the submersible transformer
inspection robot is variable, and the FAST key points do
not have direction information, so the gray centroid method
is used to describe the rotation direction of the features.

The moment of the area image is defined as follows:

mpq ¼ ∑
x;y

xpyqI x; yð Þ; p; q¼ 0; 1f g; ð7Þ

where Iðx; yÞ indicates the gray value at pixel ðx; yÞ, and the
centroid of the image block is represented as follows:

C ¼ cx; cy
À Á¼ m10

m00
;
m01

m00

� �
: ð8Þ

The principal direction of the key point can be expressed
as the direction vector OC

�!
, which is from the centroid O of

the circular image to the centroid C. Then, the direction of
the feature point is defined as follows:

θ ¼ arctan m01=m10ð Þ: ð9Þ

The intensity centroid method makes the FAST key
points have rotation information, and the accuracy of fea-
ture matching is improved when the robot rotates in the
transformer.

In addition, the position of the robot changes every
moment in the running process, which causes the size of
the internal components of the transformer photographed
by the monocular camera to be different in the picture. The
circle with a radius of 3 is selected for the FAST key point, so
there is a scale problem. Therefore, the paper constructs the
image pyramid and detects the key points at each layer of
the pyramid to solve the above problems [28]. In this work,
the number of layers of the image pyramid is 8, and the
scaling factor is 1.2.

Key points are the positions of feature points in the
image, and descriptors describe the information of pixels
around key points. The similarity of key points descriptors
has been compared to achieve feature matching between
images. Considering the computing power and real-time
positioning of the submersible transformer inspection robot,
the binary BRIEF descriptor with convenient storage and fast
calculation is selected. Its description vector is composed of 0
and 1, and only the number of different digits in the binary
string needs to be compared in the process of feature point
matching, which is suitable for real-time matching of feature
points in transformer oil images. We choose to utilize a 256-
bit binary descriptor in this paper. When matching feature
points between different images, the similarity between two
BRIEF descriptors is assessed by calculating their Hamming
distance. A smaller Hamming distance indicates a higher
degree of similarity between the two descriptors, thus imply-
ing a higher level of matching. To determine whether two
descriptorsmatch, a threshold is typically set. If the Hamming
distance between two descriptors is less than the threshold,
they are considered to be a match. The steps to set the thresh-
old are as follows: first, the minimum Hamming distance is
calculated. Second, 30 is set as the lower limit for the distance.
Third, if the distance between descriptors is greater than 30
and less than twice the minimum distance, then the two fea-
ture points are considered to be a match.

3.3. Robot Pose Estimation. The images captured by the
robot’s monocular camera have no depth information, so it
is necessary to estimate the pose and depth of the robot at the
beginning of its movement. In this paper, the epipolar geom-
etry constraint method is used to estimate at the same time,
and the method with smaller error is selected as the result of
motion estimation [29]. After obtaining some 3D spatial
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points and their projections on 2D images, the relative
motion of the camera can be estimated based on the coordi-
nates of n known 3D points and the coordinates of these 3D
points projected onto the image as 2D points in the pixel
coordinate system. Various solution methods can be
employed for such problems, including direct linear trans-
form (DLT), perspective-three-point (P3P), efficient per-
spective-n-point (EPnP) [30], and others. The issues that
need to be considered include the complexity of capturing
images inside oil-immersed transformers, significant noise
levels, and limitations in the computational power of the
internal inspection robot. At least six pairs of points are
required for the DLT method, and it is highly sensitive to
noise and errors. The P3P method requires four pairs of
points, with three pairs used for solving and one pair used
for algorithm validation. However, P3P struggles to utilize
information from additional matching point pairs, and it
becomes ineffective in the presence of noise or mismatches.
The EPnP algorithm transforms through control points,
exhibiting better performance with noisy feature points.
The solution obtained is a closed-form solution, eliminating
the need for iteration and initial estimates, resulting in excep-
tionally high-computational efficiency. Therefore, the EPnP
algorithm is chosen in this paper for camera pose estimation.
It consists of the following steps:

(1) The motion model between two images acquired by a
monocular camera is shown in Figure 4, where O1
and O2 are camera optical centers and l1 and l2 are
polar lines. If the feature point p1 and the feature
point p2 are correctly matched, the position of the spa-
tial point P can be calculated. According to the pin-
hole camera model and the epipolar geometry, the
following equation is true:

pT2K
−Tð ÞtΛRK −1ð Þp1 ¼ 0; ð10Þ

where K indicates the internal reference matrix of the cam-
era, R is the camera rotation matrix between two coordinate
systems, and t is the translation vector of the camera.

Suppose the fundamental matrix from pixel p2 to p1 is F.
Equation (10) can be written as follows:

pT2 Fp1 ¼ 0: ð11Þ

Equation (11) is written in matrix form, which can be
expressed as follows:

u2 v2 1½ �
f1 f2 f3

f4 f5 f6

f7 f8 f9

2
64

3
75

u1

v1

1

2
64

3
75¼ 0; ð12Þ

where the pixel point p is represented by homogeneous coor-
dinates. Considering the scale equivalence, Equation (12)
shows that the F matrix can be solved by constructing 8
constraint equations through 8 pairs of matching points.

(1) If the robot only moves in translation, it can be
described by homography matrix H. The matched
pixels on the two images I1 and I2 can be represented
by the following equation:

p2 ¼Hp1: ð13Þ

Equation (13) is written in matrix form as a homoge-
neous equation,

0 −1 v2

1 0 −u2

−v2 u2 0

2
64

3
75

h1 h2 h3

h4 h5 h6

h7 h8 h9

2
64

3
75

u1

v1

1

2
64

3
75¼ 0: ð14Þ

Equation (14) shows that the H-matrix can be obtained
by constructing 8 constraint equations through 4 pairs of
matching points. The rotation matrix R and the translation
vector t can be obtained by singular value decomposition of
the homography matrix H [31].

(3) The depth information of the space point P is esti-
mated by the triangulation method, and the depth
estimation model is shown in Figure 5. The geomet-
ric relation of the position of feature points in three-
dimensional space can be expressed as

s2x2 ¼ s1Rx1 þ t; ð15Þ

where x1 and x2 indicate the normalized coordinates of the
feature points after successful matching in the image and s1
and s2 are the depths of the two feature points.

(4) To reduce the computation load and improve the
pose accuracy of the robot, the EPnP algorithm is

O1 O2l1 l2

p1 p2

I1
I2

P

FIGURE 4: Principle of Epipolar Constraint.
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used to estimate the relative motion of the robot.
The EPnP algorithm only needs 4 pairs of matching
points to solve the camera pose, as described below.

In the world coordinate system, 4 control points are
selected to describe the distribution of all 3D points in the
space. Each 3D point pwi can be expressed as

pwi ¼ ∑
4

j¼1
αijcwj ; ∑

4

j¼1
αij ¼ 1; ð16Þ

where cci indicates the control point and αij represents the
weight of the four control points. Points in the world coor-
dinate system are transformed to the camera coordinate sys-
tem by rotation and translation, and the conversion equation
can be expressed as

pci ¼ Rcwp
w
i þ t¼ Rcw ∑

4

j¼1
αijc

w
j

 !
þ t¼ ∑

4

j¼1
αij Rcwc

w
j

� �
þ t

� �

¼∑
4

j¼1
αijc

c
j ;

ð17Þ

where cci indicates the coordinate of the control point in the
camera coordinate system. Because αij is invariant in the
camera coordinate system, the weight of αij in the world
coordinate system is known. All points in the world coordi-
nate system can obtain their coordinates pci in the camera
coordinate system.

Assuming that the coordinate of a 3D point in the cam-
era coordinate system is pci and the coordinate in the world
coordinate system is pwi , there are rotation matrix R and
translation vector t that can satisfy the following equation:

8i; pwi ¼ Rpci þ t: ð18Þ

To solve matrix R and vector t, the error Equation (19)
can be defined as follows:

min
R;t

J¼ 1
2
∑
n

i¼1
pwi − Rpci þ tð Þð Þk k22: ð19Þ

The centroids of the 3D point pwi in the world coordinate
system and the 3D point pci in the camera coordinate system
are expressed as follows:

pw ¼ 1
n
∑
n

i¼1
pwi ; ð20Þ

pc ¼ 1
n
∑
n

i¼1
pci : ð21Þ

The error equation can be expressed as follows:

min
R;t

J¼ 1
2
∑
n

i¼1
pwi − pw − Rpci − pcð Þð Þk k2 þ pw − Rpc − tk k2:

ð22Þ

The rotation matrix R and translation vector t of the
robot can be obtained by the least square method.

3.4. Robot Pose Optimization. The relative camera poses ΔTk; k−1
of two consecutive pictures can be calculated by the above steps.
Due to the existence of noise, accumulated errors will inevitably
occur with increasing running time. In addition, the motion of
the robot is nonlinear. To obtain a relatively accurate pose of the
robot, it is necessary to optimize the pose of the robot.

Considering the computing power of the robot, on the
premise that the computing performance and the optimization
accuracy are balanced, a bundle adjustment (BA) optimization
method with a small computing scale is used in this paper [32].
On the premise of having no error, the camera pose calculated
by projection and the camera pose observed by feature match-
ing should satisfy the Lie group transformation,

Ti;j ¼ T−1
i Tj; ð23Þ

where Ti;j indicates the calculated pose, and T−1
i Tj is the pose

obtained by sparse matching. To optimize the pose of the
robot, the optimization objective function can be constructed
based on Equation (23). The optimization objective equation
can be written as follows:

eij ¼ ln T−1
i j T

−1
i Tj

� �
∨
: ð24Þ

The optimization function represents the error between
the robot motion model and the observation model. In this

p1 p2

P

FIGURE 5: Depth estimation.
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paper, the Levenberg–Marquardt gradient descent strategy is
used to optimize the objective function, and convergence can
be realized after 10 iterations. To this point, the posture of
the robot has been optimized.

4. Experimental Results and Discussion

The robot was tested in the Mitsubishi transformer of Shui-
bei Power Supply Station in Shenzhen. To evaluate the posi-
tioning performance of this algorithm on the transformer, an
experiment was conducted with the image frame sequence
that was obtained during the experiment. The internal space
of the transformer is small and compact, and it has been
working in a high temperature and high-pressure environ-
ment for more than 20 years. The discoloration of the trans-
former oil is serious.

4.1. Comparative Experiment on Feature Point Extraction. To
verify the improvement of the image enhancement algorithm
on feature point extraction, a comparative experiment of
feature point extraction was carried out between the original
image obtained by the robot and the enhanced image. The
comparison before and after image enhancement obtained
from Section 3.1 is shown in Figure 6. The results of the
comparative experiment of feature extraction are shown in
Figures 7 and 8. As shown in Figure 7, the original image is
distorted and blurred by the metamorphic and discolored

transformer oil. In the original image and grayscale image,
only a few feature points can be extracted in the upper right
corner of the image, so the pose of the robot cannot be solved
by using the original image directly.

As shown in Figure 8, more feature points can be extracted
where the pixel brightness contrast is strong in the enhanced
picture. The experimental results of feature extraction using
an 8-layer pyramid are presented in Table 1 and illustrated in
Figure 9.

The algorithm’s robustness and stability can be improved,
and effective feature detection and matching across multiple
scales can be allowed by using an image pyramid for feature
point extraction.

To verify the robustness of the image enhancement algo-
rithm, we selected 10 images for comparative experiments,
and the results are shown in Table 2.

As shown in Table 2, the average number of feature points
extracted from 10 images without enhancement is 33.5. After
the image is enhanced, the average number of feature points
is approximately 333. The results show that the number of
extracted feature points was greatly increased.

4.2. Comparison of Feature Matching between Images. To
verify the performance of the image enhancement algorithm
on interframe matching results, a comparative experiment of
interframe feature matching was carried out. First, the fea-
ture points of two consecutive original images are extracted
for feature matching, and mismatching points are deleted.
Then, the same is done for two consecutive gray images. The
matching results are shown in Figure 10, where only 14 pairs
of points are successfully matched.

The feature matching experiments are carried out on the
above two consecutive images after image enhancement, and
the mismatching points are deleted. The matching results are
shown in Figure 11. The number of matching pairs is greatly
increased, reaching 72 pairs, which is beneficial for solving
and optimizing the robot’s pose.

To realize the tracking and positioning of the robot, it is
necessary to match successive multiframe images. Therefore,
the matching experiment was carried out on the 10 consecu-
tive enhanced images, and the feature matching results
before and after image enhancement are shown in Table 3.

Original image Enhanced image

FIGURE 6: The comparison before and after image enhancement.

Original image Gray image

FIGURE 7: Feature extraction of the original image.

Enhanced RGB image Enhanced gray image

FIGURE 8: Feature extraction of the enhanced image.

TABLE 1: Results at each layer of the 8-layer image pyramid.

Layer 0 1 2 3 4 5 6 7

Number 213 118 70 48 37 20 7 7
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4.3. Algorithm Comparison Simulation Location Experiment.
The real trajectory of the robot cannot be obtained inside the
transformer. To verify the error between the trajectory
obtained by the robot positioning method proposed in this
paper and the real trajectory of the robot, the ROS and
Gazebo environments [33] are used to build the simulation
environment of the robot movement in transformer oil. The
environment is shown in Figure 12, including the robot and
the observation target.

The robot is equipped with a monocular camera. Gauss-
ian noise is added to the robot monocular camera in the
simulation process, and the images obtained before and after
increasing the noise are shown in Figure 13.

As shown in Figure 13, the blurred image obtained by the
robot after adding noise increases the difficulty of robot posi-
tioning. Image enhancement and feature matching experi-
ments are performed on the data with added noise. The
matching results are shown in Figure 14. After matching
and screening, there are 46 pairs of matching points in the
image with noise, and the number of matched feature points
in the enhanced image reaches 93 pairs. The experimental
results show that the image enhancement algorithm can effec-
tively improve the matching number of image feature points.

To verify the positioning accuracy of the algorithm, robot
motion observation and control experiments are outper-
formed. Conduct comparative experiments with the open-
source monocular visual odometry algorithm direct sparse
odometry (DSO). DSO is a monocular vision-based localiza-
tion algorithm released by Dr. Jakob Engel from the Com-
puter Vision Laboratory at the Technical University of
Munich (TUM) in 2016. DSO falls under the category of
sparse direct methods. The 3D trajectory of the robot in
the simulation environment is shown in Figure 15, in which
the blue trajectory represents the trajectory obtained by the
localization algorithm, green represents the real trajectory of
the robot, and pink indicates the trajectory obtained by the
DSO algorithm based on a monocular visual odometer. As
shown in Figure 15, the motion trajectory obtained by the
algorithm in this paper is basically consistent with the real

Layer 0 Layer 1 Layer 2 Layer 3

Layer 4Layer 5Layer 6Layer 7

FIGURE 9: Results at each layer of the 8-layer image pyramid.

TABLE 2: Comparison results of feature extraction quantity.

Number Original image Enhanced image

Image 1 33 339
Image 2 32 334
Image 3 33 302
Image 4 32 305
Image 5 36 320
Image 6 35 323
Image 7 36 328
Image 8 32 340
Image 9 33 395
Image 10 33 345

Original
RGB image

Original
gray image

FIGURE 10: Feature matching of the original image.

Enhanced
RGB image

Enhanced
Gray image

FIGURE 11: Feature matching of the enhanced image.
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TABLE 3: Comparison of the number of matching features before and after image enhancement.

Number Original image Enhanced image Increased (%)

Image 1 and Image 2 14 72 414
Image 2 and Image 3 16 34 113
Image 3 and Image 4 22 86 290
Image 4 and Image 5 24 79 229
Image 5 and Image 6 26 119 358
Image 6 and Image 7 27 100 270
Image 7 and Image 8 22 85 286
Image 8 and Image 9 23 58 152
Image 9 and Image 10 25 88 252

RobotObservation target

FIGURE 12: The simulation environment.

FIGURE 13: Comparison of images before and after adding noise.

Enhanced image

Image with noise

FIGURE 14: Feature matching comparison before and after image.
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FIGURE 15: The results of the 3D trajectory estimation of each
algorithm.

10 Journal of Robotics



trajectory, with a certain deviation. The trajectory obtained
by the DSO algorithm is quite different from the real trajectory.

It is not easy to evaluate the positioning effect using a 3D
trajectory, so the positioning errors of the trajectory on the X
axis, Y axis, and Z axis are plotted. The results are shown in
Figure 16, in which the pink curve represents the positioning
error of the DSO algorithm, and the blue curve represents the
positioning error of the algorithm in this paper. As shown in
Figure 16, the positioning error of the proposed algorithm is
smaller than that of the DSO algorithm in the X-axis, Y-axis,
and Z-axis directions. The maximum positioning error of the
proposed algorithm is only 1m, while the maximum posi-
tioning error of the DSO algorithm is close to 3m. In addi-
tion, the root-mean-square errors of the robot position on
the X-axis, Y-axis, and Z-axis are calculated. As shown in
Table 4, the root-mean-square errors of this algorithm are
obviously smaller than those of the DSO algorithm.

The simulation results show that the initial trajectory of
the DSO location algorithm is far from the real trajectory,
and the tracking fails. After image enhancement, the algo-
rithm in this paper effectively realizes feature extraction and
accurately restores the running trajectory of the robot under
oil. From the error comparison experimental data, it can be
seen that the positioning accuracy of the proposed method is
better than that of the DSO positioning algorithm, thus veri-
fying the effectiveness of the proposed method in the trans-
former oil environment.

4.4. Positioning Experiment of the Robot in Transformer Oil.
To verify the effectiveness of the positioning method of the
submersible transformer inspection robot, the positioning
method is tested and analyzed by the data collected by the
robot in the Mitsubishi transformer. The time length of
the experimental data is 57 s, and the frame rate is 25 fps.
The video data are extracted into a picture sequence, and
the positioning performance test is carried out.

The robot tracking and positioning experiment is carried
out by the original data, as shown in Figure 17, which mainly
includes a blue trajectory, a purple trajectory and a red start-
ing position. After the robot is successfully initialized in the
red position, the blue track indicates the robot trajectory
drawn from the original image. At the end of the blue track,
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FIGURE 16: The position error of each algorithm on each coordinate axis.

TABLE 4: The comparative results of the root mean square error.

Algorithm Error of X axis (m) Error of Y axis (m) Error of Z axis (m)

DSO 1.016 2.278 0.115
Paper 0.377 0.370 0.003

The red box is the starting
position of  initialization 

The blue trajectory is the trace
before tracking failure 

The purple trajectory is the
reinitialized trace after

tracking failure   

The real trajectory
of the robot

FIGURE 17: The failed trajectory of using raw data.
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the robot failed to track because the image obtained by the
robot was not clear. Then, the robot localization algorithm is
reinitialized. After reinitialization, according to the image
currently acquired by the robot, the motion trajectory is
drawn, which is shown in purple. From the results, we can
see that the robot trajectory can be drawn according to the
acquired visual information. However, if the image quality
obtained by the robot is poor, it will lead to the failure of
robot tracking, the repeated reinitialization of the positioning
algorithm, and the discontinuous trajectory of the robot.

To verify the effectiveness of the proposed algorithm in
the transformer, the image sequence is processed by multi-
scale fusion enhancement, and then the robot tracking and
positioning experiment is carried out. The results are shown
in Figure 18. It includes a red box, some blue boxes, and a
green box. The red box indicates the initial position of the
robot, the blue boxes indicate the historical trajectory of the
robot, and the green box indicates the current position of
the robot.

From the result in Figure 18, the robot trajectory can be
displayed intuitively and clearly by the positioning method
in this paper, and relatively accurate position information

can be obtained. In addition, tracking failure and the phe-
nomenon of reinitialization do not appear. The pose infor-
mation of each frame in the image sequence can be provided
by the positioning method. Part of the data are shown in
Table 5.

On the basis of the coordinate information of each image
obtained by the robot, the 3D motion trajectory of the robot
inside the transformer is drawn by MATLAB, which is
shown in Figure 19. The red trajectory represents the robot
trajectory obtained by the original image, and the blue tra-
jectory represents the robot trajectory obtained after image
enhancement. It can be seen from the results that maximum
errors of 0.03m along the X-axis, 0.008m along the Y-axis,
and 0.005m along the Z-axis within the actual transformer
space. Root-mean-square errors are calculated at 0.0158m
along the X-axis, 0.0026m along the Y-axis, and 0.0028m
along the Z-axis. Errors in positioning along each axis inside
the transformer by the robot are found to be within permis-
sible limits. And the robot’s trajectory in the transformer can
be drawn by monocular vision in this algorithm, and the
algorithm solves that the difficulty of locating the robot in
the transformer.

The green box is
the current position

of the robot 

The blue box is the 
historical position of

the robot
The red box is the
starting position

of the robot 

FIGURE 18: The robot trajectory based on the proposed method.

TABLE 5: Robot trajectory coordinates.

Time
Translation in the world coordinate system Rotation of camera to world coordinate system

tx ty tz qx qy qz qw
189.000000 −0.1369671 −0.1500254 −0.5803908 0.0149806 −0.5032533 0.1879581 0.8433169
191.000000 −0.1364136 −0.1501418 −0.5806609 0.0155979 −0.5164054 0.1937663 0.8339885
192.000000 −0.1364136 −0.1505871 −0.5823005 0.0154008 −0.5224573 0.1981140 0.8291876
193.000000 −0.1349777 −0.1504681 −0.5819005 0.0158103 −0.5293952 0.2010548 0.8240557
196.000000 −0.1217337 −0.1564949 −0.5938352 0.0128108 −0.5457574 0.2140372 0.8100450
199.000000 −0.1082227 −0.1607452 −0.6106782 0.0127889 −0.5609802 0.2266808 0.7960864
200.000000 −0.1013026 −0.1660932 −0.6151043 0.0095857 −0.5662362 0.2314494 0.7910221
204.000000 −0.0721812 −0.1746682 −0.6406906 0.0094067 −0.5877521 0.2468827 0.7703946
207.000000 −0.0239709 −0.1925754 −0.6715866 0.0039448 −0.5989393 0.2570543 0.7584057
208.000000 −0.0158377 −0.1951312 −0.6766809 0.0024216 −0.6025855 0.2606056 0.7543007
209.000000 0.0074293 −0.2035241 −0.6885141 −0.0004768 −0.6057649 0.2638864 0.7506082
210.000000 0.0324675 −0.2134237 −0.7010788 −0.0042803 −0.6082725 0.2677946 0.7471762
211.000000 0.0523740 −0.2196917 −0.7121715 −0.0064705 −0.6113610 0.2710429 0.7434592
212.000000 0.0739813 −0.2284881 −0.7206520 −0.0101452 −0.6147486 0.2753150 0.7390419
214.000000 0.1247762 −0.2471465 −0.7436563 −0.0156883 −0.6214890 0.2820806 0.7307091
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5. Conclusion

To realize the autonomous positioning of the robot in the
deteriorated and discolored transformer oil, a visual posi-
tioning method of the submersible transformer inspection
robot is proposed in this paper. Aiming at the problem of
transformer oil deterioration and discoloration, an image
enhancement algorithm based on multiscale fusion strategy
is proposed, to improve the image quality, brightness, and
contrast. Aiming at accurately locating the robot pose in the
transformer, the rotation and scale information of the robot
are added based on the feature extraction of FAST key points
and BRIEF descriptors. The interframe pose is solved by
epipolar constraint and EPnP, and the robot pose optimiza-
tion model is designed to further improve the positioning
accuracy of the robot. The performance of the algorithm
proposed in this paper is evaluated by using the monocular
image obtained by the robot inside the transformer. The
experimental results show that the enhanced images can
satisfy feature point extraction, the trajectory of robot in
transformer the algorithm can be plotted.

Our future work involves two aspects: first, investigating
how to test the positioning accuracy of the algorithm within
the transformer; second, considering ways to enhance posi-
tioning accuracy in larger and more complex scenarios.
Building upon the existing positioning methods, incorporat-
ing multiple sensors such as inertial navigation or radar is
contemplated to improve the robot’s positioning accuracy.
Additionally, the addition of loop detection to the system to
mitigate the accumulation of errors over time is seen as an
important direction for our next research steps.
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