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In order to solve the problem of fast path planning and efective obstacle avoidance for autonomous underwater vehicles (AUVs)
in two-dimensional underwater environment, a path planning algorithm based on deep Q-network and Quantum particle swarm
optimization (DQN-QPSO) was proposed. Five actions are defned frst: normal, exploration, particle explode, randommutation,
and fne-tuning operation. After that, the fve actions are selected by DQN decision thinking, and the position information of
particles is dynamically updated in each iteration according to the selected actions. Finally, considering the complexity of
underwater environment, the ftness function is designed, and the route length, defection angle, and the infuence of ocean
current are considered comprehensively, so that the algorithm can fnd the solution path with the shortest energy consumption in
underwater environment. Experimental results show that DQN-QPSO algorithm is an efective algorithm, and its performance is
better than traditional methods.

1. Introduction

Autonomous underwater vehicles have been developed since
the 1950s and have evolved to become one of the most
critical tools in current marine exploration research.
Compared with other underwater robots, AUVs can com-
bine advanced intelligent algorithms to perform autono-
mous and uncrewed operations in all aspects, which are ideal
for search, identifcation, and detection work on the seafoor
and are an economical and safe means of ofshore in-
vestigation [1–3]. Among them, underwater path planning
technology is an essential technology for AUVs. It mainly
addresses the problem of how to plan a practical path and
avoid obstacles autonomously in a complex underwater
environment. Compared to other robots, AUVs in this feld
must adapt to complicated underwater environments and
consider the efects of unpredictable environmental factors
such as currents. Furthermore, there are numerous hurdles

in online obstacle avoidance, 3D path planning, and ro-
bustness of algorithms [4–6].

Currently, much research has been conducted on un-
derwater path planning. In general, the robot path planning
problem can be viewed as fnding collision-free optimal or
suboptimal trajectory based on certain performance in-
dicators in a working environment with obstacles. Te path
planning algorithms can be categorized as global path
planning for known static obstacles and local path planning
for unknown dynamic barriers. In global path planning,
barriers are static, their locations and shapes can be mea-
sured in advance. Based on it, a global map of the envi-
ronment can be produced, then we can use algorithms to
determine the optimal route. Examples include the algo-
rithm in [7], the Dijkstra algorithm [8], the particle swarm
algorithm [9], and the ant colony algorithm [10]. However,
in a complex underwater environment, it is challenging to
construct all the information of obstacles through maps, so
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local path planning algorithms must be designed to avoid
these unknown dynamic obstacles. Tese algorithms include
the artifcial potential feld method [11] and fuzzy logic
algorithm [12]. In recent years, based on the development of
deep neural networks, some self-learning algorithms, such as
neural networks [13] and reinforcement learning algorithms
[14], have been introduced to local path planning for AUVs.
Tese self-learning algorithms do not require prior
knowledge of the environment and can handle real-time
dynamic path planning problems.

Te particle swarm algorithm (PSO) is a well-known
evolutionary algorithm due to its robustness and easy pa-
rameter tuning advantages. Considering the complex and
variable characteristics of the underwater environment, the
PSO algorithm and its variants have been widely used in
AUVpath planning obstacle avoidance experiments [15–19].
Wu et al. [17] proposed a method to optimize parameters
which afect performance of the PSO algorithm by using
Rauch-Tung-Striebel (RTS) smoother. It can eliminate the
irregular error of the PSO updated position and to smooth
the produced path. Zhang et al. [20] presented an improved
path planning based on the hybrid multiobjective bare-
bones particle swarm optimization with diferential evolu-
tion. Cheng et al. [21] proposed a combined particle swarm
and wolf swarm algorithm (PSO-GWO). It combines the
global search ability of the wolf swarm algorithm and the
robustness of the particle swarm algorithm so that it can
adapt to the underwater variable environment. In addition,
due to its powerful global search ability, quantum particle
swarm optimization (QPSO) has also been applied to the
path search algorithm of AUV. Experiments indicate that the
QPSO algorithm can fnd the best path solution in complex
terrain more efectively [22, 23]. However, the algorithm still
has the problems of insufcient global convergence and lack
of operational accuracy.

Based on the questions above, this article proposes an
improved quantum particle swarm algorithm based on deep
Q-network (DQN-QPSO). It combines the learning
mechanism of DQN with QPSO to make decisions from fve
behaviors using neural networks by inputting particles’
information and updating the particles’ position in-
formation according to each step of the decision. Te
strategy enables the particle to choose the appropriate action
in various circumstances, signifcantly enhancing the algo-
rithm’s global search capability. And the accuracy of the
algorithm can be improved by fne-tuning operations. In
addition, this article designs a ftness function that is better
suited for the underwater environment. Considering the
infuence of route path length, defection angle, and currents,
the algorithm can better adapt to the underwater environ-
ment and locate the solution path with the lowest energy
consumption. Te simulation results demonstrate that the
algorithm can better solve the problem of premature con-
vergence and it outperforms the standard algorithm in terms
of global search capability and search precision.

Te rest of this article starts with describing themodeling
method for the underwater environment and obstacles in
Section 2. Section 3 introduces the QPSO, DQN, and the
algorithms used for path smoothing. In Section 4, Te

DQN-QPSO algorithm designed in this article is presented,
and the simulation and experimental studies are carried out
in Section 5. Finally, Section 6 gives this article’s conclusions
and future research directions.

2. Map Representation and Construction

2.1. ResearchModel of the Seamount. In the process of AUV
underwater navigation, where there will be various obstacles,
diferent terrain corresponds to other routes. Hence, ac-
curately modeling the environment is essential for planning
the route. After studying the various obstacles on the sea-
foor, this article discovered that the most common un-
derwater environment is the seamount, whose mathematical
model can be expressed as follows:

Z(x, y) � 
n

i�1
hi exp −

x − xi

xsi

 

2

−
y − yi

ysi

 

2
⎡⎣ ⎤⎦, (1)

where xi and yi are the center coordinates of the ith sea-
mount, hi is the height of the seamount, and xsi and ysi are
the decay control slope of the ith seamount along the x-axis
and y-axis directions. And n denotes the total number of
seamounts environmental model. In this article, there are 20
diferent seamounts randomly distributed. At the same time,
xi and yi are taken as random numbers, and the height of
seamounts follows the normal distribution. Te simulation
results are shown in Figure 1.

2.2. Tree-Dimensional Current Model Construction.
AUVs are impacted by currents while navigating un-
derwater, causing them to increase excessive energy con-
sumption and even stray from their intended trajectory;
therefore, it is essential to account for the current element
while designing the course.Terefore, this work employs the
proposed method derived from an examination of the
motion of actual currents [3], the motion state of which may
be reduced to a viscous Lamb vortex, as shown in the fol-
lowing equation:
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where Vx(r), Vy(r), and Vz(r) are the velocity components
of the current along the x-axis, y-axis, and z-axis directions,
the parameters ζ and r0 are the vortex radius and co-
ordinates of the vortex center position, respectively. And λ
denotes the vortex intensity; if it is positive, the vortex is
counterclockwise; otherwise, the vortex is clockwise.

MATLAB is used to simulate three-dimensional space,
and ten diferent vortices are randomly generated, of which
fve are clockwise vortices and fve are counterclockwise
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vortices. Te discrete ocean current model shown in the
fgure can be obtained by uniformly setting discrete interval
points and performing superposition calculations on the
values of vortices at each point, as shown in Figure 2. In
addition, this study only analyzes the condition in which the
currents vary at diferent locations, and their speed is be-
lieved to be constant throughout the AUV’s whole navi-
gation period.

3. Related Research

3.1. QPSO Algorithm. Te quantum particle swarm algo-
rithm is an improved swarm intelligence algorithm, frst
proposed by Fang et al. [24] by deriving the principles of
quantum physics and combining it with the PSO algorithm,

which substantially improves its global search capability. In
the quantum system, the position of particle appearance is
no longer represented by a fxed position and velocity vector.
Instead, the probability of particle appearance at a given
point in space is obtained by solving the Schrodinger
function, causing the position of particle appearance to
deviate signifcantly from the local best. Combining this
information with the standard PSO, we obtain the following
equations:

xi,d(t + 1) �

qi,d(t) − β · mi,d(t) − Xi,d(t)


 · ln
1
u

 , u> 0.5,

qi,d(t) + β · mi,d(t) − Xi,d(t)


 · ln
1
u

 , u≤ 0.5,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

qi,d(t) � ϕ · pi,d(t) +(1 − ϕ) · gd(t), (4)

mi,d(t) �
1
n

· 
n

i�1
pi,d(t), (5)

where t is the number of iterations (1≤ t≤T), d is the
dimension of particles (1≤ d≤D), N is the number of
particles, xi,d(t) denotes the position vector of the par-
ticles, pi,d(t) and gd(t) are the personal best position and
global best position, respectively, mi,d(t) is the mean best
position, defned as the average of the individual best
positions of all particles in the particle population, and ϕ is
a random variable whose value is between 0 and 1. Fur-
thermore, the parameter β is the contraction-expansion
(CE) coefcient, which can adjust the convergence be-
havior of QPSO.

3.2. DQN Algorithm. As a research hotspot in artifcial in-
telligence, machine learning, and automatic control, re-
inforcement learning is regarded as one of the fundamental
technologies for intelligent system design. DQN algorithm is
based on the combination of Q-learning and neural network
algorithms, which combine the characteristics of deep
learning algorithms that are easy to solve high-dimensional
continuous problems and can ft the learning results of
reinforcement learning algorithms. In the standard DQN
model, the agent observes the current state of the system
environment. It decides to act on the following state through
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Figure 2: Tree-dimensional current map.
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Figure 1: Seamount model diagram.
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the neural network, after which the environment will pro-
vide rewards or penalties for this behavior. After completing
a series of behaviors, the neural network is trained through
the data so that subsequent decisions can achieve greater
rewards, as shown in Figure 3.

In the DQN decision process, the neural network is used
as the carrier of the value function to obtain the approximate
Q value, as shown in the following equation:

Q st, at(  � f st, at,ω( , (6)

where st and at represent the state and the action taken at the
time of t, respectively, and ω is the weight value of each node
in the neural network. As mentioned above, in the DQN,
there are two networks, the estimation network and the
target network. Tese two networks share an identical
structural design but have diferent network parameters.Te
output of the estimation network is Q(st, at,ω), which is
used to estimate the value function of the current state
action, while the output of the target network is donated as
Q(st, at,ω′). By using the untrained target network, we
ensure that the target Q value remains stable for at least
a short period of time and the weights from the estimation
network are replicated to the target network after a preset
number of steps.

In addition, in the neural network, the input is the
current state S and the output is a sequence of Q values
corresponding to a series of actions. Tis makes it easier to
select actions and update the Q values using the Q-learning
method. Te update formula and the loss function of the Q-
learning algorithm can be formulated as follows:

q st, at( ←q st, at(  + α rt+1 + cmax q st+1, at(  − q st, at(  ,

(7)

L(ω) � E rt+1 + cmax q st+1, at,ω
′

  − q st, at,ω( 
2

 .

(8)

Te parameters of the Q sequence obtained from the Q-
network are corrected by applying the above equation, and
the neural network is trained by using equation (7). Te
parameter α is the learning rate and c is the discount factor.
In addition, to solve the problem of interrelated training data
in DQN, the concept of experience replay is introduced, and
before training the neural network, the agent interacts with
the environment a certain number of times and the data is
stored in the experience pool in the format of (st, at, rt, st+1),
and during the training process, a certain number of samples
are taken out from the experience pool each time and
updated using the gradient descent algorithm.

3.3. Design of Fitness Function. In the QPSO optimization
problem, it is crucial to develop a suitable ftness function to
measure the merit of the particles. Designing the corre-
sponding ftness function for a specifc situation enhances
the algorithm’s precision and accelerates its processes. For
example, for the Qianlong III AUV with a fxed battery
capacity, the energy consumption of the path is an essential

factor afecting the quality of the path. Terefore, the energy
consumption of the AUV is used in this article to design the
algorithm’s ftness function. In general, the energy con-
sumption of AUV is primarily infuenced by three factors:
the route path length, the route defection angle, and the
infuence of current.

Corresponding evaluation functions are designed for the
three factors, respectively, and the corresponding weighting
factors are set to weigh the importance of the three in
practical application, which is defned as follows:

Fc Xi(t)(  � 
3

k�1
fkFk Xi(t)( , (9)

where fk is the weight factor, which typically takes a value
between 0 and 1; frst, the path length function is F1(Xi(t)),
defned as the sum of the distances on each path segment
connected by two consecutive path points, as shown in
equation (11), whose value is positive and is the primary
evaluation function in the path planning problem. Tere-
fore, the weight of this evaluation function is also assigned
a more signifcant value.

F1 Xi(t)(  � 
m−1

k�1
xi,k(t) − xi,k+1(t)

����
����. (10)

Set the defection angle function as F2(Xi(t)), frst use
the cosine theorem of three consecutive path points to
determine the inner angle of the point angi,k,, take the
complementary angle to it to get the defection angle of the
route, and compare it with the maximum defection angle of
AUV φmax; if it exceeds, it must add additional energy
consumption for the large angle turn, where μ is the angle
energy gain coefcient, the formula is as follows:

F2 Xi(t)(  � 
m−1

k�2
F2′ 180

∘
− angi,k , (11)

F2′(φ) �

0, φ≤φmax,

μ ·
φ

φmax max
, φ>φmax.

⎧⎪⎪⎨

⎪⎪⎩
(12)

In the calculation of F3(Xi(t)), the whole path segment
should be divided equally into p segments and calculate the
coordinates of the end points. For each point, we used
equation (2) to solve the current information of the point in
the x-axis Vx(r), y-axis Vy(r), and z-axis Vz(r). Ten,
synthesize them into V(r) to get the current vector at the

AUV

ActionReward

Environment

State

Figure 3: Application of reinforcement learning to AUV.
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driving point, and then decompose them into the projection
in the direction of navigation and vertical navigation V1(r)

and V2(r), and the parameter θ is the angle of the projection,
as shown in Figure 4.

Trough analysis, the decomposed vector V1(r) can
operate directly on the AUV causing an increase or decrease
in energy consumption, while V2(r) will produce a course
shift, resulting in a direct energy loss. Terefore, the com-
putation for F3(Xi(t)) may be performed using equation
(14). Te value is positive when θ is greater than 90 degrees
and negative when θ is less than 90 degrees.

F3 Xi(t)(  � − 

p

k�1
(V(r) · cos θ − V(r) · sin θ). (13)

In addition, this article designed the ftness function with
three objectives of path length, path defection angle, and
ocean current infuence. However, the results of these three
objectives were of diferent orders of magnitude in the
experiment, so it was necessary to carry out normalization
operations on them, respectively, before summing and
obtaining the fnal ftness value by equation (14).

3.4. Cubic B-Spline. Te algorithm proposed in this article
can generate a series of path points that, in turn, generates
a folded segment path, which cannot meet the actual nav-
igation requirements of AUV. Terefore, the method of
three times b-sample is employed to smooth the path fur-
ther. Its path points are generated according to the curve
function as the control points of the b-sample curve. P(t)

generates a smooth path with continuous curvature as
a discrete series of path points, defned as equation (15),
where Bi,k(t) is defned by Cox and DeBoor, defned as
equation (16).

P(u) � 
3

i�0
PiBi,k(u), (14)

B0,3 �
1
6
(1 − u)

3
B1,3 �

1
6

3u
3

− 6u
2

+ 4 B2,3

�
1
6

−3u
3

+ 3u
2

+ 3u + 1 B3,3 �
1
6
u
3
.

(15)

4. DQN-QPSO Algorithm

4.1. Structure of the Algorithm. Te general structure of the
DQN-QPSO algorithm is depicted in Figure 5. Te

algorithm treats the particle population as the agent. And the
environment is the shortest distance exploration of the AUV
from the starting point to the endpoint. Te state represents
the current position information of the particle population,
denoted by mi,d(t), gi,d(t), and di versity(S). Actions are
defned as the current operational states of the particles, i.e.,
normal, exploration, particle explosion, random mutation,
or fne-tuning. As shown in Figure 5, the normal action is
used to make the algorithm converge, the exploration,
particle explosion, and random variation are used to im-
prove the global search capability of the algorithm, and the
fne-tuning operation is used to improve the algorithm’s
fnal result’s precision. Algorithm 1 illustrates the proposed
DQN-QPSO search procedure.

In this algorithm described in this article, a multilayer
neural network is built, whose input layer is 7-dimensional
data containing particle population position information
and the output is 5-dimensional action data. Moreover, this
network has two hidden layers in the middle, with six
neurons in each layer, to realize the mapping from state to
action. Te particle population adjusts its location to get
a particular reward and continues this process until the
maximum number of iteration steps is reached. Te reward
values of the algorithm at each generation are shown as
follows:

rt �
· Fc gd(t)(  − Fc gd(t − 1)( ( , δ Fc gd(t)( <Fc gd(t − 1)( ,

−1, Fc gd(t)( ≥Fc gd(t − 1)( ,
 (16)

where δ is the fne-tuning damping factor in balancing the
global search capability of the algorithm and in preventing
falling into a local optimum prematurely and having difculty

choosing other behaviors to leap out of it owing to overreliance
on the rewards supplied by the fne-tuning operation in the
early stage of the search (as further clarifed in Section 4.5).
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z
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V (r)

xi,k+1 (t)

xi,k (t) x
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Figure 4: Vector projection of sea currents.

Journal of Robotics 5



During the operation of the algorithm, a seven-
dimensional information representing the current state
information of the particle population is passed into the
neural network in each iteration. And a best action is derived
through the operation of the neural network to update the

information of the particle population and calculate the
reward value rt. Ten, pass the data of (st, at, rt, st+1) into
experience pool to wait for training. When the accumulated
data reach a certain amount, we start training the neural
network to make it have better decision-making ability.

Initialize the particles’ positions, global best, and personal best with their ftness value
Initialize the weight vector of deep Q-network
Compute the mean best and diversity of the particles using equations (5) and (18)
While i� 1 to Maxiter
Do for each particles
Choose the best action at

Switch action
Case normal
Update the particles using equations (3), (4), and (19)

Case exploration
Update the particles using equations (3) and (4)

Case particle explode
Initialize the mbest

Case random mutation
Update the particles using equations (3), (4), and (20)

Case Fine-tuning operation
While j� 1 to 3

While k� 1 to K
Update the particles using equations (21), (22), and (23)
Compute the ftness value of personal best

End
End
i� i+K− 1

Set an immediate reward using equation (17)
End

End
Update the global best and personal best with their ftness value
Compute the mean best and diversity of the particles using equations (5) and (18)
Store transition (st, at, rt, st+1) in D

Sample random mini-batch of transitions (st, at, rt, st+1) from D

Calculate target value function yj �
rj, if episode terminates
rj + cmax q(sj+1, at

′
;ω′), otherwise



Perform a gradient descent step on (yj − q(sj+1, at
′;ω′))2

i� i+ 1
End

ALGORITHM 1: DQN-QPSO.

Exploration particle
explode

random
mutation

Global search operation

Normal Fine-turning

Local search
operation

Convergence
operation

Action

Action Action

Reward

RewardReward

Deep
Q-network

Figure 5: Algorithm structure diagram.
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4.2. Diversity Parameters. In 2006, Sun et al. introduced the
idea of diversity control into the QPSO model [25]. Te
search in the algorithm is guided by a diversity measure
di versity(S), and the parameter β in the algorithm is altered
by setting a threshold value so that the algorithm can achieve
convergence and divergence at the appropriate time. In this
article, the same parameter was used to describe the current
diversity state of the particle population. It is added to the
input side of the neural network as position information,
enabling it to make better judgments. Te following equa-
tion describes the diversity parameter:

diversity(S) �
1

N · |A|
· 

N

i�1

�������������



D

d�1
xi,d − xd 

2




, (17)

where S donates the particle population and |A| is the length
of the diagonal in the search space.

4.3. Normal and Exploration States. Normal and exploration
are both tuned to the parameter β in QPSO, which corre-
sponds to the QPSO running state of convergence and the
divergent state which is more likely to jump out of the local
optimum, respectively. According to the research [22], this
parameter can efectively control the algorithm’s conver-
gence rate. Te algorithm diverges when β> 1.778 and
converges when β< 1.778. Te normal and exploration state
operations are designed according to this characteristic.
When the algorithm is in the normal action, the value of β is
taken as shown in the following equation:

β � βmax −
t

T
βmax − βmin( , (18)

where βmax and βmin are the maximum and minimum values
of parameter β. In the normal action, the value of β is set to
be less than one; hence, they are typically set to 1.0 and 0.5,
and in the exploration action, the value of β is set to 1.8.

4.4. Particle Explode and Random Mutation. Te above
exploration states can efectively broaden the search range of
the algorithm and reduce the probability of the algorithm
falling into a local optimum. Based on this, two more ap-
proaches are added as actions to enhance the global search
capability of the algorithm, which combined with the ex-
ploration operation can result in the algorithm selecting
a better solution to the present challenge when it reaches
a local optimum.

Particles explode and random mutation operations have
been used in some QPSO-based variants, where the particle
explode operation is to initialize the mean best position
mi,d(t). Te reason is as follows: when the particles fall into
a local optimum, the distance between the particle and
mi,d(t) is too small, as can be seen from equation (3),
resulting in a shorter particle step size and making it more
difcult to escape after the particle falls into a local optimum.
Terefore, initializing mi,d(t) will increase the distance
between the particle and mi,d(t), thus causing the efect of
particle explosion.

Furthermore, the random mutation operation is a mu-
tation operation on the best location of a randomly selected
particle by adding a random value associated with the search
boundary to the best position and randomly modifying the
location of the particle as follows:

pi,d(t) � pi,d(t) + λ · xmax ,d · ϕ, (19)

where ϕ is the random number of the standard normal
distribution N(0, 1), λ is the weight factor, and xmax ,d is the
maximum search boundary of particles.

4.5. Fine-Tuning Operation. Te fne-tuning operation is
used to fne-tune the particle pi(t) on each dimension,
which is three-dimensional in the AUV path planning
problem described in this article, and on this basis, com-
bined with the ISPO model proposed in the literature [26],
the individual best values of the particles are adjusted more
precisely by independently adjusting the position in-
formation in the three dimensions, followed by optimizing
the global optimum. In the ISPO model, the velocity and
position in each dimension are calculated as follows:

Vi,d � a ·
1
k

r + b · Li,d, (20)

pi,d(k) �
pi,d(k) + Vi,d, pi,d(k)>pi,d(k − 1),

pi,d(k), pi,d(k)≤pi,d(k − 1).
 (21)

Te parameters a and b are the acceleration factors, r is
a uniformly distributed random value between [0.5, 0.5], and
k is the current number of iterations. Te algorithm will
iterate K a total of three times, and the values of Vi,d and Li,d

will be updated during each iteration. Te variable Li,d in-
dicates the speed-controlled learning value. If the ftness
function increases during the iteration, the value of Li,d is
doubled to approach the peak of the ftness function more
quickly, the value of Li,d is halved, and the algorithm’s
precision is enhanced. Te equation is as follows:

Li,d �
2Vi,d, pi,d(k)>pi,d(k − 1),

0.5Li,d, pi,d(k)≤pi,d(k − 1).
 (22)

Te fne-tuning operation is very useful in improving
the accuracy of the operation. However, as mentioned
earlier, it is given a low reward in the frst and middle of
the algorithm, mainly because there is a high possibility
that the fne-tuning operation can update the algorithm’s
global best position and increase the ftness value.
However, if the fne-tuning operation is used frequently in
the early stage of the algorithm, it will be more likely to
make the algorithm fall into the local optimum and fail to
jump out. In addition, the fne-tuning algorithm itself will
have K cycles, which consume about K times as much time
as the other operations. Terefore, to avoid the long
running time of the algorithm, a cost parameter C is
introduced as an internal delay between successive fne-
tuning operations. Each time after performing the fne-
tuning operation, it needs to interval C steps before using
the fne-tuning operation again.
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5. Experiment Results and Analysis

To verify the efectiveness of the DQN-QPSO algorithm,
a stochastic map model is established using the environment
modeling method mentioned in Section 2. Te proposed
algorithm and the quantum particle swarm algorithm are
compared in the same environment. For the underwater
environment, the experiment is separated into two parts, i.e.,
path planning in the sea current-only environment and path
planning in the environment with obstacles. Te map size is
set to 200× 200× 200, and 100Monte Carlo simulation trials
are conducted, respectively, to initialize the map in-
formation and record the mean and variance of the ftness
function for efectiveness analysis.

Te parameters of QPSO are based on the problem of
path planning and the parameters setting of DQN and ISPO
as in [5, 26]. For the setting of weights of the ftness function
f1, f2, andf3, we are based on the actual situation to ana-
lyze. AUVs generate high energy consumption for naviga-
tion distance, the second efect is the sea currents; therefore,
we give them relatively high weights. Although the defection
angle is less energy-intensive, frequent steering also has
a negative impact on navigation safety. So, we set f1 � 1,
f2 � 0.25, and f3 � 0.5. Te relevant parameters are set as
shown in Table 1.

5.1. Path Planning in Sea Current Environment. In the actual
AUV navigation, there are no obstacles at all times. To
ensure the comprehensiveness of the algorithm in practical
applications, the environment model with only sea currents
is designed, setting the starting point as (0,0,0), and the
endpoint is (200, 200, 100). Te algorithm in this article is
used to compare with the standard PSO algorithm, QPSO
algorithm, and PSO-GWO algorithm [21] in the path
planning and the ftness function graph for comparison, as
shown in Figure 6. In the performance test of the PSO, the
inertia weight ω is decreased linearly from 0.9 to 0.4 as in
[20]. In the performance tests for QPSO the con-
traction–expansion coefcient β varies from 1.0 to 0.5 lin-
early when the algorithms are running [22].

Based on this, the sea current information was randomly
initialized, and 100 Monte Carlo experiments were con-
ducted separately to record the mean and variance of the
ftness function, as well as the mean values of F1, F2, and F3,
as shown in Table 2.

It can be seen from Figure 6 that the paths designed by
these methods are useful for AUV navigation in a current-
only environment. However, compared with other algo-
rithms, the algorithm used in this article can obtain smaller
ftness function values, and the paths designed by it can
make greater use of the currents. In the early stages of the
algorithm, the DQN-QPSO algorithm converges slowly by
using diferent decision tests due to the need to train the
neural network better to make optimal decisions. However,
as the iterations proceed, the algorithm can adaptively
choose a better strategy to update the particle positions, keep
refreshing the optimal ftness function in the middle of the
algorithm, and further improve the ftness by fne-turning

operation in the later stages of the algorithm. It was turning
operation further to improve the ftness function value by
a small margin.

In contrast, compared to other algorithms, PSO and
QPSO fall into local optimum very early. Te PSO-GWO
algorithm is inferior to the DQN-QPSO algorithm regarding
local search capability. In addition, it can be concluded from
the data in Table 2 that the proposed method in this article
outperforms other path planning methods in terms of mean
and variance.

5.2. Path Planning in Obstacle and Sea Current Environment.
To simulate the navigation problem of AUV when navi-
gating near the seafoor, a hybrid model of obstacles and
currents was developed using the method in Section 2. Te
same four algorithms described in the previous section were
compared from the path images as well as the graph of the
ftness function, as shown in Figure 7. Also, 100Monte Carlo
experiments were conducted separately to record the mean
and variance of the ftness function and the mean values of
F1, F2, and F3, as shown in Table 3. In addition, four terrains
of diferent complexity were generated separately by
changing the number of peaks to test the efectiveness of the
algorithm, as shown in Figure 8.

As can be seen from the fgure, the paths planned by these
algorithms all ensure that the AUV successfully avoids known
obstacles. All also reduce the energy consumption of the AUV
by taking advantage of the favorable current fow, but the
ftness function of the paths planned byDQN-QPSO is smaller.
Te energy consumption of the planned paths is lower.

A comprehensive analysis of the above results shows that
more local optimal paths are added due to additional ob-
stacles. From the ftness function plot, it can be seen that all
four algorithms keep jumping out of the local optimum as
the cycle progresses. However, both PSO and QPSO algo-
rithms complete the convergence within 100 generations
and need help fnding the optimal solution. In contrast, the
DQN-QPSO and PSO-GWO algorithms have a stronger
global search capability. At the same time, the DQN-QPSO
algorithm can further improve the accuracy of fne-turning
operation, proving the algorithm’s efectiveness. In addition,

Table 1: Parameter settings in this article.

Parameter Value

QPSO
N 50
D 3
T 300

Fitness function

f1, f2, andf3 1, 0.25, 0.5
φmax 30

p 20
μ 10

DQN
α 0.01
c 0.99
δ 10

ISPO

a 100
b 1
K 10
C 3
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Figure 6: Path planning diagram in the sea current environment.

Table 2: Comparison of the results of the two algorithms.

Algorithm
Fc F1 F2 F3

Average value St. dev. Average value Average value Average value

PSO 0.5794 0.9417 0.2192 0.5357 0.4526
QPSO 0.5041 0.7642 0.1935 0.4615 0.3905
PSO-GWO 0.3382 0.4335 0.1163 0.3950 0.2462
DQN-QPSO 0.3036 0.3952 0.0924 0.4015 0.2217
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Figure 7: Path planning diagram in obstacle environment.

Table 3: Comparison of the results of the two algorithms.

Algorithm
Fc F1 F2 F3

Average value Variance Average value Average value Average value

PSO 0.7045 0.8590 0.2540 0.6926 0.5547
QPSO 0.6019 0.6248 0.2125 0.6512 0.4533
PSO-GWO 0.4752 0.5271 0.1624 0.5780 0.3367
DQN-QPSO 0.4484 0.5393 0.1504 0.5626 0.3148
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the comprehensive test of the terrain of diferent complexity
in Figure 8 shows that the algorithm has good path planning
ability for diferent maps and has good practical value.

In conclusion, the improved QPSO algorithm dynami-
cally selects fve actions to update the position of the particle
swarm by combining the ideas of DQN, in which three
global search operations greatly improve the global search
capability of the algorithm, making it possible to fnd the
optimal path solution on the complex terrain with mixed
currents and obstacles, while using fne-turning operations
in the later stages of the algorithm to improve the accuracy of
the path. At the same time, the ftness function designed in
this article is a signifcant improvement for the QPSO al-
gorithm in the underwater environment so that it can design
the route by using the sea current. It can consider the path
length, defection angle, and sea current by designing dif-
ferent weight coefcients of the function, which can be set
according to the actual situation in practical application.

6. Conclusion

Tis article proposes a path planning method combining
deep Q-network and quantum particle swarm algorithm.
Trough simulation experiments, it is proved that the path
planned by the improved algorithm can efectively avoid the
obstacle model and further minimize the AUV energy
consumption by using the current sea information. By

comparing the standard QPSO, it is found that the algorithm
in this article outperforms the QPSO algorithm in terms of
the ftness function, global search capability, and conver-
gence speed, demonstrating the algorithm’s efectiveness.
However, the algorithm requires more parameters to be
modifed, and its computational speed is dramatically de-
creased when combined with a neural network, which still
needs further research. In the subsequent research, the al-
gorithm will be merged with the actual size of the AUV, and
further research will be conducted from the perspective of
obstacle avoidance to improve the algorithm’s stability and
solve the parameter adjustment problem.
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