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Visual place recognition (VPR) is considered among the most challenging problems due to the extreme variations in appearance
and viewpoint. Essentially, appearance-based VPR can be considered as an image retrieval task, thus the key is to accurately and
efciently describe the images. Recently, global descriptor methods have attracted substantial attention from the VPR community,
which has contributed to numerous important outcomes. Despite the growing number of global descriptors presented, little
attention has been paid to the comparison and evaluation of these methods and so it remains difcult for researchers to
disentangle the factors that led to better performance. Tis study provided comprehensive insight into global descriptors from
a practical application perspective. We present a systematic evaluation that integrates 15 commonly used global descriptors, 6
benchmark datasets, and 5 evaluation metrics, and subsequently extended this evaluation to discuss the key factors impacting the
matching performance and computational efciency. We also report practical suggestions for constructing promising CNN
descriptors, based on the experimental conclusions. Our analysis reveals both advantages and limitations of three diferent types of
global descriptors, including handcrafted features-based ones, of-the-shelf CNN-based ones, and customized CNN-based ones.
Finally, we evaluate the practicality of reported global descriptors to mediate the trade-ofs between matching performance and
computational efciency.

1. Introduction

Over the past few decades, visual simultaneous localization and
mapping (SLAM) [1] has been considerably advanced in ro-
botics research communities. As one of the essential compo-
nents in the visual SLAM, visual place recognition (VPR)
denotes the task of ascertainingwhether or not the current place
has already been visited [2, 3]. In this manner, the system can
impose additional constraints for map building and trajectory
optimization, subsequently eliminating the incremental drift
[4–6]. As regards the robots that require autonomous operation
for an extended period, the appearance of the surrounding
environment may change drastically over time. Severe changes
in appearance, as well as the adverse impacts caused by the
occlusions, dynamic scenes, and perceptual aliasing [4] (see
Figure 1), make VPR still considered a daunting task.

VPR tends to be essentially viewed as the data association
task and is known as the appearance-basedmethod when the
data type is an image. In most cases, the appearance-based
methods are conducted within the framework of image
retrieval. Specifcally, the comparison is drawn between the
query image of the current place and images of previously
visited places stored in the historical database, and their
similarity acts as a key factor in determining whether they
are the same place. Terefore, it is very important for
appearance-based methods to generate appropriate and
accurate image descriptions [5].

Feature descriptor provides the compact and efcient
representation of distinctive characteristics in an image [7],
and ideally, the descriptor would yield good invariance
under image transformation. Te correspondences can be
established between the query image and database images by
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a similarity measurement of the descriptors; thus, it is
helpful to distinguish one place (image) from another. Te
VPR approaches tend to be classifed into three major di-
visions, namely, local descriptor-based, global descriptor-
based, and local region descriptor-based. Since global de-
scriptor methods include the aggregation of local descriptors
and local region descriptors refer to describing the image
patches with a global descriptor, we focus on global de-
scriptor methods to limit the scope of this study.

Global descriptors simply describe the image with only
one compact feature vector. On the one hand, global de-
scriptors can be directly constructed by extracting the global
features of the image, for instance, histogram of oriented
gradients (HOG) [8] and Gist [9]. Conversely, they could
equally be aggregated from multiple local descriptors. A
typical example is bag of visual words (BoVW) [10], which
clusters local features (e.g., SIFT [11], ORB [12]) and then
generates the vector of frequency histogram for global de-
scription. In recent times, many deep learning-based
methods are introduced into VPR to extract global fea-
tures [13–18], both of-the-shelf and customized convolu-
tional neural network (CNN) models. While the global
descriptor methods in VPR have attracted extensive atten-
tion, few papers have contrasted them from a comprehensive
perspective. It remains complicated for researchers, espe-
cially inexperienced novices to thoroughly comprehend this
research topic. Terefore, one of the main focuses of our
work is to fgure out the mechanism that contributes to
improved performance. In particular, considering the great
potential of deep learning techniques, we also integrated
recent advances into our VPR evaluation framework.

Te drastically changing environment will allow for false
place recognition, which will disrupt the global consistency
of the map and lead to a wrong localization [19, 20].
Terefore, high hopes have been pinned for VPRmethods to

achieve higher or even 100% recognition precision [21].
Although false-positive results could be fltered out by
temporal [4, 22–24] or geometric consistency check [25–27],
it is more important to develop novel descriptors that have
better performance being more robust and recognizable.
Appearance and viewpoint invariance is very important for
descriptors but it is not the only property to be considered in
the VPR task. Te descriptors should be computationally
efcient to attain the requirements of real-time running.
Terefore, another key contribution of this research is to
assess the global descriptors from a practical application
perspective.

To sum up, this work has three main contributions as
follows:

(i) We present a comprehensive assessment of the
global descriptor methods commonly used in VPR
tasks, thereby fguring out the motivational factors
for improved performance. Our work covers 15
global descriptor methods, 6 benchmark datasets,
and 5 metrics.

(ii) We give practical advice for the design of better
global descriptors for VPR tasks, based upon
quantitative and qualitative analysis. Te specifc
analysis of hierarchal features and backbone net-
works was implemented for this purpose.

(iii) We provide valuable information regarding VPR
performance from the point of view of practical
applications. Tis investigation ofers the trade-ofs
between matching performance and computational
efciency.

Te remainder of this paper is structured as follows. In
Section 2, we provide a review of the typical global descriptor
methods used in VPR tasks. Ten, Section 3 describes the
implementation details of the evaluation experiments. Te

(a)

(b)

Figure 1: Te challenge of VPR is that (a) the same places can look totally diferent while (b) the diverse locations have a similar sensory
appearance.
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experimental results, comparison, and analysis are carried
out in Section 4. Finally, Section 5 gives a conclusion to
this study.

2. Literature Review

Te similarity between two global descriptors is readily
measured by cosine similarity or Euclidean distance, thus it
is easy to implement and maintain. Global descriptor
methods describe the image as a whole and extract the
handcrafted or learning-based advanced features through
specifed approaches [7]. In this case, the existing methods of
global descriptors can be divided into two: (1) handcrafted-
based global descriptor methods; (2) deep learning-based
global descriptor methods. To facilitate the understanding of
deep learning-based global descriptor methods, we also give
a brief introduction to recent advances in deep learning
techniques, especially CNN models.

2.1. Handcrafted-Based Global Descriptor Methods. Such
methods focus on the information present in the image itself,
such as the changes in pixel intensity. Histogram of Oriented
Gradients (HOG) [8] is one of the most commonly used
handcrafted global descriptors. It can extract the structure
information of the images by calculating the gradients and
orientations of each pixel. McManus et al. [28] extracted
HOG features from image patches containing unique visual
elements, improving robustness to extreme appearance
changes. An impressive work is CoHOG [29], which uses
HOG to represent salient image regions for convolutional
matching. Another prominent invariant global descriptor is
Gist [9]. Murillo and Kosecka [30] presented a Gist-based
panorama matching approach for recognizing the revisited
places, promoting the application of Gist in VPR tasks.
Shortly thereafter, Singh and Kosecka [31] conducted ex-
tensive experiments in a 13-mile urban area, demonstrating
that the Gabor–Gist descriptor is competent for large-scale
scenes.

Instead of using one global feature for the entire images,
another class of global descriptors is based on the aggregated
local descriptors. BoVW was initially used for image re-
trieval but has already been demonstrated to be an efective
model for place recognition [3, 4, 22–24, 32, 33]. Impor-
tantly, BoVW also confers scalability of the map, which is
very important for place recognition in large-scale envi-
ronments and long-term autonomy. Benefting from the
tree-structure vocabulary [10] and inverted index, the pre-
viously visited places (images) can be stored and retrieved in
a highly efcient manner. An early application case of BoVW
in VPR was performed by Schindler et al. [34], who stored
more than 100 million SIFT features using a vocabulary tree
and successfully achieved place recognition on 20 km of
urban roads. Gálvez–López and Tardos [4] proposed an
enhanced BoVW method and open-sourced their C++ li-
brary named DBoW for converting images into a bag-
of-word representation and constructing the visual dictio-
nary [35]. Owing to its convenience and efciency, the
improved version DBoW2/3 has been utilized in many

excellent SLAM systems [23, 24]. Similar approaches were
successfully presented with Fisher vectors (FV) [36] or
vector of locally aggregated descriptors (VLAD) [37].

2.2. Deep Learning-Based Global Descriptor Methods.
Given the rapid development of deep learning, the novel
properties of learning-based techniques have inspired re-
searchers to leverage them to remedy the shortcoming of
handcrafted descriptors. After the seminal work of Chen
et al. [38], research has increasingly focused on learning-
based descriptors which are mainly built on CNN features
[13, 39–41]. Sünderhauf et al. [13] used pretrained AlexNet
[42] as a descriptor extractor and concluded that mid-level
features have better robustness to appearance variations.
Hou et al. [39] have reported a similar fnding, where a CNN
model was pretrained on the scene-centric database called
Places365 [43]. Zhang et al. [40] constructed a graph-based
VPR method through the integration of visual features
extracted from VGG16 [44] and temporal information from
image sequences. Wang et al. [41] used pretrained ResNet
[45] as the image descriptor to realize place recognition in
a dynamic environment. Furthermore, researchers have
focused on developing specialized neural network archi-
tectures for VPR tasks. Reconstructing the traditional ap-
proaches via deep learning-based techniques motivated the
emergence of novel VPR methods, such as CALC [46],
NetVLAD [14], and E2BoWs [47]. Tese methods combine
the complementary strengths of handcrafted and learning-
based descriptors to arrive at a remarkable performance.
Additionally, autoencoder and its modifed versions have
also been introduced into the VPR domain [16]. Te ad-
vantage of these unsupervised learning methods is that they
require less manual data preparation.

In theory, the performance of CNN-based descriptors,
especially supervised learning ones, depends on high-quality,
large-scale training datasets. Driven by the booming VPR
research communities, more relevant datasets in this feld
have been constructed and the development of global de-
scriptors has been further promoted. A typical example is the
specifc place dataset (SPED), developed by Merrill and
Huang [46] in 2017. Tis study highlighted the diferences
between a network trained on SPED versus ImageNet and
indicated that the CNN-based descriptors trained on tailored
datasets tend to have enhanced performance gain. Addi-
tionally, it was also found that adaptability and generalization
can be improved by fne-tuning the targeted dataset [47–49].

2.3. Popular Deep Learning Models. Deep learning is par-
ticularly adept at extracting high-level abstract features from
raw images. CNN is one of the most popular deep learning
networks. Te CNN model was frst proposed by LeCun
et al. [50] for recognizing handwritten digits. Extending
work AlexNet [42] has surged a wave in the computer vision
community. Several important backbone networks were
proposed in subsequent years, such as VGG [44], Goo-
gLeNet [51], ResNet [45], Xception [52], and DenseNet [53].
With the reorganization of processing units and the
emergence of new modules, a wide variety of CNN
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architectures are constantly presented in response to dif-
ferent applications. Over, the trend has been towards deeper
and more complicated architectures to derive better per-
formance. However, going deeper means increasing se-
quential processing and latency. For robots with
computationally limited platforms, it is critical to develop
lightweight and low-latency models.

To expand the applications in mobile and embedded
devices, some attempts were made to reduce the parameter
quantity of the CNN model. SqueezeNet [54] employs 1× 1
convolutions to compress the model to less than 0.5MB.
MobileNet [55, 56] builds on depthwise separable convolu-
tion and efciently balances latency and accuracy. Te core
component of ShufeNet [57] is pointwise group convolution
and channel shufe, which signifcantly reduce computation
costs. Benefting from neural architecture search, EfcientNet
[58] ofers adjustable depth-width-resolutiontrade-ofs and
leads to better accuracy and efciency.

3. Implementation Details

Based on the signifcant work reviewed above, this paper
chooses 15 typical global feature descriptors for evaluation
(see Table 1), while the motivation for the choices and
implementation details are briefy presented. Ten, the
datasets and evaluation metrics used in our experiments are
presented.

3.1. Global Descriptor Methods

3.1.1. Handcrafted Feature-Based Descriptors

(1) HOG. HOG is a simple but efective descriptor and has
good invariance to illumination changes. We use a window
size of 16× 32, a block size of 16×16, and a cell size of 8× 8.
Te number of bins is set equal to 9. Resultantly, an input
image with 160×120 size is represented as a 16416-
dimensional HOG descriptor.

(2) Gist. Te essential idea behind Gist is that an image can be
described by the responses of Gabor flters at diverse scales
and orientations. In our work, input images are convolved
with 20 Gabor flters at 3 scales (8, 8, and 4 orientations). Each
feature map is divided into 16 regions by a 4× 4 grid, thus the
output descriptor size is 960 dimensions.

(3) DBoW3-ORB. As mentioned previously, DBow3 is one of
the most widely used methods in VPR. We utilize the vo-
cabulary fle ORBvoc provided by ORB-SLAM2, which is
trained on a large-scale dataset and has good adaptability
and generalization.

3.1.2. Of-the-ShelfCNN-Based Descriptors. In this paper, we
select six of-the-shelfCNN-based descriptor methods, in-
cluding AlexNet, VGG16, ResNet50, MobileNet v3, Shuf-
feNet v2, and EfcientNet B0. Tey have been introduced in
detail in their paper so we will not repeat their description.
Here, we provide the implementation details and
motivation.

To a certain extent, the performance of the CNN
models depends on both the scale and richness of training
datasets. For all experiments, six of-the-shelf CNN
models pretrained on ImageNet are used to generate
global feature descriptors. For AlexNet, VGG16, and
ResNet50, since the performance of hierarchal features
has attracted considerable attention, the features extracted
from diferent layers are used as global descriptor vectors,
respectively. Analysis results are discussed in Section 4. To
more comprehensively survey the global descriptors, we
also selected three very recent advances to generate ho-
listic features for describing images, including MobileNet
v3, ShufeNet v2, and EfcientNet B0. Te choice of them
is motivated by their lightweight architectures and
practicality: larger models are less suitable for resource-
constrained robots or mobile devices.

3.1.3. Customized CNN-Based Descriptors

(1) CALC. CALC is a lightweight convolutional autoencoder
model proposed by Merrill et al. to address the shortcoming
of HOG which is not robust to viewpoint changes. Our
implementation of CALC retains the last three fully con-
nected layers but the original backbone network was
substituted with a pretrained ResNet18. Noting that the last
pooling layer along with the fully connected layer of
ResNet18 is eliminated. For training, we fne-tuned the
modifed model on the Places365 dataset to better focus on
the VPR task and followed the training setup of CALC’s
open-sourced work, so the corresponding output descriptors
are also 3648-dimensional.

(2) NetVLAD. Te reformulating of VLAD through CNN-
based techniques contributed to this signifcant outcome. It
provides a diferentiable pooling mechanism with trainable
parameters. Te proposed NetVLAD layer serves as a plug-
and-play module and presents a rich yet compact image
representation. We implemented the NetVLAD in Pytorch
and also used Pittsburgh dataset for training.

(3) MobileNetVLAD. MobileNetVLAD was initially pro-
posed for 6-DoF pose estimation. We integrated it into our
evaluation work as a reference for comparison. Interestingly,
MobileNetVLAD is trained in a self-supervised manner.
Under the supervision of a well-trained NetVLAD model
(the teacher), this network (the student) uses knowledge
distillation to transfer the knowledge, thus being able to
extract NetVLAD descriptors with a more lightweight
network.

(4) DBoW3-SuperPoint. SuperPoint is a CNN-based interest
point detector and descriptor. With respect to handcrafted
local descriptors, it achieves superior homography estima-
tion results in the premise of high real-time performance. To
ft the VPR task, we further incorporated this local descriptor
into the BoVW model and led to a novel global descriptor.
Our implementation is also carried out on the C++ DBoW3
library.
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(5) Autoencoder (AE). Tis type of neural network can learn
efcient image representations in an unsupervised manner,
and thus is well suited for VPR tasks that lack high-quality
labeled data. It is an appropriate case for a customized CNN-
based descriptor, based on its outstanding performance as
shown by Gao and Zhang [16] and Park et al. [81]. In our
work, the encoder of our AE is similar to the implementation
of [46] and the decoder is composed of deconvolution and
unpooling layers. Te network was trained on the Places365
dataset, and the output of the well-trained encoder was
considered as the global descriptor.

(6) Variational Autoencoder (VAE). VAE was proposed by
Kingma et al. where explicit regularization is introduced to
ensure the good properties of its latent space. An interesting
VPR method built upon a VAE was proposed by Merrill and
Huang [83]. We designed a network structure similar to the
autoencoder described above and also trained it on the
Places365 dataset. Te original idea that we used VAE is for
dimensionality reduction rather than image generation, thus
the decoder was removed during inference.

3.2. Evaluation Metrics. A descriptor that has state-of-
the-art place matching performance, but an unacceptable
longer place retrieval time, will fail to meet the rigid demand
for real-time localization systems. For practical reasons, we
integrated multiple evaluation metrics in this work to
comprehensively evaluate these global descriptors in terms
of matching performance and computational efciency.
Details of each metric are presented as follows.

3.2.1. Matching Performance. For VPR tasks, true positives
(TP) denote the correct image/place matching results, false
positives (FP) refer to the situations where the actually
incorrectly matched images are judged to be the same place,
while false negatives (FN) represent the situations where the
true matching cases are not screened out. For most VPR
datasets, it should be pointed out that every query image has
a ground-truth match in the database images, thus there are

usually no true negatives [13]. Precision and recall are
computed as follows:

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
.

(1)

We present the evaluation metrics used in this paper as
follows:

(1) AUC. Ideally, a VPR method should achieve 100%
precision and 100% recall, and indeed, a negative correlation
was found between precision and recall, that is, increasing
precision frequently leads to a reduction in the recall.
Terefore, many works [3, 4, 32, 46, 83–85] have focused on
the area-under-the-precision-recall (AUC) curves for
a comprehensive evaluation and we also introduced it into
our assessment work.Te precision-recall (PR) curves refect
the changing trend of precision with rising recall, thus it can
help in making an informed decision when facing the
precision/recall dilemmas. AUC summarizes precision and
recall in a single visualization, only a single correct match
result is taken into account when calculating AUC.

(2) Recall at 100% Precision. Furthermore, another metric
applied in this study is recall at 100% precision (RP100, for
short). It is also a commonly usedmetric to evaluate the VPR
methods [16, 40, 46, 68]. Te motivation of using this metric
is the favoritism of precision in the VPR system. In general,
100% precision is very important for the VPR system be-
cause false positives are extremely disruptive and
unacceptable.

(3) Recall@1. Te requirement of Recall@1 is that the best-
matched database image for a query image must be a true
positive. Although Recall@N has been widely used in image
retrieval tasks, that is, the correct retrieval only needs to be
among the Top-N candidates, the allowable range for VPR or
loop closure detection is more stringent from the viewpoint
of practical application. In addition, the motivation behind

Table 1: 15 typical global feature descriptors evaluated in our work.

Category Method Use in VPR

Handcrafted-feature-based
HOG [8] [28, 29, 46]
Gist [9] [30, 31]

DBoW3-ORB [4] [4, 23, 24, 59]

Of-the-shelf CNN-based

AlexNet [42] [2, 13, 39, 49, 60, 61]
VGG [44] [14, 17, 40]
ResNet [45] [45, 62]

ShufeNet [57, 63] [64]
MobileNet [55, 56] [65–68]
EfcientNet [58] [69, 70]

Customized CNN-based

CALC [46] [46]
NetVLAD [14] [14, 70–75]

MobileNetVLAD [76] [76, 77]
DBoW3-SuperPoint [78] [79]

Autoencoder [80] [16, 46, 81]
Variational autoencoder [82] [83]
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using Recall@1 is that this metric actually refects the per-
centage of correctly matched query images.

3.2.2. Computational Efciency. Despite limited computing
resources, the place recognition module in a mobile robot
must perform in real-time to maintain good localization
accuracy. In this case, the computational efciency of the
descriptors is another major consideration, including feature
encoding time and descriptor matching time.

(1) Feature Encoding Time. Te feature encoding process of
most global descriptors is relatively time-efcient because no
keypoints detection process is involved. In such a case,
feature encoding time denotes the time spent in extracting
the global features. BoVW-based descriptors (i.e., DBoW3-
ORB and DBoW3-SuperPoint in this article) are exceptions,
their time-consuming process includes the time spent in
detecting keypoint, describing, and mapping into bag-of-
words space. For statistical validation, the encoding time
corresponds to the average of over 200 runs.

(2) Descriptor Matching Time. Te total time consumption of
descriptor matching is proportional to the scale of the map
(database images). For a fair comparison, descriptor
matching time here refers to the time required to match two
global descriptors, which is also a statistical mean. Te
manner of similarity measurement also exerts infuence in
matching time while cosine similarity was used for all global
descriptors evaluated in this study.

3.3. Evaluation Datasets. We integrated 6 benchmark
datasets to evaluate the performance of the above 15 global
descriptors. Tese datasets feature images from diverse
scenarios, including indoors, urban roads, suburbs, and
natural scenery. Each dataset has two separate folders, one
for organizing query images and one for database images.
Te ground-truth information is provided by the flename,
that is, the images with the same flename indicate the same
place. For each query image, there is a database image that
was taken at the same place but has undergone changes in
appearance and/or viewpoint. Table 2 provides a summary
of the datasets and their major challenges; Figure 2 gives the
sample images.

Due to the diferences in shooting frequency or
traveling speed, the image sequences in some datasets
may be consecutive and the adjacent images have over-
lapping visual content. Terefore, the setup of ground-
truth tolerance is commonly accepted in VPR tasks but
generally stricter than that of computer vision tasks. Te
ground-truth tolerance used in our work is presented in
Table 2.

Here, we provide a brief introduction to these datasets
to facilitate analyzing the performance of each descriptor
method. Te download links of all datasets are available in
the footnote.

(1) Nordland Dataset (https://nrkbeta.no/2013/01/15/).
TeNordland dataset is extracted from video footage

recording four 729 km journeys on the same route. It
collects both natural and urban landscapes in four
seasons. Severe cross-seasonal changes lead to strong
appearance changes but no viewpoint changes are
involved due to the fxed route. We choose Spring
versus Winter image sequences for experimental
analysis.

(2) SPEDTest Dataset (https://goo.gl/OXeL2X). Te
SPEDTest dataset is a subset picked from the original
SPED dataset. It is captured with the outdoor
cameras that are used to collect the long-term sce-
narios changes and hence contains extreme ap-
pearance variations in changeable seasons and
illumination conditions. Due to the limitation of the
camera’s fxed view angle, this dataset exhibits no
viewpoint changes.

(3) Campus Loop Dataset (https://github.com/rpng/calc/
tree/master/TrainAndTest/test_data). Tis dataset
consists of two image sequences, captured in in-
door and outdoor environments. For the purposes
of covering multiple challenges, the frst image
sequence was taken on a cloudy snowy day with
buildings and roads covered in snow, whereas the
second image sequence was taken on a sunny day.

(4) Gardens Point Dataset (https://zenodo.org/record/
4561862). Tis dataset was collected at the campus
scenes with a handheld mobile phone. In this study,
we used two daytime image sequences recorded
under diferent illumination conditions and left/
right walking paths. Tese factors render this dataset
containing strong lateral viewpoint changes and
modest appearance changes.

(5) Cross-Seasons Dataset (https://www.visuallocalization.
net/datasets/). Te cross-seasons dataset used in our
work contains two image sequences taken in diferent
illumination, seasons, or weather conditions. Te in-
terference from the dynamic object and perceptual
aliasing further made it challenging to perform place
recognition.

(6) Alderley Day/Night Dataset (https://www.dropbox.
com/s/ejmnz9vfp4n7o7s/alderley.zip?dl�0). Tis
dataset was created by Milford et al. where two
image sequences were captured on a bright sunny
day and an extremely heavy rainy night, re-
spectively. Furthermore, night storms cause ex-
treme appearance changes and blurring, making it
complicated even for humans to achieve successful
place recognition.

4. Results and Discussion

In the following, we will present the experimental eval-
uation of the 15 global descriptor methods and discuss
the driving forces behind these results. Te analysis was
generally carried out from two aspects, including
matching performance and computational efciency, to
facilitate more consideration of the practicability.
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4.1.Matching PerformanceAnalysis. Te PR curves for all 15
global descriptors are presented in Figure 3, and the values of
AUC and RP100 for each descriptor are presented in
Tables 3–5.

For three handcrafted feature-based descriptors, Figure 3
shows that their place matching precision either retains at
a relatively low level or degrades substantially with the in-
creasing recall when encountering drastic visual changes.
HOG can achieve good performance on SPEDTest and
Nordland datasets that do not involve any viewpoint
changes. However, its performance is signifcantly degraded
when meeting the dual challenge of viewpoint and ap-
pearance variations. DBoW3-ORB and Gist can only yield
acceptable matching performance on the less-challenging
datasets, such as Gardens Point and cross-seasons. Although
aggregated as a global descriptor through DBoW3, as a local
descriptor, ORB is not robust to appearance changes, which
leads to its bottom-ranked AUC on the Norland and
Alderley datasets.

Despite the choice of datasets having a moderate in-
fuence on assessment results, we observe that the perfor-
mance of CNN-based descriptors has an overall better
performance over non-CNN-based descriptors, particularly
for datasets that have extreme variations in viewpoint and
appearance. For instance, while all descriptors sufer from
multiple challenges, the PR curve of CNN-based descriptors
decreases relatively gently, whereas that of handcrafted
descriptors declines rapidly. Te quantitative comparisons
are presented in Table 3–5. Te results of the AUC indicator
show that CNN-based descriptors almost always outperform
handcrafted feature-based descriptors, a similar picture is
seen on the RP100 metric. One exception is DBoW3-
SuperPoint, which cannot reach the same level as other
CNN-based methods. Like DBoW3-ORB, DBoW3-
SuperPoint only performs well on the Gardens Point
dataset with slight appearance changes. Tis further shows
that the aggregation of local descriptors cannot hold for the
strong appearance changes to the same level as global de-
scriptors that represent the image as a whole. In most cases,
we observed that CALC achieves better PR performance
than HOG, demonstrating that better matching results can

be delivered by integrating the advantages of CNN and
traditional methods. Despite their lightweight networks, the
matching performance of ShufeNet, MobileNet and Ef-
cientNet is marginally better than that of the other three of-
the-shelf CNN-based descriptors.

In addition, the customized CNN-based descriptors
generally have better robustness compared to of-the-shelf
CNN-based ones, thereby maintaining good adaptability
and generalization in common challenges. In terms of PR
curves, the decay of the former’s precision is relatively slow.
Tis means that customized CNN-based descriptors gen-
erally achieve higher precision under the same recall. An
impressive method is NetVLAD that nearly in most cases
attains state-of-the-art performance. MobileNetVLAD can
achieve (and sometimes even surpass) NetVLAD-level place
matching performance, demonstrating the potential of
lightweight CNN in VPR tasks.

4.2. Computational Efciency Analysis. We now discuss the
computational efciency of the 15 global descriptor
methods. In this experiment, we use the Gardens Point
dataset with an image resolution of 960× 540, and the values
of feature encoding time and descriptor matching time are
listed in Table 6. Note that a unifed CPU-only platform was
used for both conventional and CNN-based descriptors,
whereas CNN-based ones generally require more compu-
tational resources. Tis experiment was performed on an
Ubuntu 18.04 LTS operating system running on an Intel
Xeon E5-2678 V3 CPU @ 2.5GHz and RTX 2080Ti GPU.

It can be seen that the matching time and dimension are
positively associated when using the same similarity mea-
sure. For instance, the HOG descriptor achieves the fastest
feature encoding of only 1.46ms, but this descriptor
matching time is signifcantly higher because of its larger
dimension. Similarly, 6 of-the-shelf descriptors are of di-
mension 1000, therefore matching time for them is nearly
identical.

We now turn to the discussion of feature encoding
time. As illustrated in Table 6, CNN-based global de-
scriptors are computationally intensive, thereby

Nordland SPEDTest Gardens Point Campus Loop Cross-Seasons Alderley Day/Night

Figure 2: Sample images from 6 benchmark datasets.
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commonly spending more time in feature encoding with
a few exceptions. Te lightweight CNN-based descriptors
are able to reach the same encoding efciency as non-
CNN-based descriptors on a CPU-only platform. Such
lightweight networks are important for meeting the need
of the real time. A typical example is MobileNetVLAD (a
lightweight version of NetVLAD), which achieves a sig-
nifcant speed boost. Te encoding time speed roughly
doubled after using MobileNet instead of the original
VGG16 backbone.

We also report the encoding times of 12 CNN-based
descriptors accelerated with GPU in Table 7. As can be

seen, all the CNN-based global descriptors are able to
achieve real-time performance under the GPU accelera-
tion. For three lightweight networks, including Shuf-
feNet, MobileNet, and EfcientNet, they are outstanding
regarding the number of parameters (#Params) and
foating-point operations per second (FLOPs), but their
inference speeds are less prominent than in the CPU
platform.Tis is because of their specifc design for mobile
and embedded devices. In addition, to these three de-
scriptors, it is apparent that the major factor impacting the
descriptor encoding time is the required foating-point
operations.
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Figure 3: Te precision-recall curves for all 15 global descriptors generated on the 6 benchmark datasets.

Table 3: Te values of AUC and RP100 for 3 handcrafted feature-based descriptors.

Dataset
HOG Gist DBoW3-ORB

AUC RP100 AUC RP100 AUC RP100

Norland 65.71 10.10 61.68 30.43 24.47 18.18
SEPDTest 81.58 11.22 44.18 6.90 44.20 14.29
Campus loop 38.78 18.18 9.46 0 55.41 5.26
Gardens Point 46.06 11.11 62.54 12.86 71.53 8.11
Cross-seasons 55.22 9.78 67.38 0 63.47 17.78
Alderley 18.64 0 44.10 2.44 21.15 0

Table 4: Te values of AUC and RP100 for 6 of-the-shelf CNN-based descriptors.

Dataset
AlexNet VGG16 ResNet50 ShufeNet MobileNet EfcientNet

AUC RP100 AUC RP100 AUC RP100 AUC RP100 AUC RP100 AUC RP100

Norland 14.85 0 15.21 0 53.25 8.06 36.87 1.49 30.78 2.50 35.00 0
SEPDTest 77.18 36.71 71.42 7.79 78.48 10.00 75.89 22.86 79.55 16.49 70.92 14.13
Campus loop 70.49 35.13 76.68 39.40 83.16 14.00 86.61 31.00 76.71 33.33 76.67 21.43
Gardens Point 83.38 11.26 73.09 2.38 66.26 0.72 93.52 4.55 78.02 0.63 85.72 7.69
Cross-seasons 37.46 3.92 53.25 5.80 44.22 2.63 61.91 5.38 49.92 6.06 56.38 7.69
Alderley 46.71 16.67 40.18 3.85 22.50 2.33 27.26 0 47.37 3.23 40.29 0
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Table 6: Times (in milliseconds) for feature encoding te (ms) as well as descriptor matching tm (ms), using a CPU-based platform.

Methods Input size te tm Dimensions
HOG 160×120 1.46 0.0074 16416×1
Gist 960× 540 40.25 0.0024 960×1
DBoW3-ORB 18.13 0.0071 32× 500
AlexNet

224× 224

12.48 0.0027

1000×1

VGG16 54.42 0.0029
ResNet50 48.27 0.0029
ShufeNet 16.84 0.0026
MobileNet 18.25 0.0028
EfcientNet 51.71 0.0029
CALC 160×120 24.71 0.0032 3648×1
NetVLAD 224× 224 71.35 0.0136 32768×1
MobileNetVLAD 34.53 0.0043 7680×1
DBoW3-SuperPoint 960× 540 32.81 0.0001 284×1
AE 224× 224 52.45 0.0063 12544×1
VAE 61.40 0.0061 12544×1

Table 7: Times (in milliseconds) for feature encoding te (ms) of 12 CNN-based descriptors, using a GPU-based platform.

Methods #Params (M) FLOPs (G) te
AlexNet 61.10 0.72 2.13
VGG16 138.36 15.48 5.07
ResNet50 25.56 4.12 4.94
ShufeNet 2.28 0.15 9.07
MobileNet 2.54 0.06 8.03
EfcientNet 5.28 0.40 12.85
CALC 21.30 0.72 5.71
NetVLAD 14.74 15.36 15.48
MobileNetVLAD 0.95 0.06 22.82
DBoW3-SuperPoint — — 17.38
AE 1.14 3.21 3.31
VAE 1.64 3.25 4.26

Table 8: Comparison of diferent feature levels of CNN-based descriptors (with a GPU platform).

Descriptors Dimensions
Time (ms) Metric

te tm AUC RP100

AlexNet

pool1 (64, 27, 27) 0.  0.0086 0.69 0.07
pool2 (192, 13, 13) 0.77 0.0068 0.83 0.05
conv3 (384, 13, 13) 1.02 0.0116 0.90 0.07
conv4 (256, 13, 13) 1.18 0.0072 0.89 0.21
pool5 (256, 6, 6) 1.25 0.0048 0.91 0.31
fc6 (1, 4096) 1.76 0.0030 0.89 0.22
fc7 (1, 4096) 1.76 0.0027 0.89 0.06
ALL (1, 1000) 2.13 0.0024 0.83 0.11

VGG16

pool1 (64, 112, 112) 1.03 0.1091 0.61 0.04
pool2 (128, 56, 56) 1.65 0.0567 0.60 0.16
pool3 (256, 28, 28) 2.47 0.0330 0.81 0.18
pool4 (512, 14, 14) 3.90 0.0174 0.81 0.11
pool5 (512, 7, 7) 4.66 0.0060 0.89 0.11
fc6 (1, 4096) 4.97 0.0040 0.88 0.22
fc7 (1, 4096) 4.96 0.0040 0.82 0.08
ALL (1, 1000) 5.07 0.0029 0.73 0.02
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Table 8: Continued.

Descriptors Dimensions
Time (ms) Metric

te tm AUC RP100

ResNet18

pool1 (64, 56, 56) 0.69 0.0580 0.58 0.00
stage2 (64, 56, 56) 1.83 0.0362 0.61 0.15
stage3 (128, 28, 28) 2.80 0.0230 0.73 0.16
stage4 (256, 14, 14) 3.64 0.0085 0.81 0.15
stage5 (512, 7, 7) 4.79 0.0060 0.90 0.12
ALL (1, 1000) 4.94 0.0029 0.74 0.02

ResNet50

pool1 (64, 56, 56) 0.76 0.4271 0.60 0.00
stage2 (256, 56, 56) 3.22 0.0860 0.63 0.06
stage3 (512, 28, 28) 6.73 0.0622 0.76 0.11
stage4 (1024, 14, 14) 11.49 0.0378 0.81 0.14
stage5 (2048, 7, 7) 13.24 0.0029 0.86 0.11
ALL (1, 1000) 12.64 0.0024 0.66 0.01
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Figure 4: Te values of Recall@1 for 15 global descriptors.
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4.3. Te Inquiry in Constructing Better CNN Descriptors.
Based on the abovementioned results and discussion, we
attempted to fgure out which aspects a descriptor can
beneft from. As discussed earlier, the contradiction lies in
that VPR methods generally run on a computationally
limited platform but are asked to meet real-time re-
quirements. Terefore, a better global descriptor should be
sufciently lightweight and efcient to compute. Apparently,
compressing the size of the CNN-based descriptors does not
lead to the loss in matching performance. Comparing
MobileNetVLAD and NetVLAD, it will be seen that the
former can achieve a better comprehensive performance,
even under complex challenges.

Sünderhauf et al. [13] reported that the mid-level layer of
AlexNet can yield outstanding performance even under
strong appearance changes. Being broader in scope than this
work, our work utilizes more models to verify the correlation
between matching performance and feature levels. Te re-
sults are shown in Table 8, and the optimal value for each
indicator is indicated in bold in the table. Te results of this
paper agree with the conclusion drawn in [13], and a similar
phenomenon can also be observed in VGG16 and ResNet18/
50. Features from shallower layers, particularly the outputs
from the frst pooling layer cannot achieve matching per-
formance to the same level as features from other higher
layers. It is demonstrated that lower-level features (i.e.,
edges, lines as well as blobs) exhibit sensitivity to the var-
iations in viewpoint and appearance. Contrary to popular
belief in the computer vision community, the performance
degradation happens in the features from high-level layers.
One possible reason is that high-level features are more
semantically meaningful but thus sufer signifcantly on
perceptual aliasing. Given the analysis above, we considered
that the depth of a CNN descriptor should be moderate, and
a fully connected layer should be avoided. It is also readily
observed that extracting features from higher layers will
introduce more sequential processing, thus decreasing the
number of CNN layers will be benefcial in the computa-
tional efciency as well.

Another fnding from the PR curves is that place
matching performance for CNN-based descriptors is af-
fected by the relevance of the training dataset. Despite the
simple structure, AE and VAE yield promising results be-
cause they use scene-centric Places365 datasets. In com-
parison with the of-the-shelf models which trained on
ImageNet, they can learn more relevant features for place
representation.

4.4. Practicality Analysis. From the perspective of practi-
cality, the system primarily focuses on the proportion of true
positives successfully retrieved under acceptable computa-
tional efciency. Taking closed-loop detection in SLAM as
an example, the more correct closed loops detected, the more
likely the reliable localization accuracy will be maintained.
Terefore, we also evaluated the performance of 15 reported
descriptors under the Recall@1 metric, as shown in Figure 4.
Tis metric actually refects the success rate of the place

recognition. Figure 4 demonstrates visually the percentage of
correct matching for each descriptor.

Although our results are preliminary due to the limited
scope of the survey, we recommend the following:

(1) In the presence of none or slight viewpoint changes
(e.g., a robot whose routes barely change), the HOG
descriptor is a very suitable candidate because of its
computational efciency and efectiveness. DBoW3
is a cost-efective and convenient alternative for less-
challenging scenes.

(2) For more complex and changeable environments,
CNN-based global descriptors can retrieve more
correct matches, nonetheless at the expense of
considerable computing resources. Terefore, most
CNN-based descriptors are not suited for a CPU-
only platform unless their architectures are light-
weight enough to acquire low computations.

(3) For an efective but computing-heavy CNN-based
descriptor, compressing it into a smaller network is
a worthwhile attempt. We have verifed that
replacing the backbone network with a lightweight
one and knowledge distillation are feasible solutions.

5. Conclusion

Tis article presents a comprehensive evaluation of global
descriptor methods for appearance-based visual place rec-
ognition. Te experiments were conducted on six bench-
mark datasets, covering diverse scenarios, and utilized fve
commonly used metrics to assess the matching performance
and computational efciency of 15 global descriptor
methods.

Our analysis revealed that each type of descriptor has its
own strengths and weaknesses, and we provided valuable
insights regarding practicality. Specifcally, CNN descriptors
generally exhibit signifcant matching performance, albeit at
a higher computational cost, indicating the potential of
lightweight CNN descriptors. On the other hand, descriptor
methods based on traditional features also have their own
utility, with non-CNN-based descriptors being particularly
useful in scenarios with less-challenging conditions, owing
to their training-free nature and computational efciency. In
addition, our evaluation extended to identify the motiva-
tional factors that contribute to improved performance in
VPR. Te investigation centered around hierarchical fea-
tures, backbone network designs, model compression, and
the choice of training datasets. Our experiential results
suggest that utilizing an overly deep network architecture
may not be necessary for achieving optimal performance in
VPR, given that mid-level features demonstrate more robust
performance. Additionally, the network structure should not
be too cumbersome to be deployed on a resource-
constrained robot platform. Model compression tech-
niques, such as knowledge distillation, may provide feasible
solutions to this issue. It is also critical to emphasize the
importance of using relevant datasets to train the
CNN model.
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We anticipate that this study could assist researchers in
gaining a more comprehensive understanding of
appearance-based VPR and global descriptor methods, es-
pecially for novice learners. As a future direction, we will
focus on novel methods used in VPR tasks, such as gen-
erative adversarial networks and deep multimodal learning.
Consequently, this assessment could be extended to in-
tegrate additional descriptors, datasets, and metrics, thereby
enhancing our understanding of this feld.
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