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Speed and accuracy are important parts of the human tracking system. To design a system that tracks the target human working
well in real time, as well as on mobile devices, a tracking real-time target human system is proposed. First, real-time human
detection is performed by the combination of MobileNet-v2 and single-shot multibox detector (SSD). Subsequently, the particle
filter algorithm is applied to track the target human. The proposed system is evaluated with the different color shirts and complex
background conditions. In addition, the system also works with the support of a depth Kinect-v2 camera to evaluate performance.
The experiment result indicates that the proposed system is efficient without the impact of colors, background, and light.
Moreover, the system still tracks the human when the human has disappeared or the size of the target has a significant change,
and an FPS of 12 (Kinect-v2 camera) and 22 (conventional camera) ensures the system works well in real time.

1. Introduction

In recent years, human tracking has become an important
part of the computer vision field. This algorithm is used to
estimate the position of the target humans in a video
sequence [1]. Human tracking has a wide variety of applica-
tions in many areas such as self-driving cars, the military,
robotics, and many others. The development of deep learn-
ing has brought more effective object tracking algorithms.
The requirements of the human tracking algorithms are
working in total occlusion, complex environments, and so
on [2, 3]. They also have to work on mobile devices without
changing performance, particularly when deep learning algo-
rithms are required to work in real time. Thus, human track-
ing is still a challenge that needs to be solved.

Through decades, many algorithms have been proposed
to solve tracking problems such as real time, disappear, size
change, and accuracy. For example, the CAMshift [4] algo-
rithm is proposed to find the original color of objects and
track them. This algorithm has low computation and is easy
to implement. However, the algorithm is impacted by similar
background colors or texture changes a lot [5]. The Kernel-
correlated filtering (KCF) [6] is a good tracking algorithm.

KCF possesses the qualities of great robustness, high accu-
racy, and high speed. However, this algorithm is unstable in
illumination, background color, and shape of target human
change [6]. The Kalman filter algorithm [7] predicts the
position of the target based on previous movement informa-
tion, but the Kalman filter often is used in a linear system.
The particle swarm method with the histogram of oriented
gradients (HOG) [8] is the method often used to solve the
full occlusion problem. However, the disadvantage of this
method is hard to track the target when the target size
changes too much. The particle filter [9] is a simple and
flexible method. However, when the target is partial occlu-
sion or local appearance changes, the particle filter cannot
track the target accurately.

With the standout of deep learning algorithms in recent
years, deep learning architects have been used to detect and
classify objects. Some methods such as Fast-RCNN [10],
Faster-RCNN [11], YOLO [12], SSD [13], and RetinaNet
[14] are object detection algorithms with high accuracy
and high speed. These algorithms have a common character-
istic in applying a convolution neural network to extract
features. They offer effective processing models, extracting
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features automatically, and improving accuracy dramatically.
The above deep learningmethods require a high-performance
computer because the amount of data needed to compute is
very huge. For instance, the number of images for training in
YOLO can be up to millions of images. If YOLO, RCNN
family, and other deep learning algorithms work on a low-
performance computer, they are expensive, slow for training,
and too hard for real time.

For human tracking, some methods using both deep
learning and particle filters are applied. For example, the
YOLO-particle filter [15] is an efficient method for detecting
and tracking humans, but it is difficult to run on low-
performance devices. The SSD-particle filters [9] are the
model with the backbone of VGG-16. This is also a good
model, but the SSD model faces difficulty in predicting small
object and needs a lot of data to train. In our recent paper
[16], the combination of SSD-MobileNet-v2 [17, 18] and
particle filter is proposed. This algorithm is applied in the
case of target humans having different colors and full occlu-
sion problems. In this paper, we expand the study to evaluate
the efficiency of the proposed algorithm in a complex back-
ground, in low light, and when combined with the depth
Kinect-v2 camera.

In this paper, the particle filter is combined with SSD-
MobileNet-v2 to track target humans. The SSD-MobileNet-
v2 is applied to determine the presence of humans in a video
automatically. Then, the particle filter is adopted to track the
target human. The contributions of this paper compared to
existing works include the following:

(1) Particle filter based [19] can only track human targets
based on particles. It requires manual intervention to
determine the initial position and initialize particles,
resulting in time-consuming and labor intensive. To
determine the initial position of the human target
more accurately and adjust the target human posi-
tion over time, the proposed model supports updat-
ing the size of the human target and grabbing the
target automatically when the target appears in the
camera area.

(2) The proposed algorithm does not need too much
memory and operates at high speeds without the
GPU when compared with other algorithms such
as VGG-16 [20], ResNet-50 [21], and YOLO [12].
The experiment shows that the proposed algorithm
adapters in tracking humans with real-time speed (22
FPS).

(3) Unlike other tracking algorithms face difficulties in
tracking human targets in complex conditions (occlu-
sion, scale change, color change, scene change) such
as YOLOv3-Camshift [22, 23], YOLO-CSRT [24],
and VGG16-KCF [25], the proposed system solves
full occlusion even if there is a huge change in the size
of the target or obscured by a similar human target.
Our system also runs well in complex backgrounds
and different light conditions.

(4) The proposed model is tested with a Kinect-v2 cam-
era and compared the results with results on a

conventional camera. The experimental results
show that the proposed model with Kinect-v2 cam-
era is robust in low light conditions and reaches
higher accuracy.

The structure of the sections of this paper includes: (1)
the pros and cons of traditional algorithms, deep learning
algorithms, and the combination of these two kinds of algo-
rithms to achieve a higher efficiency system; (2) describe in
detail SSD-MobileNet-v2 and particle filter and their appli-
cation of them in human tracking; (3) discuss the achieved
result of the algorithm; and (4) show the conclusion and give
out the task that needs improvement in the future.

2. Materials and Methods

2.1. System Architect. In the literature review, to improve the
performance of the particle filter for human tracking in com-
plex conditions, the particle filter is combined with other
algorithms such as Mean-Shift [26], Kalman filter [7], histo-
gram [27], SURF [28], and so on. For example, regarding
figures in a study by Iswanto and Li [29] and Lin et al. [30],
the common characteristics of these algorithms are facing
problems such as feature extraction automatically, real
time, scale variation, scene change, similar appearance, clut-
tered background, and so on. In this paper, to overcome the
drawbacks of the above algorithms and increase the accuracy
in human tracking, the SSD-MobileNet-v2 combined with
the particle filter is proposed. SSD-MobileNet-v2 is used to
detect target humans automatically, and the particle filter is
used for tracking the target human.

The flowchart of the proposed algorithm is shown in
Figure 1. First, the SSD-MobileNet-v2 model is used to detect
humans. If there is a human target, a bounding box is created
for the target, and at the same time ROI is created. In the next
stage, the HSV histogram of ROI is analyzed. The particle
filter algorithm initializes randomly 500 particles for the
bounding box of the human target. SSD-MobileNet-v2
detects all humans in the next frames and then updates the
state of each particle. After that, the distances of each particle
are calculated based on the HSV histogram and weight. Next,
the algorithm estimates the new state of particles based on
their weight and uses it as a centroid of predicted the bound-
ing box. Intersection over Union (IOU) values between the
predicted bounding box and the other bounding boxes are
computed. The bounding box with the highest IOU value is
kept. Then, to get the accurate trajectory of the target, the
Kalman filter is applied to the centroid of the human target
bounding box. Based on value predictions and the new loca-
tion of the center, the Kalman filter method calculates the
center’s location. If the distance of all particles is higher than
a certain threshold, the algorithm resamples particles having
low weight, else reinitialization of all particles. Finally, the
proposed system ends if it is a last frame; otherwise, the
system repeats from the process of human detection to
the last frame.

2.2. SSD-MobileNet-v2 Algorithm. To detect the human tar-
get, a deep learning model with six layers is used with the
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base network MobileNet-v2 [31]. MobileNet-v2 is selected as
it can be easily implemented on mobile devices. This model
has an architect inspired by the single-shot multibox detector
(SSD) model with some modifications to be compatible with
MobileNet-v2. Instead of using normal convolutions, sepa-
rable depthwise convolutions are used to reduce the number
of parameters and improve computation time [16, 32].

The proposed method has a base network MobileNet-v2
and SSD extra feature layers. This system uses input images
size of 300× 300× 3. Base network MobileNet-v2 extracts
high-level features from input images. The size of the feature
map is reduced, while the algorithm can detect an object at
various scales by adding extra layers [16, 33]. Figure 2 shows
the architecture of the SSD-MobileNet-v2 algorithm.

The process steps, as shown in Figure 2, are given as
follows:

(1) Step 1: Read the input images size 300× 300× 3.
(2) Step 2: The base network is MobileNet-v2 without

fully connected layers. This network is used to extract
features of images with output size 38× 38× 512.

(3) Step 3: Apply convolutional layer size 3× 3× 1,024
for the previous feature map, and the output feature

map is obtained with size 19× 19× 1,024. At the
same time, a classifier with a convolutional filter
3× 3 is applied to detect objects on the feature map.

(4) Step 4: Apply the same process in step 3 for the other
feature map, and the feature map size is 19×
19× 1,024, 10× 10× 512, 5× 5× 256, 3× 3× 256,
and 1× 1× 256, respectively. The shape of each fea-
ture map is based on a convolutional process in the
previous layer. A classifier is also used in feature map
sizes 19× 19× 1,024 and 3× 3× 256.

(5) Step 5: Nonmax suppression algorithm is used to
eliminate duplicate detections and select the best
bounding box out of a set of overlapping boxes.

In MobileNet-v2, inverted residual and linear bottleneck
block [34] are the new layers enabling the model to work well
on mobile devices. An inverted residual block is created to
reduce the number of parameters compared with the original
residual block [35]. The structure of the inverted residual
block is built opposite of the original one. First, the input
image is widened using 1× 1 convolution. This convolution
layer expands input feature maps suited to nonlinear activa-
tions. Next, a 3× 3 depthwise convolution is performed to
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FIGURE 1: Flowchart of human tracking.

Journal of Robotics 3



reduce the number of parameters. Finally, the 1× 1 convolu-
tion is used again to squeeze the network, so that the input
image can be matched with the initial number of channels
[36]. The batch normalization [37] and ReLU6 [37, 38] are
added following each convolution block to reduce the train-
ing process of deep neural networks and generalization error
[39]. ReLU6 activation is used to discard nonlinear. This
activation has ranging linear values between 0 and 6. The
structure of the bottleneck block is shown in Figure 3.

This system uses a feature map of the last few layers to
predict the location and class of objects and then the output is
passed to various convolution layers. Through the network,
the size of these layers gradually decreases. In the final, the
predictions are combined from each of these convolutional
layers. The system outputs the locations and confidence of an

object. Each location is evaluated by loss value. Localization
loss is defined as follows:

Lloc x; p;gð Þ ¼ ∑
N

i2Pos
∑

m2 x;y;w;hf g
xki jL

smooth
1 pmi − bgm

j

� �
; ð1Þ

bgcx
j ¼

gcxj − dcxi
� �

dwi
; ð2Þ

bgcy
j ¼

gcyj − dcyi
� �

dwi
; ð3Þ

bgw
j ¼ log

gwj
dwi

� �
; ð4Þ

bgh
j ¼ log

ghj
dhi

 !
: ð5Þ

Smooth L1 loss can be interpreted as a combination of L1
loss and L2 loss, as follows:

Lsmooth
1 xð Þ ¼ 0:5x2   if xj j<1

xj j − 0:5  otherwise

(
: ð6Þ

The localization loss is only computed for positive match-
ing (i2Pos) between the predicted bounding box p and the
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Detection and classifier

5 × 5 × 256
3 × 3 × 256 1 × 1 × 256

Nonmax suppression

FIGURE 2: SSD-MobileNet-v2 architecture.
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FIGURE 3: Bottleneck block.
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ground truth bounding box g. (x, y) is the center of bounding
box, (w, h) is width and height of a bounding box, and d is
default bounding box. ∑m2fx; y;w; hg xki jL

smooth
1 ðpmi − bgm

j Þ is the
total distance between the predicted box p and ground truth
box g, xki j is the rating for matching between the default
bounding box i and the ground truth box j for label k, ðbgcx

j ;bgcy
j Þ are the center of the predicted box compared with the

center of the default box ðdcxi ; dcyi Þ, and ðbgw
j ; bgh

j Þ are scale
values of the width and height of the predicted box compared
with the center of the default box ðdwi ; dhi Þ.

Confidence loss is defined by the equation as follows:

Lconf x; cð Þ ¼ − ∑
N

i2Pos
xki jlog bckiÀ Á

− ∑
i2Neg

log bc0ið Þ; ð7Þ

where c is the predictions for the probabilities of belonging to
different object classes, xki j is the rating for matching between
the default bounding box i and the ground truth box j for
label k, bcki is the predicted confidence score of class k for the
ith ground truth object, and bc0i is the predicted confidence
score of the class 0.

The final loss function is computed as follows:

L x; c; p;gð Þ ¼ 1
N

Lconf x; cð Þ þ αLloc x; p;gð Þð Þ; ð8Þ

where N is the number of default boxes that match the
ground truth, Lconf ðx; cÞ is confidence loss, and Llocðx; p; gÞ
is location loss.

After prediction, there are a lot of bounding box predic-
tions overlapping. To discard superfluous bounding boxes,
the nonmax suppression algorithm is applied [31]. Then, all
boxes have confidence and IOU value below a probability
bound, these boxes are discarded.

2.3. Particle Filter Tracking Algorithm. A particle filter is used
for tracking the human target [40]. This method finds the
target human position by using random particles. Then, par-
ticle weights are computed for each particle based on its
accuracy. The probability value to determine the actual target
position is described by these particles and their weights in a
region of state space [40]. Each particle is defined by:

s¼ x; y;
dx
dy

;
dy
dt

� �
T
; ð9Þ

where (x, y) are the coordinates of the center of rectangle
boxes and ðdxdt ; dydtÞ are the velocities.

The initial step defines N as the number of particles. All
particle coordinates are chosen at random within the bound-
ing box ðx0; y0;W;HÞ of the human target.

si0 ¼ x; y; 0; 0½ �T ; ð10Þ

with i¼ 0; 1; 2…N; x2 ðx0; x0 þWÞ; y2 ðy0; y0 þHÞ.
A linear differential equation is used to update all parti-

cles in each frame as follows:

sit ¼ Asit−1 þ wi
t−1; ð11Þ

where sit−1 is the state of each particle previously, wi
t−1 is an

array of Gaussian random variables, and A is the transition
matrix given as follows:

A¼

1 0 Δt 0

0 1 0 Δt

0 0 1 0

0 0 0 1

266664
377775: ð12Þ

Each particle weight is used to evaluate its effectiveness. By
comparing the similarity between the HSV histograms of the
rectangle box on the particle and the template bounding box on
the human target, this weight is evaluated. This similarity is
calculated by using the Hellinger distance as follows [41]:

d ið Þ
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

M
ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p ∑
M

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1 uð ÞH2 uð Þ

ps
; ð13Þ

Hk ¼
1
M

∑
M

u¼1
Hk uð Þ; ð14Þ

where H1 and H2 are two HSV histograms which are com-
pared and M is the total number of bins in a histogram.

In this paper, the HSV histogram is presented in 8× 8× 4
bins to get the best results. Each particle’s weight is calculated
using distance values determined by the following equation
as follows:

πit ¼ πit−1
1

σ
ffiffiffiffiffi
2π

p exp −

d ið Þ
t

� �
2

2σ2

0@ 1A; ð15Þ

where σ is the standard deviation of dt and πit−1 is the par-
ticle’s previous weight.

The following step is necessary to normalize these
weights to evaluate which has a higher chance of appearing.
This is the final estimated state given as follows:

s ¼ ∑
N

i¼1
s ið Þ
t π ið Þ

t ; ð16Þ

where sðiÞt is the state of the ith particle at t and πðiÞt is the
weight of the ith particle at t.

Particles are sampled again in every new frame [42]. Just
particles having low distances are kept and all others are
discarded. The weight value is assessed by a threshold and
in this paper, the weight threshold is 0.3. Then, new particles
surround some particles with the highest weights. All parti-
cles are randomly reinitialized if all distances exceed the
threshold or the entire human target is obscured.
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2.4. Update Size of Target. IOU equation is applied for each
bounding box created by the proposed model to calculate the
overlap rate of each bounding box (created by the particle
filter). Those overlap rates are compared to each other to
choose the highest value. The bounding box having the high-
est rate is used for updating the true size of the target.

Figure 4 shows the process of using IOU to update the
size of the target. Figure 4 shows an example of applying IOU
to update the size of the target. The green bounding boxes are
obtained from the proposed method. The yellow box is a
bounding box created by the particle filter with the prior
size of the target. The red box is the bounding box of the
target after the update.

2.5. Kalman Filter for Accuracy Trajectory. To get the accu-
rate trajectory of the target, the Kalman filter is applied to the
centroid of the human target bounding box. Based on value
predictions and the new location of the center, the Kalman
filter method calculates the center’s location [43]. Prediction
and correction are divided into two main stages.

The state variable is denoted as XT ¼ ½xt; yt; vxt; vyt �, and
measurement variable is denoted as ZT ¼ ½xt ; yt�. The state
variable is updated in each frame based on equation motion
without acceleration as follows:

bXt ¼ AXt−1; ð17Þ

A¼

1 0 Δt 0

0 1 0 Δt

0 0 1 0

0 0 0 1

266664
377775; ð18Þ

where A is the transition matrix and bXt is the value predic-
tion of Xt:

The predictor covariance equation is given as follows:

bPt ¼ APt−1AT þ Q; ð19Þ

Q¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

266664
377775; ð20Þ

where bPt is the value prediction of covariance Pt and Q is the
interference factor.

Kalman filter uses three equations in the correction stage,
including the Kalman gain equation, state update equation, and
covariance update equation. Kalman gain equation is used to
correct the stage estimate and covariance estimate. This equation
is performed using the following formula as follows:

Kt ¼ bPtHT HbPtHT þ R
� �

−1
; ð21Þ

H ¼ 1 0 0 0

0 1 0 0

" #
; ð22Þ

R¼ 2 0

0 2

" #
; ð23Þ

where H is the measurement matrix and R is the measure-
ment noise covariance matrix.

Based on Kalman’s gain and prediction the state bXt; the
estimated state of the center point can be calculated as fol-
lows:

Xt ¼ bXt þ Kt Zt − HbXt

� �
: ð24Þ

The covariance also is updated by the following equation
as follows:

Pt ¼ bPt þ KtHbPt: ð25Þ

2.6. Filter Background with an RGB-D Camera. The back-
ground significantly influences the accuracy of the system.

Human 1

Human 2 Human 2

Target

80%
0%

FIGURE 4: The process of using IOU to update the size of the target.
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Therefore, the elimination of the background is an essential
step. The removal of the background can be facilitated
through the utilization of the RGB-D camera Kinect-v2, as
shown in Figure 5. Assume that Dt is the distance from the
Kinect-v2 camera to the human target. The Dt value plays
the most important role in determining the range for the
Kinect-v2 camera. However, this value is not calculated in
the current frame. Dt−1 is used to compute Dt with the veloc-
ity of the target.

Dt ¼ Dt−1 þ vtt: ð26Þ

Tbelow and Tabove are below and above the threshold.

Tbelow ¼ Dt − 250  mmð Þ; ð27Þ

Tabove ¼ Dt þ 250  mmð Þ; ð28Þ

Tbelow<Dt<Tabove; ð29Þ

Dt − 250<Dt<Dt þ 250: ð30Þ

In the next sections, the structure of the sections of this
paper includes section 3: showing the results of the proposed
algorithm and comparing their performance with other algo-
rithms and section 4: showing the conclusion and giving out
the task that needs improvement in the future.

3. Results and Discussion

3.1. Training Deep Learning Model. To train the deep learn-
ing model for human detection, 2,500 images are down-
loaded from Google and 3,500 images are captured by our
camera. Transfer learning method and pretrained are used to

reduce training time on the COCO dataset combined with
our dataset. Training parameter value of SSD-MobileNet-v2
and MobileNet-v2 is shown in Table 1.

3.2. Running System and Evaluating Results. The proposed
system is performed on a computer with 16GB RAM, Intel
Core i7-4800MQ CPU 2.7GHz x8, and a camera (2 Mpx).
To improve processing speed, all images are resized to size
300× 300. The proposed algorithm is executed on Python
3.7, OpenCV 4.4 library, and NumPy Library. In addition,
the proposed system is also evaluated with the support of a 2
Mpx Kinect-v2 camera (max 30 FPS). When the system uses
the Kinect-v2 camera, the RGB image is calibrated and
resized to 270× 520 to combine with the depth image.

SSD-MobileNet-v2 model is used to detect target
humans and then output information is used by the particle
filter tracking algorithm. Depending on the number of par-
ticles, the proposed system has a different accuracy. The
higher the particles, the better accuracy is received while
the number of missing frames is reduced. However, the result
is still the same once the number of particles reaches a certain
threshold. As shown in Table 2, the accuracy is still 97.4%
even when there are 1,000 particles.

Kinect-v2 camera

250 mm

250 mm

Dt

FIGURE 5: Remove the background on the Kinect-v2 camera.

TABLE 1: Training parameter value of SSD-MobileNet-v2 and Mobi-
leNet-v2.

Parameters SSD-MobileNet-v2 MobileNet-v2

Epoch 300 300
Batch size 16 16
Momentum 0.9 0.9
Weight decay 0.95 0.95
Learning rate 0.003 0.001

Journal of Robotics 7



By comparing our method with the particle filter method
[44], the proposed system still tracks the target human even
in case the size of the target has greatly changed. Further-
more, by updating the size of the target, the bounding box of
the target is extracted perfectly. The experiments are shown
in Figure 6, the light blue bounding box is created by SSD-
MobileNet-v2, the red color is created by the particle filter,
and the purple color is created by MobileNet-v2.

The algorithm is also tested with some different colors of
shirts and different backgrounds to verify the performance.
Figure 7 shows the experimental results in the case of the
target human using the black and blue color shirt. Yellow
bounding boxes are drawn for each human in the frames,
and blue boxes are drawn for the human target. The yellow
points are particles for tracking the human. The results

indicate that even with the same background color, the algo-
rithm remains efficient.

Additionally, to evaluate the effectiveness of the pro-
posed system with support for the Kinect-v2 camera, a vari-
ety of colored shirts and low-light conditions are applied.
Figure 8 shows the test experiments with blue shirts and
yellow shirts. As shown in Figure 8(a), the proposed system
is evaluated in low-light conditions with the color of the
background and shirts being similar. The yellow bounding
boxes are humans who are detected by SSD-MobileNet-v2,
and the blue bounding box is the target human who is
selected for tracking. The results show that in low-light con-
ditions, the algorithm is still efficient in tracking the human
target. Figures 8(b) and 8(d) show RGB images, and
Figures 8(c) and 8(e) show masks of color created by using

TABLE 2: Evaluate the proposed system when using different numbers of particles.

Number of particles Total frames Number of misframe Accuracy (%) Time per frame

10 677 60 91.1 0.066
50 677 51 92.4 0.07
200 677 41 94.1 0.086
500 677 17 97.4 0.17
1,000 677 17 97.4 0.22

FIGURE 6: The results in human tracking of the three algorithms.

ðaÞ

ðbÞ
FIGURE 7: Evaluate the proposed algorithm with a different background. (a) The color of the background and shirts is different. (b) The color
of the background and shirts is similar.
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depth images and RGB images of Kinect-v2 camera. The
yellow points, as shown in Figures 8(c) and 8(e), are particles
used to find the position of the human target.

The accuracy and speed of three algorithms are com-
pared in performance, including particle filter [44], particle
filter with MobileNet-v2 [45], and the proposed algorithm.
The evaluation involved 458 frames with 500 particles. The
FPS of the particle filter algorithm is 38. This is the highest
FPS in the three algorithms, but the accuracy only occupies
78.60%. The other algorithms have an FPS range of 21–22,
except for the proposed system using a Kinect-v2 camera (12
FPS). However, the proposed system using the Kinect-v2
camera has the highest accuracy (96.94%) followed by the
proposed system using a conventional camera (96.06%). The
next is a particle filter-MobileNet-v2 [45] with an accuracy of
94.54%. The proposed system has an FPS of 22 (conventional
camera) and 12 (Kinect-v2 camera), so the system still works
well in real time. The comparison result is shown in Figure 9.

4. Conclusions

This paper presents a method for human tracking by apply-
ing a particle filter and SSD-MobileNet-v2 model. The
experimental result shows that the proposed system tracks
the human in case of the same color, disappearing problem,
or the size of the target has a big change. In addition, by
using the depth Kinect-v2 camera, the system works better
in low-light conditions. By testing and comparing our
method with the particle filter and particle filter-Mobile-
Net-v2 algorithm, our method performs better than these
algorithms. The accuracy of the proposed algorithm has
been greatly improved compared to using only a traditional
algorithm particle filter. The tracking speed is 12 (Kinect-v2
camera) and 22 FPS (conventional camera) that are enough
for real time. Speed for tracking target humans and tracking
more targets at the same time are contents of works to be
done in the future.

(a)

(b) (c) (d) (e)

FIGURE 8: Evaluate the system with the support of a Kinect-v2 camera. (a) The experiment results with blue shirts in low-light conditions.
(b–e) The experiment results with yellow shirts.
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