
Research Article
Real-Time SLAM Mobile Robot and Navigation Based on
Cloud-Based Implementation

Jaafar Ahmed Abdulsaheb 1,2 and Dheyaa Jasim Kadhim 1

1Department of Electrical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
2Department of Electronics and Communication, College of Engineering, Uruk University, Baghdad, Iraq

Correspondence should be addressed to Jaafar Ahmed Abdulsaheb; jaafer@uruk.edu.iq

Received 3 January 2023; Revised 10 March 2023; Accepted 15 March 2023; Published 29 March 2023

Academic Editor: L. Fortuna

Copyright © 2023 Jaafar Ahmed Abdulsaheb and Dheyaa Jasim Kadhim. Tis is an open access article distributed under the
Creative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided
the original work is properly cited.

Tis study investigates the feasibility of a mobile robot navigating and discovering its location in unknown environments, followed
by the creation of maps of these navigated environments for future use. First, a real mobile robot named TurtleBot3 Burger was
used to achieve the simultaneous localization and mapping (SLAM) technique for a complex environment with 12 obstacles of
diferent sizes based on the Rviz library, which is built on the robot operating system (ROS) booted in Linux. It is possible to
control the robot and perform this process remotely by using an Amazon Elastic Compute Cloud (Amazon EC2) instance service.
Ten, the map to the Amazon Simple Storage Service (Amazon S3) cloud was uploaded. Tis provides a database to display maps
and use them at any time for navigation without the need to redraw the map.Tis map can be accessed by using an authentication
process (username and password) supervised by the cloud server administrator. After that, using the serverless image handler
(SIH), with the aid of this solution, you can change the size of images, change the color of the background, format them, or add
watermarks. Experiment results demonstrated the ability to build a map of an unknown location in a complex environment and
use it for navigation tasks on a real mobile robot via remote control. It also showed the success of the process of storing the map for
future use and the process of modifying the map using SIH.

1. Introduction

Due to the growing need for robots in our lives, the robotics
industry has seen many important changes, such as auto-
mated production, extraterrestrial missions, unmanned
rescue vehicles, disaster rescue operations, socially sup-
ported robots at home and in education, self-driving ve-
hicles, and therapeutic robots used in health, Mars survey, or
seabed analysis [1]. One of these important developments in
the feld of robots is the use of networked robots to share
information and provide required resources such as data
storage, complex computation, and so on. Tese networked
robots can get these information and resources through
servers that are connected to the Internet and programs that
they have installed [2]. To address the proposed difculties
that the robots may face in accessing the information and
required resources, developers and researchers have recently

proposed the creation of a cloud-connected robotics net-
work that uses fexible resources when requested from the
global cloud architecture [3]. Cloud computing philosophies
have been applied by researchers in robotics as well as
mobile environments, resulting in topics such as cloud
robots and mobile clouds. When connected to the cloud,
these robots can take advantage of the powerful computing
and communications resources in the cloud for the data
center and storage and can also process and share in-
formation with many robots [4]. Cloud Computing (CC)
can be used to upgrade the capabilities of robots in many
tasks since cloud computing features are increasingly useful
for mobile robots. In general, there are two types of mobile
robots: autonomous mobile robots, which can explore their
environments on their own, whether they are known or
unknown, and nonautonomous mobile robots, which may
use a guidance system to move through their surroundings

Hindawi
Journal of Robotics
Volume 2023, Article ID 9967236, 17 pages
https://doi.org/10.1155/2023/9967236

https://orcid.org/0000-0001-9078-7852
https://orcid.org/0000-0003-1290-5280
mailto:jaafer@uruk.edu.iq
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9967236

[5]. Tis work deals with autonomous mobile robots
(AMRs), which are needed in many felds to operate in-
dependently of humans. Planning a better path, while
avoiding obstacles, is essential for AMR to move from one
point to another, representing the target in their environ-
ment. Tere are several implementations that deal with the
feld of robotics, such as SLAM, which is abbreviated for
simultaneous localization and mapping, as well as the large
number of sensing and grasping systems that quickly lead
towards the emergence of large amounts of sensor data.
Tese data are difcult to store because most robots have
limited storage capacity. Cloud robotics (CR) submits so-
lutions towards saving space within the cloud so that all-
important robot information can be stored inside this cloud
for future use.Tis feature allows the CR to authorize mobile
robotics to access huge datasets such as general localization
maps and platforms of the environment [6].

Cloud robotics has become increasingly popular in re-
cent years. Many works have a lot to do with the ways to do
research that are talked about in this section. Te study by
Afanasyev et al. [7] presented the SLAM algorithm based on
ROS for the simulated mobile robot on the Gazebo simu-
lator, which is moveable in a three-dimensional pattern of
the actual internal situation that is introduced and is ofered
in a 3D model form based on the actual interior environ-
ment. Ten, the simulation results of the willow garage
personal robot (PR2) robot are described. Te camera shots
taken with autodesk’s Rao-Blackwellized Particle Filter
(RBPF) and the data from the PR2 robot’s laser for locali-
zation and mapping are used to create an image-based 3D
model of the actual area. In the study by Doriya et al. [8],
diferent cloud architectures and how they connect to one
another or difer from one another in their ability to solve
SLAM problems are discussed and compared. So, every
framework uses various collections of special protocols
within the cloud that enable the mobile robot to delegate its
computational tasks to the cloud. Te researchers confrmed
that the framework of Rapyuta is more elastic than other
frameworks, and because its implementation is open source,
it can be expanded to include functions of other robots by
several other researchers. Whereas, when they compared it
to DaVinci, they found that DaVinci was the most suitable
for SLAM. Finally, the cloud framework for cooperative
tracking and mapping (C2TAM) framework is suitable for
saving huge amounts of data.

Takaya et al. [9] introduced a simulation environment
for mobile robots based on ROS and Gazebo. Te code
advanced for the simulation procedure can be directly ex-
ecuted on the actual robot without modifcations after
properly creating the models of the robot under the gazebo
simulator. Ten, the tasks of autonomous navigation and
3D-mapping simulation utilizing control programs under
ROS are ofered. Te results of the simulation and experi-
ments coincided very well and showed the usability of the
advanced environment. For this study, the ROS platform
was used to build models of the PeopleBot and Pioneer 3-DX
robots. Limosani et al. [10] proposed a system based on the
cloud robotics model that lets automated mobile robots
move through and observe previously unknown interior

environments that are divided into subdivided maps. Also,
the whole topological demonstration and necessary in-
formation of the world are saved in cloud structures from
a distance by employing fxed ecological tags that consist of
collections of QR codes as well as AR tags. Tests are being
done to determine the possibility of selection, adjust the
sizes, and see if the proposed procedure can be done.
Megalingam et al. [11] presented the ROS implementation of
SLAM by calculating how long the robot model would take
to arrive. Te test is conducted in an Rviz-created virtual
environment.Te travel time is calculated by placing various
dynamic obstacles for various destinations on the map. It has
been seen that the robot has a good response time and travels
from the source to the destination in a reasonable amount of
time, where the amount of time needed increases as the
distance does. Jiang et al. [12] presented SLAM, which was
put into practice by using Turtlebot2, a mobile robot, and the
robot operating system’s navigational package. Te Tur-
tlebot2 is outftted with a notebook, a 3D-LiDAR ranging
sensor, an RGB-D camera, and light detection. Tese fea-
tures are used to help the robot navigate and create a full 3D
sight map in addition to a novel 2.5-dimensional map. Te
conclusion of the collected results displays a collection of
image and scans data able to enhance the performance of
mapping using classical approaches. Te study by Arena
et al. [13] describes an innovative robot that looks like
a worm and is made of an ionic polymer-metal composite
(IPMC) self-actuated skeleton. It is controlled by cellular
neural networks (CNNs). Worm locomotion is performed
by bending the actuators sequentially from “tail” to “head,”
imitating the traveling wave observed in real-world un-
dulatory locomotion.Te study by Buscarino et al. [14] looks
into and suggests a way to control a group of mobile robots
without a central point of control using a dynamical network
model. Te results show that the performance of the system
can be improved by letting the robots talk to each other over
long distances, and a good way to control exploration and
transport is presented. Small-world networks can be highly
clustered, like regular lattices, yet have small characteristic
path lengths, making them “small-world” dynamical systems
with enhanced signal-propagation speed, computational
power, and synchronizability [15]. Te study by Kajita and
Espiau [16] talks about the history of research on two-legged
robots, the dynamics and control of general two-legged
robots, the zero-moment point (ZMP), the relationship
between gaits and stability, and how two-legged robots are
diferent from each other. It also talks about performance
indices like the Froude number and the specifc resistance, as
well as how things will change in the future. Te authors in
[17] made a web interface that lets you control and talk to
multiple robots using ROS topic identifcation and regis-
tration for autonomous robots. Te Gazebo simulator sends
out all robots to interact with a user. To test how well the
systemworks, the number of robots was increased.Te big O
representation was used to analyze the running-time
complexity of algorithms. Te experiment result indicated
that the autonomous robot registration was successful and
that the communication performance decreased gradually.
Te study by Rashid et al. [18] introduces a new algorithm,

2 Journal of Robotics

called cluster matching, for multirobot localization and
orientation. It involves a distance IR sensor scanning the
robots and estimating the absolute positions and orienta-
tions of a number of the team robots without knowing their
IDs. Te localization and orientation of robots not visible to
the distance IR sensor are obtained by collecting the in-
formation coming from the on-board sensors and recon-
structing a complete map of the team distribution.
Simulation scenarios are implemented on tens of robots to
show the performance of the algorithm.

Te main problems have been considered and are our
motivation to move forward with the suggested oversight
strategies. Tese problems are listed sequentially as follows:

(1) Navigation is the frst andmain problem for a mobile
robot that needs to navigate its unknown environ-
ment and defne its location so that it can design
a path to other destinations. SLAM technology is
considered the dominant solution to such problems.

(2) Te other challenge with SLAM technology occurs
during navigation in unknown environments since
the robot takes a long time to explore the whole
environment to build its map. When another robot
has to navigate the same environment, it will rebuild
a new map. So, we need to save all constructed maps,
while the storage capacity needs to store the acquired
data, such as maps, within private or public clouds,
so that it can access them at any time and from
anywhere via the Internet.

Te principal contributions made by this research
project are listed as follows:

(1) Simulating and implementing the SLAM algorithm
in an unknown environment that is built on the Rviz
simulator on the ROS. Following that, when the
number of obstacles reaches 12, study and evaluate
a mobile robot platform named TurtleBot3 Burger in
the Rviz simulator and implement the SLAM algo-
rithm for diferent environments based on the Rviz
library, which is built on the ROS in the Linux
operating system. Also, control the robot and per-
form this process remotely.

(2) Simulating an Amazon Web Service (AWS) cloud
server to store maps made by robots and to store and
download diferent required fles (PDF, words, video,
and photos), which can be accessed through an
authentication process (username and password)
overseen by the cloud server administrator.

In this study, SLAM is implemented by using a mobile
robot named Turtlebot3 Burger, using gmapping tools in
ROS based on the Rviz platform, and by placing diferent
objects on the map and in diferent scenarios. Tis article is
organized as follows: Section 2 discusses navigation and
simultaneous localization and mapping (SLAM) and de-
scribes hardware and software tools; Section 3 discusses
Modeling of Mobile Robot Navigation, and Section 4 dis-
plays and discusses the simulation results. Finally, the
conclusion of this paper is represented in Section 5.

2. Research Methods and Tools

2.1. Navigation and SLAM. Te navigation of robotics de-
notes the activity of a robot to control its location in relation
to a specifc reference and then outline a track to arrive at the
wanted location. It can contain a set of jobs such as track
planning, localization, and mapping [19]. Te procedure for
building a map demands large amounts of storage space and
is computationally heavy. Moreover, searching for a map
demands large quantities of information and data, and this is
a huge challenge, especially when the region of navigation is
large. CR delivers an actual, favorable solution for the up-
coming cloud based on navigation. Also, the cloud not only
supplies storage area to save a large quantity of map data but,
moreover, supplies processing strength to make it easy to
quickly build and search the map [20]. A prerequisite for
successfully navigating is the ability to localize and create
maps for unknown environments, which allows the robot to
navigate in them using SLAM.

SLAM was frst presented in mid-1986 by Smith and
Durrant-Whyte [21]. SLAM is considered one of the AI
techniques that benefts from the mobile robot’s navi-
gation in an unknown environment to construct a new
map for this environment. When a mobile robot is placed
in an unknown environment, it has to move and acquire
data about landmarks in the environment by using its
sensors, while at the same time, it has to assign its po-
sition concerning that created map. Te landmark is
defned as a symmetrical object that can be easily dis-
tinguished from a scanning sensor, and it is utilized to
update the evaluated position of the robot [22]. Terefore,
a good identifcation based on good benchmarks is im-
portant to support the operation of SLAM, as it cannot
rely only on the frequently inaccurate odometry ap-
proach, which is the most common technique that is
utilized in robotics to evaluate its present position. Te
odometer function integrates growing information as the
motion of the wheels relative to the starting position is
recorded. So, the SLAM problem can be defned as a case
study of a chicken-or-egg problem, since building a map
of the environment needs the robot position as well as
assigning the robot position needs the map of the en-
vironment. Te main problem with SLAM is that the
measurements that are read from the sensors are always
noisy and their positions are not always certain because
the robot is moving.

2.2. TurtleBot3 Burger. Te TurtleBot3 Burger is a small
mobile robot that runs on ROS and can be programmed
[23]. Te TurtleBot3 burger is one of two robots, with the
TurtleBot3 wafe being the other.Te wafe is lower, but it is
wider all around. Te robot’s base can move around, thanks
to two wheels and a metal ball that keeps it steady. It can be
fully programmed with open source, and the software that
comes with it is licensed under an Apache 2.0 license.
Figure 1 shows the three diferent TurtleBot3 versions, and
Figure 2 shows the TurtleBot3 Burger, while Table 1 shows
the specifcations of the TurtleBot3 Burger.

Journal of Robotics 3

2.3. Robot Operating System (ROS). ROS is an operating
system for robots that includes drivers, libraries, and tools
that can be used to build and improve robot systems [24].
Willow Garage made it in 2007, and it is now the most
popular and widely used robotics platform. ROS has Linux
as a command instrument and an interprocess communi-
cation system [25]. It contains many autonomous nodes,
each of which communicates with the other nodes by uti-
lizing publish or subscribe messaging patterns. ROS relies on
various languages, such as Python and C++, which can be
utilized with each other in the ROS system, which runs on
the Ubuntu Linux operating system [26].

2.4. Rviz Platform. In computer science and computer
imaging, it is necessary to describe and visualize information
in the real world. To achieve this purpose, several structures
and diferent types of algorithms are proposed for data
imaging world. Unfortunately, often the data stream plat-
form that is known to handle the issues in visualization
systems is not elastic and is not suitable to imagine newly
invented data frames and algorithms since this sketch can
only admit specifed data frameworks. So, to handle this
issue, a novel instrument of visualization that is defned by
Rviz is suggested [27]. Rviz is defned as a 3D imagining
instrument in ROS that allows us to imagine what the mobile
robot will grasp and see in any area. Rviz can also imagine all
of the types of sensors on the robot, which include laser
scanners, cameras, and point clouds. Observing the raw
values of the sensors [28], Rviz has an autonomous view of
the input data structures.

3. Modeling of Mobile Robot Navigation

In this part, the Rviz platform is proposed to use SLAM
technology to simulate how mobile robots move through an
unknown environment, control the robot, and do all of these
remotely. For practical considerations, a mobile robot plat-
form named TurtleBot3 Burger has been adopted here to be
used to do tests in the Rviz library built on ROS on Linux.Te
procedure begins with navigating in an unknown indoor
environment with many obstacles, which it must detect, and
creating a map of this unknown environment. As a result, the
SLAM algorithm accomplishes all of these goals and can be
controlled via cloud services access, also known as AWS.
Figure 3 shows the software architecture that came out of this.
Te program is run on a master PC, which the robot acts as
a slave to. A “roscore,” which is the central ROS process that
connects nodes, needs to be started by the hand by running
a command on the RPi through an SSH connection. A similar
process is started in the background on the master PC by the
robotics system toolbox. After the two processes have been set
up, they share data that can be used on either the PC or the
RPi. Te TurtleBot 3 and the remote computer must be
confgured to set up communications on the same network.
Control of the remote computer and storage space is required
to store acquired data, such as maps, in private or public
clouds, so that it can access them at any time and from
anywhere via the Internet. Te procedure for SLAM tech-
niques in ROS with AWS is shown in Figure 4.

3.1. Cloud Computing. IT departments and developers can
focus on what matters most by using cloud computing
instead of doing undiferentiated tasks such as capacity
planning, maintenance, and buying. A variety of models and
deployment strategies have emerged as cloud computing has
grown in popularity, in order to meet the various needs of
users. Depending on the type of cloud service you use and
the deployment strategy, you have varying degrees of
control, fexibility, and management. Knowing the difer-
ences between infrastructure as a service (IaaS), platform as
a service (PaaS), and software as a service (SaaS), as well as
what deployment methodologies you can use, will help you

360° LiDAR for SLAM & Navigation

Single Board Computer (Raspberry pi)

OpenCR (ARM Cortex-M7)

DYNAMIXEL x 2 for Wheel

Scalable Structure

Sprocket wheels for Tire and Caterpillar

Li-Po Battery 11.1 V 1,800 mAh

Figure 2: Te TurtleBot3 Burger.

Table 1: Specifcation of the TurtleBot3 Burger.

Items TurtleBot3
Burger specifcation

Maximum translational
velocity 0.22m/s

Maximum rotational velocity 2.84 rad/s (162.72 deg/s)
Maximum payload 15 kg
Size (L×W×H) 138mm× 178mm× 192mm
Weight
(+SBC+ battery + sensors) 1 kg

SBC (single board computers) Raspberry Pi

Embedded controller OpenCR (32 bit ARM®Cortex® -
M7)

Sensor

HLS-LFCD2
3-axis gyroscope

3-axis accelerometer
3-axis magnetometer

Original TurtleBot
(Discontinued)

Burger
TurtleBot 2 Family

TurtleBot 2 TurtleBot 2i

TurtleBot 2e TurtleBot Euclid

Wafe Wafe Pi

TurtleBot 3 Family

Figure 1: Turtlebot family.

4 Journal of Robotics

choose the set of services that are best for your needs [22]. As
far as the features they ofer, IaaS, PaaS, and SaaS are dif-
ferent from each other in the following ways: IaaS gives the
most freedom when it comes to hosting custom-built apps
and storing data in a general data center. PaaS allows de-
velopers to spend more time developing applications while

the provider manages the infrastructure. SaaS ofers ready-
to-use and out-of-the-box solutions to meet specifc business
needs. Figure 5 illustrates the distinctions between IaaS,
PaaS, and SaaS. In this work, AWS is a provider of IaaS. As
the most complete and widely used cloud platform in the
world, AWS provides over 200 fully functional services from
data centers around the world. Millions of clients use AWS
to reduce costs, increase agility, and accelerate innovation,
including the largest corporations, most successful gov-
ernmental organizations, and fastest-growing start-ups.
Compared to other cloud providers, AWS ofers a much
wider range of services and features within those services. As
a result, moving your current applications to the cloud is
quicker, simpler, and more cost-efective, and you can build
almost anything you can think of. In the next subsection,
some of these services are explained.

3.2. Cloud Services Access (AWS). Te collection of cloud
services ofered by Amazon.com, Inc. is known as AWS
services. It started out in July 2002 by ofering storage and
computing services. Since then, it has grown into a fexible
cloud platform with IaaS, PaaS, and SaaS services, as well as
a number of other services.

AWS is dispersed among numerous datacenters located
in various cities around the globe. Every location is a region,
and each region is made up of physically distinct datacenters
called availability zones. Each service provided distinct
availability zones and regions, with some limited to a single
availability zone and others spanningmultiple regions. Some
services also provide replication capabilities across regions
and availability zones. Te following is an explanation of the
diferent AWS services that are important to this study:

(1) Te simple storage service, also known as S3, is
Amazon’s cloud-based storage service. It allows users
to store standard fles (objects) up to 5 TB in size and
only charges for the storage space actually used. It
uses buckets, each of which may hold an infnite
number of things and has a name that is globally
unique [29]. A bucket is located in a region and that
region contains numerous places for storing all of its
data. Trough API requests and the management

Windows/
Linux

ROS

Robotics
System

Toolbox

TB_tools

Linux

ROS

EC2

S3

Optional

Master/
Remote PC

Slave/
Turtlebot

Amazon Web
Services

SSH

WIFI
Download/Upload

Data

Remote PC access 24/7
wherever safe and quick.

SIH

(a) (b) (c)

Figure 3: Software architecture. (a) AWS services are used to remotely control (services explained in the next subsection 3.2). (b) A remote
PC is used to control TurtleBot3. (c) Te TurtleBot3 used for SLAM and navigation techniques.

Installing ROS (PC setup)

Single Board Computers
(SBC) Setup

OpenCR Setup

SLAM

Save Map

Create an S3 bucket, upload
a map to the S3 bucket

Launch EC2 instance

Choose Number of instances

Enable
auto-assignment of public IP

addresses

Connect to windows instance

Access any device from a
Windows instance. Whenever

you are, quick and safe. Serverless Image Handler

User

Navigation

Creating an AWS account

Confgure security group

Create new key pair

Teleoperation

Bringup TurtleBot3

Figure 4: SLAM technique procedure in ROS.

Journal of Robotics 5

https://Amazon.com

console, data can be moved to another region. A key
that mimics a fle path on ∗NIX systems is used to
uniquely identify each item in a bucket. Tey are all
accompanied by metadata, and each one can have
a diferent set of rights applied to it. An object may be
made publicly accessible, after which it may be
downloaded using an HTTPURL. S3 can be accessed
through the AWSmanagement web interface, SOAP,
and REST APIs, and access can be controlled with
the help of access keys and certifcates. As Figure 6
shows, the Management Console, the command-line
interface (CLI), SDKs, and third-party tools can all
upload and download objects to S3 over HTTPS.

(2) Elastic Compute Cloud, or EC2, is the name of
Amazon’s IaaS product. It was introduced in 2006
and provides virtual machines with various specs
across all the AWS availability zones [30]. An AMI,
or amazonmachine image, is a customized operating
system that is installed on an EC2 virtual instance. It
is possible to build customized AMIs by either al-
tering an existing image or by developing a brand
new one if any of the available ofcial or unofcial
AMIs does not satisfy the user’s demands. Custom
AMIs can be used privately, in which case they can
hold crucial data like authentication keys for S3
access, or they can be made available to the public.

When EC2 frst came out in 2006, the only storage
options for instances were S3 for long-term storage and
ephemeral instance storage for fles that only needed to be
kept for a short time. Elastic block storage, amazon’s storage
area network (SAN) solution for EC2, was introduced in
2008, which provides EC2 instances with access to net-
worked block devices for permanent storage; elastic block

storage (EBS) volumes can employ up to 4,000 preallocated
input/output operations per second (IOPS) and have
a maximum capacity of 1 TB. Te cost of volumes is de-
termined by their size and for provisioned IOPS, by the
number of hours allotted to them. EC2 instances can be set
to be EBS optimized when they are launched, improving
performance. A key pair (to verify your identity) and a se-
curity group are specifed when launching your instance to
secure it. Te private key of the key pair you specifed when
launching your instance must be provided when connecting
to it, as shown in Figure 7.

3.3. Serverless Image Handler. With the aid of this solution,
cost-efective image processing can be started in the AWS
cloud using a serverless architecture. Te architecture is
designed for dynamic image manipulation and combines
AWS services with sharp open-source image processing
software and maintains high-quality images with the help of
the solution’s dynamic image handling. Figure 8 shows how
to set up the serverless architecture.

4. Experimental and Simulation Results

Tis section shows the results of the implementation of
SLAM in ROS, which was simulated in Rviz using an AWS
EC2 instance service for real-time SLAM mobile robots in

SAAS
(0365)

PAAS
(app service)

IAAS
(virtual machines)

On Premises
(own server)

Applications

Data

Runtime

Applications

Data

Runtime

O/S

Servers

Storage

Networking

Applications

Data

Runtime

O/S

Servers

Storage

Networking

Applications

Data

Runtime

O/S

Servers

Storage

NetworkingNetworking

Storage

Servers

O/S

Middleware

Virualization

You manage Manage by cloud service provider

Virualization

Middleware

Virualization

Middleware

Virualization

Middleware

Figure 5: IaaS, PaaS, and SaaS.

User Up/Download
an Object Internet AWS S3

Figure 6: AWS S3 design.

6 Journal of Robotics

complex environments with 12 obstacles of diferent sizes.
Tis allows the robot to be controlled from anywhere, and
the map is then uploaded to the S3 cloud. Tis provides
a database to display maps and use them at any time for
navigation without the need to redraw the map. It also
maintains the privacy of the maps in the place in which they
are saved, fnally bringing up the map for navigation. All the
detailed steps can be shown in Appendix A: testing slam
techniques, including ros installation, single board computer
(SBC) setup, OpenCR setup, bringup, teleoperation slam,
and navigation; and Appendix B: obstacle detection and
point operation, while EC2 server specifcations can be
shown in Table 2. Tis process can be abbreviated as shown
in Figure 9.

First, three levels of security are applied. Te frst is to
sign in to the AWS account. Ten, the EC2 server connects
to the remote computer and takes control of it with the other

two levels of security. Te frst is the EC2 user and password,
and the second is the user and password for the remote PC
that controls the TurtleBot3. Te real TurtleBot3 Burger
robot then starts drawing the map of the unknown envi-
ronment. Figure 10 shows how the EC2 server is monitored
while the remote computer is in charge of keeping its re-
liability, availability, and performance at a high level. Fig-
ure 11 depicts the Real-time SLAM TurtleBot3 control.
Figure 12 compares the real environment with twelve ob-
stacles of diferent dimensions and the environment that is
drawn by the Rviz platform. Figure 13 shows the upload of
the environment to AWS s3 and the SIH solution. Figure 14
shows the navigation process.

CPU utilization shows how many of the instance’s EC2
compute units are being used at any given time; network in
shows how much incoming network trafc is coming into
the instance; network out shows how much network trafc

Root
Amazon EBS

Instance

Private key

Internet

00

Security Group

Availability Zone

Figure 7: AWS EC2 frewall [31].

Amazon
CloudFront

Amazon API
Gateway

AWS
Lambda

Amazon S3 bucket
(customer created)

Original image
100 KB

Optimized image 30 KB
Same width and height

Client

AWS Cloud

Figure 8: SIH architecture [32].

Table 2: EC2 server specifcations.

Software image-amazon machine image (AMI) Microsoft Windows server 2022 base with containers
Virtual server type (instance type) t2.micro
Firewall (security group) Create security group

Storage (volumes) 1 volume(s), 30GiB
General purpose SSD (GP2)

Allow remote desktop protocol (RDP) trafc from Anywhere with user and password
Cost Free tier eligible

Journal of Robotics 7

AWS EC2
INSTANCE SLAM Navigation

Command the
real Turtlebot3

Upload the
map

Download the
map

SIH

User

Sign in to the
console

Access at any
time

From anywhere
Always secure

AWS S3

Figure 9: Scenario process.

Network in (bytes)

CPU utilization (%)
Percent

26

13

0

0

21:30 21:45 22:00 22:1521:15

21:30 21:45 22:00 22:1521:15

21:30 21:45 22:00 22:1521:15

21:30 21:45 22:00 22:1521:15

Status check failed (any) (count) Status check failed (instance) (count)

21:30 21:45 22:00 22:1521:15

21:30 21:45 22:00 22:1521:15

21:30 21:45 22:00 22:1521:15

21:30 21:45 22:00 22:1521:15

Bytes
Network out (bytes) Network packets in (count) Network packets out (count)
Bytes

7.97 M 9.26 M

4.63 M3.99 M

Count Count

Count
12.5 k 12.2 k

6.11 k6.25 k

1

0.5

0

1

0.5

0

Status check failed (system) (count)
Count

Count

1

0.5

0

000

Figure 10: EC2 monitoring.

(a)

(b)

Figure 11: Via AWS EC2: (a) the start of the slam; (b) end of slam.

8 Journal of Robotics

leaves a particular instance; and status check failed reports
whether the instance has recently passed the system status
check. Table 3 is displaying the Amazon EC2 Monitor.

Figure 10 shows that the robot is fully controlled by
AWS EC2. Tis shows the beginning of the process of
drawing the map of an unknown place and the end of the
process. Tis method can allow us to control the robot even
if it is in one country and the person in control is in another
country. Te properties of the robot are mentioned in
subsection 2.2. It is possible to control the speed of the
robot so that the maximum speed is 0.22m/s. Tis is the
relationship between the speed of the drawing and the
speed of the robot.

In Figure 11, it can be noted by the visual comparison
that the arena drawn by Rviz is identical to the “real feld,”
where the robot was able to discover all the obstacles of
diferent sizes. It is now possible to save the map in AWS S3
and use it in the future from the same robot or any other
robot without having to redraw it by redownloading it from
AWS S3 and getting the most out of it. Te same principle
can be applied to a group of sites, and these maps can be used
to make a real application that serves those sites, like a large
store or military application, or to help fnd survivors after
a disaster.

Figure 13 shows the process of uploading the fle in pgm
format, which is slam, and png format, which is the image

Figure 12: Rviz platform environment vs. real environment.

(a)

(b)

Figure 13: (a) Upload of the environment to AWS S3; (b) the SIH solution.

Journal of Robotics 9

format that can be used through SIH, where there are
several options shown in fgure (b) to deal with the image
and clarify it, where this process is a feedback on the nature
of the place and clarifcation of the image by the user and
where it is possible to save the image after modifcation in
S3 as well.

After downloading the map, it is now possible to direct
the robot from one place to another by suggesting the

destination. Te robot, depending on the available in-
formation on the map, chooses the most appropriate route
for itself. Te robot can avoid collisions with fxed and
moving obstacles, where the distance depends on the lidar
settings and ranges from 0.12meters to 3.5meters. Figure 14
shows the process of moving the robot from the starting
point to the point to which it is intended and the path. Te
tuning guide for navigation is shown in Table 4.

(a) (b)

(c) (d)

(e) (f)

Figure 14: Navigation process.

Table 3: Amazon EC2 monitor.

Metric Max value after one
hour

CPU utilization 26 percentage
Network in 8MB
Network out 9.26MB
Network packets in 12.5 k count
Network packets out 12.2 k count
Status check failed 0
Status check failed (instance) 0
Status check failed (system) 0

10 Journal of Robotics

Table 4: Tuning guide for navigation in Figure 14.

Item Value
obstacle_range 3
raytrace_range 3.5
max_vel_x 0.22
min_vel_x - 0.22
max_vel_trans 0.22
min_vel_trans 0.11
max_vel_theta 2.75
min_vel_theta 1.37
acc_lim_x 2.5
acc_lim_theta 3.2
xy_goal_tolerance 0.05
yaw_goal_tolerance 0.17
sim_time 1.5
vx_samples 20
vy_samples 0
vth_samples 40

Turtlebot3 burger Remote PC

ROS_MASTER_URI = http://IP_OF_REMOTE_PC:11311

ROS_HOSTNAME = IP_OF_TURTLEBOT3

ROS_MASTER_URI = http://IP_OF_REMOTE_PC:11311

ROS_HOSTNAME = IP_OF_REMOTE_PC

Figure 15: ROS master running on a remote PC.

LDS-01 LDS-02

Figure 16: LDS-01 and LDS-02.

Journal of Robotics 11

5. Conclusion

Te approach proposed in this work is to solve the SLAM
problem, controlling the robot via the AWS cloud, creating
amap database, and storing it without the need to redraw the
map, as well as using an authentication process (username
and password) under the supervision of the cloud admin-
istrator, and using the SIH to initiate cost-efective image

processing in the AWS cloud. Te practical results were
shown using a real TurtleBot3 Burger robot, the success of
the process of creating a complex map containing 12 ob-
stacles of diferent sizes, where the robot was remotely
controlled by the EC2 server with certain specifcations, and
after one hour, the EC2 monitor value was as follows: CPU
utilization: 26 percent, 8MB network in, 9.26MB network
out, network packets. In the 12.5 K count, network packets

Figure 17: Estimate initial pose.

Table 5: Specifcation of Turtlebot3 Burger.

Items Burger
maxUrange Te lidar sensor’s maximum practical range is set by this setting

map_update_interval Setting a value too large will necessitate more processing power for the map
calculation; the smaller the value, the more frequently the map is updated

minimumScore
Te minimum score value that determines whether the sensor’s scan data matching
test is successful or unsuccessful is established by this option. Tis can lessen errors

in the robot’s predicted position over a large area if confgured properly
linearUpdate When the robot has moved more than this distance, the scanning process will start

angularUpdate Te robot will begin the scan process if it detects more than this amount. Setting this
number lower than linearUpdate is advised

Table 6: Tuning guide of Turtlebot3 Burger.

Items Burger

infation_radius
Te obstacle’s infation area is reduced by this parameter. Te route would be

designed so that it would not pass through this region. Setting this to a value greater
than the robot’s radius is secure

cost_scaling_factor Te cost value is multiplied by this factor. Because of the reciprocal relationship, the
cost decreases as this parameter is increased

max_vel_x Te maximum value of translational velocity is set for this factor

min_vel_x Te translational velocity’s minimum value is set for this factor. If this is set to zero,
the robot can go backward

max_trans_vel Maximum translational velocity value in reality; this is the fastest the robot is
capable of going

min_trans_vel Te actual translational minimum velocity; this is the fastest the robot can go

max_rot_vel Maximum rotational velocity value in reality; this is the fastest the robot is capable of
going

min_rot_vel Te precise rotational velocity; this is the fastest the robot can go
acc_lim_x Te translational acceleration limit’s actual value
acc_lim_theta Te rotational acceleration limit’s actual value
xy_goal_tolerance Te permitted x, y distance when the robot is in its desired pose
yaw_goal_tolerance Te yaw angle is permitted once the robot has assumed its fnal position

sim_time
Tis factor is advanced in the simulation by a few seconds. Too high a value prevents
quick rotation, whereas too low a value allows passage through a limited space.
Diferences in the length of the yellow line can be seen in the image below

12 Journal of Robotics

out: 12.2 k, status check failed 0. After that, the map has been
successfully stored in S3 for future use. Also, the process of
moving the robot from start to target inside the map was
tested, and the robot was able to move and avoid collision
with the obstacles it encounters on the way. From the
foregoing, a person in a certain country can control a robot
located in another country, as this method ofers many
prospects for use in the military, medical, and educational
felds. For future work, the extended Kalman flter (EKF)
algorithm can be used to improve the SLAM, and EKF--
SLAM is used for various unknown environments. Ten,
intelligent optimization algorithms are suggested to improve
the performance of the mobile robot’s EKF-SLAM path.

Appendix

A. Detailed Steps for ROS in SLAM
and Navigation

(1) Installing ROS (PC setup)
Te instructions were tested on Linux with Ubuntu
16.04 and ROS Kinetic Kame, which are talked about
as follows.
Step 1: Install ROS on remote PC
First, the robotic operating system (ROS) is installed
on an Ubuntu Linux OS. Te steps to complete the
installation are clearly shown on the website https://
www.ubuntu.com/.
In this work, the version of Ubuntu 16.04 LTS is used.
“Te Kinetic” is the codename for the latest ROS
distribution, which is compatible with Ubuntu 16.04.
ROS is put on Ubuntu by using terminal software. To
start the installation, diferent steps were taken.
Step 2: Open the terminal and type each of the
following instructions individually.
$ sudo apt-get update
$ sudo apt-get upgrade
$ wget https://raw.githubusercontent.com/ROBO
TIS-GIT/robotis_tools/master/install_ros_kinetic.sh
$ chmod 755./install_ros_kinetic.sh
$ bash./install_ros_kinetic.sh
Step 3: Install the required packages for ROS.
$ sudo apt-get install ros-kinetic-joy ros-kinetic-
teleop-twist-joy \
ros-kinetic-teleop-twist-keyboard ros-kinetic-
laser-proc \
ros-kinetic-rgbd-launch ros-kinetic-depthimage-to-
laserscan \
ros-kinetic-rosserial-arduino ros-kinetic-rosserial-
python \
ros-kinetic-rosserial-server ros-kinetic-rosserial-client
ros-kinetic-rosserial-msgs ros-kinetic-amcl ros-ki-
netic-map-server \

ros-kinetic-move-base ros-kinetic-urdf ros-kinetic-
xacro \
ros-kinetic-compressed-image-transport ros-ki-
netic-rqt∗ \
ros-kinetic-gmapping ros-kinetic-navigation ros-
kinetic-interactive-markers
Step 4: Set up the TurtleBot3 packages.
$ sudo apt-get install ros-kinetic-dynamixel-sdk
$ sudo apt-get install ros-kinetic-turtlebot3-msgs
$ sudo apt-get install ros-kinetic-turtlebot3
Step 5: Name your TurtleBot3 model.
$ echo “export TURTLEBOT3_MODEL� burger”
>> ∼/.bashrc
Step 6: Network Confguration.
Figure 15 shows an example of network confgu-
ration when ROS Master is running on
a remote PC.
Use the command below to connect your PC to
a WiFi device and discover the assigned IP address.
$ ifconfg
Now, use the command listed in the following to
update the ROS IP settings after opening the fle.
$ nano ∼/.bashrc
Place the cursor at the end of the line, then use the
ifconfg command to replace localhost’s IP address in
the ROS MASTER URI and ROS HOSTNAME
variables.
Use the command below to source the bashrc fle.
$ source ∼/.bashrc

(2) Single Board Computers (SBC) Setup
Step 1: TurtleBot 3 SBC Image Download For your
hardware and ROS version, download the appro-
priate image fle. images using the Kinetic version of
the Raspberry pi OS (raspbian OS).
Step 2: Te downloaded picture fle must be
unzipped. Save the .img fle on the local disk after
being extracted.
Step 3: Burn the image fle. Tere are many image-
burning tools available (the Linux disks utility and
raspberry pi imager are two examples).
Step 4: Te raspberry pi should start up.

(a) Connect the HDMI cable from the monitor to
the raspberry pi’s HDMI port

(b) Attach input devices to the USB port on the
raspberry pi

(c) Insert your microSD card
(d) To start the raspberry pi, connect the power

(either using USB or OpenCR)

Step 5: Confgure the Raspberry Pi

(a) Connect to the Wi-Fi network linked to the PC
once raspbian OS is up and running

Journal of Robotics 13

https://www.ubuntu.com/
https://www.ubuntu.com/
https://raw.githubusercontent.com/ROBOTIS-GIT/robotis_tools/master/install_ros_kinetic.sh
https://raw.githubusercontent.com/ROBOTIS-GIT/robotis_tools/master/install_ros_kinetic.sh

(b) Use the following command to determine the
raspberry pi’s assigned ip address. Te wlan0
section is typically where you will fnd the
raspberry pi’s wireless IP address
$ ifconfg

(c) Open the terminal on your PC, enter the ip
address of the raspberry pi, and connect. tur-
tlebot has been set as the default password
$ ssh pi@{IP_ADDRESS_OF_RASPBERRY_PI}

(d) After logging in, run the following commands on
the raspberry pi to get the time in sync
$ sudo apt-get install ntpdate
$ sudo ntpdate ntp.ubuntu.com

(e) Open the confguration interface for the
raspberry pi
$ sudo raspi-confg

(f) Expand the fle system by choosing advanced
options, then click Exit.

(g) ROS network confguration
$ nano ∼/.bashrc

(h) Modify the ip addresses for ROS MASTER URI
and ROS HOSTNAME at the fle’s end
export ROS_MASTER_URI� http://{IP_AD-
DRESS_OF_REMOTE_PC}:11311
export ROS_HOSTNAME�

{IP_ADDRESS_OF_RASPBERRY_PI_3}
(i) After saving the document, close the nano editor
(j) Apply modifcations using the following

command
$ source ∼/.bashrc

Step 6: Confguration new lds-02
Te TurtleBot3 LDS has been replaced by the LDS-02
in models made in 2022. To use TurtleBot3’s SBC,
adhere to the following directions. Te two cate-
gories of leaders are shown in Figure 16.

(a) Install the TurtleBot3 package update and the
LDS-02 driver
$ sudo apt update
$ sudo apt install libudev-dev
$ cd ∼/catkin_ws/src
$ git clone -b develop https://github.com/
ROBOTIS-GIT/ld08_driver.git
$ cd ∼/catkin_ws/src/turtlebot3 && git pull
$ rm-r turtlebot3_description/turtlebot3_teleop/
turtlebot3_navigation/turtlebot3_slam/
turtlebot3_example/
$ cd ∼/catkin_ws && catkin_make

(b) Te LDS MODEL should be exported to the
bashrc fle. Use LDS-01 or LDS-02 depending on
the model of LDS.
$ echo ‘export LDS_MODEL� LDS-01’ >>
∼/.bashrc

(c) Use the command below to make the
modifcations.
$ source ∼/.bashrc

(3) OpenCR Setup

Step 1: Utilize the micro-USB connection to join the
OpenCR and the raspberry pi
Step 2: To upload the OpenCR frmware, install the
necessary packages on the raspberry pi
$ sudo dpkg--add-architecture armhf
$ sudo apt-get update
$ sudo apt-get install libc6:armhf
Step 3: Choose between the names Burger andWafe
for the OPENCR MODEL depending on the
platform
$ export OPENCR_PORT� /dev/ttyACM0
$ export OPENCR_MODEL� burger
$ rm-rf./opencr_update.tar.bz2
Step 4: After downloading the loader and frmware,
extract the fle.
$ wget https://github.com/ROBOTIS-GIT/OpenCR-
Binaries/raw/master/turtlebot3/ROS1/latest/
opencr_update.tar.bz2
$ tar-xvf opencr_update.tar.bz2
Step 5: Uploading frmware to OpenCR
$ cd./opencr_update
$./update.sh $OPENCR_PORT
$OPENCR_MODEL.opencr

(4) Bringup

(1) Run Roscore on a computer
$ roscore

(2) Bringup TurtleBot3

Step 1: On a computer, launch a new terminal and
use the raspberry pi’s ip address to connect.
$ ssh pi@{IP_ADDRESS_OF_RASPBERRY_PI}
Step 2: Bring up basic packages to start TurtleBot3
applications
$ roslaunch turtlebot3_bringup
turtlebot3_robot.launch

(5) Teleoperation
Diferent remote controllers can be used to teleo-
perate the TurtleBot3 (Keyboard, RC100, PS3 Joy-
stick, XBOX 360 Joystick, Wii Remote). Verify that
SBC and ROS versions support the required ROS
packages. In this study, keyboard teleoperation is
used. For keyboard teleoperation, start the Tur-
tleBot3 teleop key node from the remote PC. You
should substitute the name of your model, such as
burger, wafe, or wafe pi, for the $TB3 MODEL
parameter.
$ export TURTLEBOT3_MODEL�

${TB3_MODEL}
$ roslaunch turtlebot3_teleop
turtlebot3_teleop_key.launch
Te following set of instructions will appear in the
terminal window if the node is successfully launched

14 Journal of Robotics

https://github.com/ROBOTIS-GIT/ld08_driver.git
https://github.com/ROBOTIS-GIT/ld08_driver.git
https://github.com/ROBOTIS-GIT/OpenCR-Binaries/raw/master/turtlebot3/ROS1/latest/opencr_update.tar.bz2
https://github.com/ROBOTIS-GIT/OpenCR-Binaries/raw/master/turtlebot3/ROS1/latest/opencr_update.tar.bz2
https://github.com/ROBOTIS-GIT/OpenCR-Binaries/raw/master/turtlebot3/ROS1/latest/opencr_update.tar.bz2

Control Your Turtlebot3mmc1
Moving around
w

a s d
x
w/x: increase/decrease linear velocity
a/d: increase/decrease angular velocity
space key, s: force stop
CTRL-C to quit

(6) SLAM
Step 1: Launch the SLAM node from a new terminal
that is open in remote PC. Gmapping is the standard
SLAM technique. Frontier exploration, Hector, Karto,
and Cartographer are additional approaches. For the
TurtleBot3 MODEL parameter, select the appropriate
keyword from burger, wafe, and wafe pi.
$ export TURTLEBOT3_MODEL� burger
$ roslaunch turtlebot3_slam turtlebot3_slam.launch
Once the SLAM node is operational, TurtleBot3 will
use teleoperation to explore uncharted territory on
the map. It is crucial to refrain from jerky motions,
including abrupt changes in linear and angular
speed. It is a good idea to scan the entire map while
using the TurtleBot3 to generate a map.
Step 2: Tuning Guide for slam: Gmapping ofers
a variety of parameters to adjust performance for
various settings. When confguring GMapping pa-
rameters, this tuning guide ofers advice. Te fle
TurtleBot3 slam/confg/gmapping params.yaml is
defned in Table 5 with the following parameters:
Step 3: Save Map
Te map is produced using the robot’s odometry, tf,
and scan data. Te map information was shown in
the Rviz window as the TurtleBot3 was moving. Save
the map data to the local drive after creating
a complete map of the area so you can use it later.
Run the map saver node of the map server package to
generate map fles. In the directory where the map
saver node is launched, the map fle is saved. If no
other fle name is specifed, the word “Map” will be
used as the default and will create the fles map.pgm
and map.yaml. Te -f option specifes a folder lo-
cation and fle name when saving fles. Tat com-
mand will save Map.pgm and Map.yaml to the user’s
home directory.
$ rosrun map_server map_saver-f ∼/map
Step 4: Te two-dimensional occupancy grid map
(OGM), which is popular in ROS, is utilized for the
map. Te saved map will resemble the following
illustration, with the white areas denoting colli-
sion-free zones, the black areas denoting occupied
and inaccessible zones, and the gray areas denoting
uncharted territory. Te navigation is done using
this map.

(7) Navigation
Te goal of navigation is to move the robot through
a given environment from one location to the desired
location. A map with geometry data on the walls,
furniture, and other objects in the environment is
necessary for this. Te map was created using the
sensor’s distance data and the robot’s own position
data, as we discussed in the SLAM section earlier. A
robot can navigate from its current position to
a destination pose on a map by using the map, en-
coder, IMU sensor, and distance sensor of the robot.
Te following are the steps to complete this task.
Step 1: Launch the navigation
$ export TURTLEBOT3_MODEL� burger
$ roslaunch turtlebot3_navigation tur-
tlebot3_navigation.launch map_fle:� $HOME/
map.yaml
Step 2: Estimate initial pose
Prior to starting the navigation, initial pose esti-
mation is necessary since it initializes the crucial
AMCL parameters. TurtleBot3 must be in the right
place on the map because the LDS sensor data neatly
overlaps the map, as shown in Figure 17:

(1) Click the 2D Pose Estimate button in the
Rviz menu.

(2) Drag the green arrow in the direction you want
the robot to face by clicking on the map and
setting the robot’s destination. A marking that
can indicate the robot’s destination is this green
arrow. Te arrow is based on the x and y co-
ordinates of the target, while the angle is based
on the direction of the arrow. As soon as x, y, and
θ are set, TurtleBot3 will start moving to the
destination immediately.

(8) Te Tuning Guide for Navigation (shown in Table 6):
Te navigation stack has many parameters to change
performance for diferent robots. Tis tuning is
defned in
turtlebot3_navigation/param/
dwa_local_planner_params_${TB3_MODEL}.yaml

B. ROS for Obstacle Detection and
Point Operation

Robot path planning (RPP) can be divided into two categories
based on the environment where the robot is located: static
(environment with fxed obstacles) and dynamic (the envi-
ronment hasmoving obstacles).Tese two categories can each
be further broken down into subgroups, including global path
planning (GPP), which allows for the advance knowledge of
all fxed and moving obstacles. As a result, the GPP can be
prepared in advance of the robot moving (ofine), and local
path planning (LPP) is available. It is impossible to know
beforehand what the environment is like here. Terefore, as
the mobile robot travels through the world, sensors (online)
gather data about what is nearby [33].

Journal of Robotics 15

LDS data can move or stop the TurtleBot3. Te Tur-
tleBot3 burger stops moving when it sees something in its
path. [remote PC] Start the fle with the obstacle.

$ roslaunch turtlebot3_example
turtlebot3_obstacle.launch
For point operation, the TurtleBot3 can be moved using
2D (x, y) points and z-angular movements. For in-
stance, TurtleBot3 moves to the point (x� 0.7m,
y� 0.2m) and then rotates 60° if you enter (0.7, 0.2, 60).
$ roslaunch turtlebot3_example
turtlebot3_pointop_key.launch

Data Availability

Data sharing is not applicable to this article as no datasets
were generated or analyzed during the current study.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] F. H. Ajeil, I. K. Ibraheem, M. A. Sahib, and A. J. Humaidi,
“Multi-objective path planning of an autonomous mobile
robot using hybrid PSO-MFB optimization algorithm,” Ap-
plied Soft Computing, vol. 89, Article ID 106076, 2020.

[2] A. Hussnain, Application of Cloud Robotics for Automatic
Manipulation, University of Tampere, Tampere, Finland,
2018.

[3] M. Lacity and E. Whitley, “service automation: robots and the
future of work hashtag for twitter users: #lserobots department
of management public lecture,” 2016, https://www.lse.ac.uk/
Events/2016/05/20160509t1830vOT/Service-Automation.

[4] X. Ma and Y. Huang, “Research on mobile cloud robotics
based on cloud computing,” in Proceedings of the 2016 In-
ternational Forum on Management Education and In-
formation Technology Application, Guangzhou, China,
January 2016.

[5] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, In-
troduction to Autonomous Mobile Robots, Massachusetts
Institute of Technology, Cambridge, MA USA, 2011.

[6] J. Wan, S. Tang, H. Yan, D. Li, S. Wang, and A. V. Vasilakos,
Cloud Robotics: Current Status and Open Issues, IEEE Access,
Piscataway, NJ, USA, 2016.

[7] I. Afanasyev, A. Sagitov, and E. Magid, “Ros-based slam for
a gazebo-simulated mobile robot in image-based 3d model of
indoor environment,” in Proceedings of the International
Conference on Advanced Concepts for Intelligent Vision Sys-
tems, pp. 273–283, Catania, Italy, October 2015.

[8] R. Doriya, P. Sao, V. Payal, V. Anand, and P. Chakraborty, “A
review on cloud robotics based frameworks to solve simul-
taneous localization and mapping (slam) problem,” 2015,
https://arxiv.org/abs/1701.08444.

[9] K. Takaya, T. Asai, V. Kroumov, and F. Smarandache,
“Simulation environment for mobile robots testing using ROS
and Gazebo,” in Proceedings of the 2016 20th International
Conference on System Teory, Control and Computing
(ICSTCC), pp. 96–101, Sinaia, Romania, October 2016.

[10] R. Limosani, A. Manzi, L. Fiorini, F. Cavallo, and P. Dario,
“Enabling global robot navigation based on a cloud robotics

approach,” International Journal of Social Robotics, vol. 8,
no. 3, pp. 371–380, 2016.

[11] R. K. Megalingam, C. R. Teja, S. Sreekanth, and A. Raj, “Ros
based autonomous indoor navigation simulation using slam
algorithm,” 2019, http://www.ijpam.eu.

[12] G. Jiang, L. Yin, S. Jin, C. Tian, X. Ma, and Y. Ou, “A si-
multaneous localization and mapping (SLAM) framework for
2.5D map building based on low-cost LiDAR and vision
fusion,” Applied Sciences, vol. 9, no. 10, 2019.

[13] P. Arena, C. Bonomo, L. Fortuna, M. Frasca, and S. Graziani,
“Design and control of an IPMC wormlike robot,” IEEE
Transactions on Systems, Man and Cybernetics, Part B (Cy-
bernetics), vol. 36, no. 5, pp. 1044–1052, 2006.

[14] A. Buscarino, L. Fortuna,M. Frasca, and A. Rizzo, “Dynamical
network interactions in distributed control of robots,” Chaos:
An Interdisciplinary Journal of Nonlinear Science, vol. 16,
no. 1, 2006.

[15] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442,
1998.

[16] S. Kajita and B. Espiau, “Legged robots,” in Springer Hand-
book Of Robotics, pp. 361–389, Springer Berlin Heidelberg,
Berlin, Germany, 2008.

[17] U. U. S. Rajapaksha, C. Jayawardena, and B. A. MacDonald,
“Design, implementation, and performance evaluation of
a web-based multiple robot control system,” Journal of Ro-
botics, vol. 2022, Article ID 9289625, pp. 1–24, 2022.

[18] A. T. Rashid, M. Frasca, A. A. Ali, A. Rizzo, and L. Fortuna,
“Multi-robot localization and orientation estimation using
robotic cluster matching algorithm,” Robotics and Autono-
mous Systems, vol. 63, pp. 108–121, 2015.

[19] J. S. Pershina, S. Y. Kazdorf, and A. V. Lopota, “Methods of
mobile robot visual navigation and environment mapping,”
Optoelectronics, Instrumentation and Data Processing, vol. 55,
no. 2, pp. 181–188, 2019.

[20] T. C. Smith, An Investigation on a Mobile Robot in a ROS
Enabled Cloud Robotics Environment, Georgia Southern
University, Statesboro, GA, USA, 2016.

[21] G. Tuna, K. Gulez, V. Cagri Gungor, and T. Veli Mumcu,
“Evaluations of diferent simultaneous localization and
mapping (SLAM) algorithms,” in Proceedings of the IECON
2012 - 38th Annual Conference on IEEE Industrial Electronics
Society, pp. 2693–2698, Montreal, Quebec, October 2012.

[22] J. Ahmed Abdulsaheb and D. Jasim Kadhim, “Robot path
planning in unknown environments with multi-objectives
using an improved COOT optimization algorithm,” In-
ternational Journal of Intelligent Engineering and Systems,
vol. 15, no. 5, pp. 548–565, 2022.

[23] R. Amsters and P. Slaets, Turtlebot 3 as a Robotics Education
Platform, Purdue University, West Lafayette, IN, USA, 2020.

[24] H. Deng, J. Xiong, and Z. Xia, “Mobile manipulation task
simulation using ROS withMoveIt,” in Proceedings of the 2017
IEEE International Conference on Real-Time Computing and
Robotics (RCAR), pp. 612–616, Okinawa, Japan, July 2017.

[25] S. Haider Abdulredah and D. Jasim Kadhim, “Developing
a real time navigation for the mobile robots at unknown
environments,” Indonesian Journal of Electrical Engineering
and Computer Science, vol. 20, no. 1, p. 500, 2020.

[26] M. Robert and L. Avanzato, “Work in progress: introductory
mobile robotics and computer vision lab-oratories using ros
and matlab introductory mobile robotics and computer vision
laboratories using ros and matlab,” in Proceedings of the 2018
ASEE Annal Conference and Exposition, Salt Lake City, UT,
USA, June 2018.

16 Journal of Robotics

https://www.lse.ac.uk/Events/2016/05/20160509t1830vOT/Service-Automation
https://www.lse.ac.uk/Events/2016/05/20160509t1830vOT/Service-Automation
https://arxiv.org/abs/1701.08444
http://www.ijpam.eu

[27] F. Penné, Implementation of Particle Filtering in a Turtlebot,
University of Chicago, Chicago, IL, USA, 2015.

[28] H. Wang, W. Liu, F. Zhang, S. X. Yang, and L. Zhang, “A GA-
fuzzy logic based extended Kalman flter for mobile robot
localization,” in Proceedings of the 2015 12th International
Conference on Fuzzy Systems and Knowledge Discovery
(FSKD), pp. 319–323, Zhangjiajie, China, August 2015.

[29] J. Nadon, “Your content solution: an introduction to AWS
S3,” in Website Hosting and Migration with Amazon Web
Services, pp. 15–24, Apress, Berkeley, CA, USA, 2017.

[30] R. Saini and R. Behl, “An introduction to aws—ec2 (elastic
compute cloud),” 2020, https://aws.amazon.com/pm/ec2-amd/?
trk=17a47518-9bfe-4f1e-a67f-42bdd19264e5&sc_channel=ps&
ef_id=EAIaIQobChMI3-fCvL3s_QIV2yMrCh20AArOEAAYAS
AAEgKkCvD_BwE:G:s&s_kwcid=AL!4422!3!525855180410!p!!g
!!amazon%20web%20server!13385427590!122597168825.

[31] Amazon, “What is amazon EC2? - amazon elastic compute
cloud,” 2023, https://docs.aws.amazon.com/AWSEC2/latest/
WindowsGuide/concepts.html.

[32] Amazon, “Fast and cost-efective image manipulation with
serverless image handler | aws architecture blog,” 2023,
https://aws.amazon.com/blogs/architecture/fast-and-cost-
efective-image-manipulation-with-serverless-image-
handler/.

[33] H. Miao and Y.-C. Tian, “Robot path planning in dynamic
environments using a simulated annealing based approach,”
in Proceedings of the 2008 10th International Conference on
Control, Automation, Robotics and Vision, pp. 1253–1258,
Hanoi, Vietnam, December 2008.

Journal of Robotics 17

https://aws.amazon.com/pm/ec2-amd/?trk=17a47518-9bfe-4f1e-a67f-42bdd19264e5&sc_channel=ps&ef_id=EAIaIQobChMI3-fCvL3s_QIV2yMrCh20AArOEAAYASAAEgKkCvD_BwE:G:s&s_kwcid=AL!4422!3!525855180410!p!!g!!amazon%20web%20server!13385427590!122597168825
https://aws.amazon.com/pm/ec2-amd/?trk=17a47518-9bfe-4f1e-a67f-42bdd19264e5&sc_channel=ps&ef_id=EAIaIQobChMI3-fCvL3s_QIV2yMrCh20AArOEAAYASAAEgKkCvD_BwE:G:s&s_kwcid=AL!4422!3!525855180410!p!!g!!amazon%20web%20server!13385427590!122597168825
https://aws.amazon.com/pm/ec2-amd/?trk=17a47518-9bfe-4f1e-a67f-42bdd19264e5&sc_channel=ps&ef_id=EAIaIQobChMI3-fCvL3s_QIV2yMrCh20AArOEAAYASAAEgKkCvD_BwE:G:s&s_kwcid=AL!4422!3!525855180410!p!!g!!amazon%20web%20server!13385427590!122597168825
https://aws.amazon.com/pm/ec2-amd/?trk=17a47518-9bfe-4f1e-a67f-42bdd19264e5&sc_channel=ps&ef_id=EAIaIQobChMI3-fCvL3s_QIV2yMrCh20AArOEAAYASAAEgKkCvD_BwE:G:s&s_kwcid=AL!4422!3!525855180410!p!!g!!amazon%20web%20server!13385427590!122597168825
https://aws.amazon.com/pm/ec2-amd/?trk=17a47518-9bfe-4f1e-a67f-42bdd19264e5&sc_channel=ps&ef_id=EAIaIQobChMI3-fCvL3s_QIV2yMrCh20AArOEAAYASAAEgKkCvD_BwE:G:s&s_kwcid=AL!4422!3!525855180410!p!!g!!amazon%20web%20server!13385427590!122597168825
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/concepts.html
https://aws.amazon.com/blogs/architecture/fast-and-cost-effective-image-manipulation-with-serverless-image-handler/
https://aws.amazon.com/blogs/architecture/fast-and-cost-effective-image-manipulation-with-serverless-image-handler/
https://aws.amazon.com/blogs/architecture/fast-and-cost-effective-image-manipulation-with-serverless-image-handler/

