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In this paper, we deal with a Bicopter drone that has two thrusters and two tilting servos. Both the position and attitude dynamics
of Bicopter are globally expressed on the Special Euclidean group SEð3Þ:. A simple control allocation method is proposed to map
between the control wrench and actuator inputs for the Bicopter. A geometric nonlinear attitude and altitude tracking controller is
developed for the Bicopter and the asymptotic stability analysis is performed using the Lyapunov method for the closed-loop
nonlinear system. The performance of the proposed altitude and attitude stabilization controller is validated through experimental
hardware developed in-house. The attitude controller performance is validated through simulations and shown to be comparable
against an linear matrix inequality-based control law.

1. Introduction

Bicopter is one of the configurations of unmanned aerial
vehicles (UAVs) or drones. The propeller-based drones with
several actuator configurations were developed in the last few
decades, for example, rotary-wing type UAVs such as single
rotor, coaxial rotor type (e.g., helicopter [1]), conventional
multirotor type (e.g., quadcopter [2], hexacopter [3]), etc.
Tilt-rotor mechanisms are one of the actuator configurations
that result in a fully actuated UAV with the possibility of
independent control of translation and rotation motions of
the vehicle (e.g., quadcopter with active tilt [4], hexacopter
with active tilt [5], and tricopter with active tilt [6]). The main
motive of tilting is to improve the fast-tracking capability and
the aggressive performance of the vehicle and to provide
inherent full actuation. However, the tiling vehicles have an
increased number of actuators (servos for tilt) which con-
sumes more power and results in less flight time [7]. Hence,
researchers started to reduce the number of inputs and it led
to the design of a Bicopter with tilting rotors. Among all other
configurations, the Bicopter configuration hasminimal actua-
tors with tilt mechanisms, compared to conventional multi-
rotor drones [7]. Since the Bicopter is made with only two

thrusters, it can easily enter tight spaces with complex maneu-
vering capability. The Bicopter is an underactuated robot with
6 degrees-of-freedom (DoF) and the total control inputs are
only four.

Numerous developments on the Bicopter UAV were
found in the literature. T-Phoenix is the first prototype of a
Bicopter developed by Sanchez et al. [8] with a tilting mecha-
nism that can control yaw and pitch motion by tilting the
rotors. The authors also derive a mathematical model with
Euler-angle parameterization, and a hovering control law is
developed with proof of local asymptotic stability. In [9], an
oblique arm technology for active tilting is introduced to
achieve faster pitch response. A PID attitude controller is
designed for the linearized model and the system control is
demonstrated experimentally. In [10], the dynamics of Bicop-
ter using the Lagrangian approach is derived and a linear H1
path tracking controller is derived for the linearized model
and validated through simulations. In [11], a dynamic model
of a Bicopter with the use of Euler-angle parameterization is
presented, and the attitude control is done by the use of a PID
controller. Similar works are presented in [12, 13] along with
the altitude control using PID and LQG controllers, respec-
tively. The design and fabrication aspects of a Bicopter were
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presented in [14, 15]. Similarly in [16], a gesture-based con-
trol for remote operation of the Bicopter (by using a gesture
glove) was implemented. Gemini in [7] is a practical aircraft
designed to fly through tight spaces with improved compact-
ness and efficiency (optimizing the size). This work mainly
focuses on aircraft design and implementation to make it
practically usable. Later in [17], the authors implemented
H1-based controller, and the performance is compared
with a PID controller in experiments. Recently, using approx-
imated dynamics equations, position and attitude controllers
for a Bicopter were simulated in [18, 19] (with local asymp-
totic stability). Similarly, the hybrid ground air locomotion
control was experimentally demonstrated in [20, 21].

To the best of our knowledge, geometric control-based
stabilization/tracking for Bicopter is still an unexplored
topic. Geometric control enables the system to have a larger
domain of stability, especially for aerial robots where aggres-
sive maneuvers and large-angle rotations are required. The
attitude of aerial vehicles evolves on SOð3Þ : manifold and
gives a globally valid representation of the dynamics and
avoids singularities that are present in Euler angle-based
representations [22]. A few examples of geometric control-
lers applied to various UAV configurations are Taeyoung Lee
in [2] implemented a global geometric nonlinear control law
to quadcopter UAV for both position and attitude tracking
problems. Similar work can be found in the case of quad-
copter with vectored/tilting thrust in [4] and hexacopter with
vectored/tilting thrust in [23, 24], where tilting makes the
system fully actuated. Similarly in [25], geometric attitude
control is implemented for spacecraft under gravity. Verling
in [26] implemented a geometric attitude controller on
SOð3Þ : for a VTOL tail-sitter type UAV, where the system
can work as a rotary-wing UAV using two propellers while
take-off/landing and as a fixed-wing UAV mid-flight using
two flaps at the bottom. In [27], the controller is developed
for the fully actuated omnidirectional UAV on a geometric
frame setting.

The main contributions of this work are as follows:

(1) Development of a mapping method between the con-
trol wrench, and the actuator thrusts and angles of
Bicopter, without any approximations of nonlinear
terms. Note that the control wrench is a vector of
forces and torques acting on a typical drone without
considering the type of actuator arrangement.

(2) To propose a geometric nonlinear attitude and altitude
controller for the Bicopter that provides semiglobal
asymptotic stability. The stability of the proposed atti-
tude and altitude controller will be proved using Lya-
punov analysis.

(3) Validation of the altitude and attitude stabilization
controllers through experiments and simulations and
comparison with an linear matrix inequality (LMI)-
based controller in simulations.

The rest of the work is organized as follows. In Section 2, the
Bicopter dynamics is discussed, and in Section 3, a control map-
ping method is presented. Geometric attitude and altitude

controllers are proposed for the Bicopter in Sections 4 and 5,
along with the stability analysis. Simulations, hardware descrip-
tion, and experimental results are discussed in Section 6 with
concluding remarks in Section 7.

2. Global Representation of Bicopter Dynamics
on SE(3)

The Bicopter configuration used in this paper is shown in
Figure 1. The actuators are the two propeller thrusts and the
two servo orientations for the thrusts. Consider (Xb,Yb, Zb)
as the body coordinate frame with the origin Ob at the cen-
ter-of-mass of the Bicopter and (Xi,Yi, Zi) is the inertial
frame of reference with origin Oi. The convention of positive
rotation is assumed to be counterclockwise. The configura-
tion manifold of Bicopter is Special Euclidean group SEð3Þ :

which is semidirect product of attitude manifold SOð3Þ : and
the 3D Euclidean space [22] where the space SOð3Þ : repre-
sents the set of all 3× 3 rotation matrices:

SO 3ð Þ ¼ R 2 R3×3∣R>R¼ I; det Rð Þ ¼ 1f g; ð1Þ

where I 2R3×3 is the identity matrix and detð⋅Þ: :R3×3 → R
represents the determinant of a matrix. Let e1; e2; e3 2R3 be
the standard basis. The Bicopter two propellers generate
thrust forces in e3 direction as fle3 and fre3, respectively, with
respect to the propeller frame where, fl>0; fr>02R. The
servo mechanism provides vectoring of thrust forces by tilt-
ing two rotors with an angle βl and βr , respectively, around
the servo shaft axis (about Yb). The projections of the thrust
forces to the body frame are RYðβlÞ :fle3 and RYðβrÞ :fre3, where
RYðβlÞ : and RYðβrÞ : 2R3×3 ⊂ SOð3Þ : are rotation matrices
representing the tilting of left and right propellers, respec-
tively. Similarly, the vector of external moments or torques
due to thrust acting on the central body are dbl ×RYðβlÞ :

fle3 and dbr ×RYðβrÞ :fre3. Here, dbl ¼ ½0 lm lp�> and dbr ¼
½0 − lm lp�> are the vectors from the center-of-mass to the
points where the thrust is generated in both left and right
propellers, respectively, and 0×0 represents cross-product. So,
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FIGURE 1: Schematic of Bicopter drone.

2 Journal of Robotics



the vector of external forces Fb
ext and external torques τext

with respect to body frame are given as follows:

Fb
ext ¼ RY βlð Þfle3 þ RY βrð Þfre3; ð2Þ

τext ¼ dbl × RY βlð Þfle3 þ dbr × RY βrð Þfre3: ð3Þ

Using the Newton–Euler approach, the complete dynam-
ics of any rigid body subjected to external forces Fb

ext and
torques τext can be written as follows:

ξ̇ ¼ v;
mv̇ ¼ −mge3 þ RFb

ext;
ð4Þ

Ṙ ¼ RbΩ;
JΩ̇ ¼ −bΩJΩþ τext:

ð5Þ

Equation (4) represents the translational dynamics, and
Equation (5) represents the rotational dynamics of the rigid
body. Hence, the dynamics of the Bicopter drone evolving in
SEð3Þ : manifold can be written as follows:

ξ̇ ¼ v;
mv̇ ¼ −mge3 þ R RY βlð Þfle3 þ RY βrð Þfre3ð Þ; ð6Þ

Ṙ ¼ RbΩ;
JΩ̇ ¼ −bΩJΩþ dbl × RY βlð Þfle3 þ dbr × RY βrð Þfre3;

ð7Þ

where ξ¼ ½x y z�> 2R3 and v¼ ½vxvyvz�> 2R3 are transla-
tional position and velocity vectors of the Bicopter center-
of-mass with respect to the inertial frame of reference. R2
SOð3Þ : is the rotation matrix representing the orientation of
the Bicopter body frame with respect to the inertial frame,
andΩ2R3 is the angular velocity of the Bicopter body frame
measured with respect to inertial frame and expressed in
body frame. J ¼ diagð½Jx; Jy; Jz�Þ : 2R3×3 is the moment-of-
inertia matrix with respect to body frame and g is the accel-
eration due to gravity. The hat operator,b⋅ is a map from R3

to SOð3Þ : [22], where SOð3Þ : is the set of all 3× 3 skew-
symmetric matrices. For lengthy arguments, we use b⋅ ≡
ð⋅Þ∧. The inverse of hat map vee defines mapping ð⋅Þ∨ :
SOð3Þ : → R3. For vectors Ω= ½Ω1 Ω2 Ω3 � :

> and b2R3,
Ω× b¼ − b×Ω¼ bΩb, where bΩ is expanded as follows:

bΩ ¼
0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

264
375: ð8Þ

For any skew-symmetric matrix C, if:

C ¼
0 −c3 c2

c3 0 −c1

−c2 c1 0

264
375 2 SO 3ð Þ; thenC∨ ¼

c1

c2

c3

264
375:

ð9Þ

Finally, defining U1 ¼ ½ fl fr βl βr�> as the vector of actuator
control inputs. Note that, the propeller forces fl and fr are directly
taken as control inputs instead of the propeller spin velocities
(the PWM signals given to the BLDC-ESC are directly mapped
to the thrust developed by the propellers instead of spin velocity).

3. Control Allocation

A common implementation procedure of geometric control
for a typical UAV is such that the control wrench acting on
CG is assumed as the control input and the controller is
designed (τ2R3 and F 2R3 together is known as control
wrench, the widespread representation of torques and forces
acting on a typical UAV). Then, the designed vectors τ and F
are mapped to the physical system actuator forces/torques/
angles [1, 4, 28]. This control mapping depends on the type
of arrangement of actuators of the respective physical sys-
tem. In this section, we propose a simple algebraic nonlinear
mapping method to map the Bicopter actuator input vector
U1 to τext and Fb

ext that is valid globally for the Bicopter
without any approximations.

Consider parameterization for the servo rotations RYðβlÞ :

and RYðβrÞ : with respect to Yb in counterclockwise direction
as follows:

RY βið Þ ¼
cos βið Þ 0 sin βið Þ

0 1 0

−sin βið Þ 0 cos βið Þ

264
375; i 2 l; rf g: ð10Þ

Unlike quadcopter [2] or other four-inputminimal actuation
vehicles [1, 26], the complexity of nontrivial mapping in the case
of Bicopter is that, the vectors τext and F

b
ext involve nonlinear and

coupled input terms that can be observed as follows:

Fb
ext ¼

Fx

Fy

Fz

264
375¼

fl sin βlð Þ þ fr sin βrð Þ
0

fl cos βlð Þ þ fr cos βrð Þ

264
375; ð11aÞ

τext ¼
τ1

τ2

τ3

264
375¼

lmfl cos βlð Þ − lmfr cos βrð Þ
lpfl sin βlð Þ þ lpfr sin βrð Þ

−lmfl sin βlð Þ þ lmfr sin βrð Þ

264
375: ð11bÞ

Note that, the force Fx is responsible for the force in Xb
direction with respect to the body frame and is linearly
dependent on torque τ2:
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Fx ¼
1
lp
τ2: ð12Þ

Hence, we have four equations with four unknowns. Pre-
vious works on Bicopter used small angle approximations by
neglecting nonlinear terms [8]. Also, few researchers used
force decomposition [7] approach to decouple the input
terms. However, since the number of inputs is equal to the
achievable independent DoF, the control inputs U1 can be
obtained by simple algebraic solution and will be shown in
this work as follows.

Consider sin ðβlÞ : ¼ u1 and sin ðβrÞ : ¼ u2, which gives
cos ðβlÞ : ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u21

p
and cos ðβrÞ : ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u22

p
. The following

relations hold from Equation (11b):

lmτ2 − lpτ3 ¼ 2lmlpflu1 ¼) flu1 ¼
τ2
2lp

−
τ3
2lm

; ð13aÞ

lmτ2 þ lpτ3 ¼ 2lmlpfru2 ¼) fru2 ¼
τ2
2lp

þ τ3
2lm

: ð13bÞ

By adding Equations (13a) and (13b), and considering τ1,
the following relations hold:

flu1 þ fru2 ¼
τ2
lp

; ð14aÞ

fl
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u21

p
− fr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u22

p
¼ τ1
lm

: ð14bÞ

Writing Fz also in terms of intermediate variables u1 and
u2 as Fz ¼ fl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u21

p
þ fr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u22

p
. Solving Equation (14b)

and Fz to eliminate fl, u1, we will get the following equation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fr2 − fru2ð Þ2

p
¼ Fz

2
−

τ1
2lm

: ð15Þ

Substituting Equation (13b) into Equation (15) and rear-
ranging will give the equation for fr . Further, substituting fr
into Equation (13b) will give u2 as follows:

fr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2
2lp

þ τ3
2lm

 !
2

þ Fz
2
−

τ1
2lm

� �
2

vuut ; ð16aÞ

u2 ¼
1
fr

τ2
2lp

þ τ3
2lm

 !
: ð16bÞ

Similarly, solving Equation (14b) and Fz to eliminate fr ,
u2, and using Equation (13a), the equation for fl will be
obtained. Further, substituting fl into Equation (13a) will
give u1 as follows:

fl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2
2lp

−
τ3
2lm

 !
2

þ Fz
2
þ τ1
2lm

� �
2

vuut ; ð17aÞ

u1 ¼
1
fl

τ2
2lp

−
τ3
2lm

 !
: ð17bÞ

The tilt angles βl and βr can be obtained as βl ¼ sin−1 ðu1Þ :

and βr ¼ sin−1ðu2Þ :. Here, fl; fr>0 and −90°<βl; βr<90°.
Hence, the vector U1 is well-defined.

4. Geometric Attitude Tracking Control of
Bicopter on SO(3)

Since Bicopter is an underactuated UAV, full pose (linear
position+ attitude) tracking control is not possible on SEð3Þ :.
However, altitude with attitude tracking control is possible.
Similarly, the linear positions in all three axes with heading
tracking control is also possible. A common approach in both
cases is to prove the almost global convergence of attitude
dynamics first, by proposing a τext [2]. In this section, we
proceed with the attitude trajectory tracking control of Bicopter
on SOð3Þ:.

Let RdðtÞ : 2 SOð3Þ : and ΩdðtÞ : 2R3 be the desired attitude
trajectory and desired angular velocity, respectively. The
objective is to develop an attitude tracking controller such
that it drives the system attitude RðtÞ : to the desired attitude
RdðtÞ : and the angular velocity ΩðtÞ : to ΩdðtÞ : with an almost
global domain of attraction. Consider the error in attitude is
ReðtÞ : 2 SOð3Þ : and the error in angular velocity eΩðtÞ : 2R3

and are given as follows:

Re tð Þ ¼ R>
d R;

eΩ tð Þ ¼ Ω − R>RdΩd:
ð18Þ

For simplicity, the time representation for the variables
0t0 is removed from here onwards; however, it is assumed that
the variables are by default changing with respect to time
(e.g., RðtÞ : ¼R;ΩðtÞ : ¼Ω, and ReðtÞ : ¼Re). Differentiating the
attitude error Re, we will get the attitude error kinematics as
follows:

Ṙe ¼ R>
d RbΩ − bΩdR>

d R¼ RebeΩ: ð19Þ

Similarly, by differentiating the angular velocity error
vector eΩ in Equation (18), and further substituting the atti-
tude dynamics from Equation (7), the angular velocity error
dynamics of the Bicopter is obtained as follows:

JėΩ ¼ τext −Ω × JΩ − J R>
e Ω̇d − beΩR>

e Ωd

À Á
: ð20Þ

Hence, the attitude tracking problem now becomes the sta-
bilization problem about an identity equilibrium. In other words,
RðtÞ: → Rd;ΩðtÞ : →Ωd implies ReðtÞ : → I3×3; eΩðtÞ : → O3×1.
Here, O3×1 is a zero vector. Now, the attitude tracking control
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law τext must be designed so that the attitude error Re reaches
identity I 2R3×3 and the angular velocity error eΩ reaches zero
vector. The proportional term in the controller τext will be
obtained by choosing the proper configuration error functionΨ :
SOð3Þ : → R [25, 29]. Consider the function:

Ψ Re tð Þð Þ ¼ tr I − Re tð Þð Þ; ð21Þ

where trð⋅Þ : is a trace function. The following properties hold
for Ψ :

(1) The trace of any rotation matrix is bounded by − 1≤
trðReÞ : ≤ 3 which implies Ψ ≥ 0 and Ψ ¼ 0 if and only
if Re ¼ I. Hence, the error function Ψ is positive defi-
nite about Re ¼ I.

(2) The critical points of Ψ are ψ c ¼fI; eÆπbsg : where eÆπbs
is a two-dimensional submanifold of SOð3Þ : and Re ¼
I is an isolated critical point in SOð3Þ:. Here, s2 S2,
where, S2 ¼fc2R3jc>c¼ 1g:.

(3) In terms of exponential coordinates, the rotation
matrix is represented as Re ¼ ekbs , where k is the angle
of rotation and s2 S2 is the axis of rotation. The trace
of the rotation matrix is trðReÞ : ¼ 1þ 2cos ðkÞ :. Hence,
k¼Æπ implies trðReÞ : ¼ − 1 and Ψ ¼ 4.

(4) Consider a level set ΓSOð3Þ ⊂ SOð3Þ given by ΓSOð3Þ ¼
fRe 2 SOð3Þ∣Ψ ðReÞ<4g :. This level set consists of
only one isolated critical point I and the set repre-
sents a set of all rotation matrices with the error
between the actual and desired attitude less than π
radians.

(5) Let δR be the small variation in attitude given by
δR¼Rbη, where η2R3. The directional derivative of
the trace function Ψ along the variation of attitude
δR is given by the following equation:

DRΨ ⋅ Rbη ¼ − tr Rebηð Þ
¼ eR ⋅ η

; ð22Þ

where eR ¼ðRe − R>
e Þ∨. Also, the total time derivative of the

error function Ψ is obtained as follows:

d
dt

Ψ Reð Þ ¼ − tr Ṙe

À Á¼ −tr RebeΩð Þ
¼ eΩ Re − R>

eð Þ∨ ¼ eΩ ⋅ eR:
ð23Þ

Note that the above relations in Equations (22) and (23)
are obtained by imposing the trace property trðDbaÞ : ¼
1
2 trðbaðD − D>ÞÞ : ¼ − a>ðD − D>Þ∨, where D2R3×3 is some
matrix and a2R3×1 a vector.

The above trace function properties are useful in propos-
ing the attitude control for the Bicopter. Before proceeding to
the dynamic version of the attitude control, we discuss the
kinematic version. The analysis of the unstable equilibrium
set can be performed comprehensively for the kinematic
controller and hence it makes sense to discuss the kinematic

version first. A similar kinematic controller was developed in
[30]. Here, Ω is the control input for the attitude error kine-
matics Ṙe in Equation (19), we propose the following control
law for the error kinematics:

Ω¼ −kR Re − R>
eð Þ∨ þ R>

e Ωd: ð24Þ

Proposition 1. The attitude error kinematics (Equation (19))
with the controller (Equation (24)) is having multiple equilib-
ria Re ¼fI; eÆπbsg:. The isolated equilibrium I is asymptotically
stable and the equilibrium set eÆπbs is unstable.
Proof. By substituting the proposed controller in the attitude
error kinematics, we will get the closed-loop error kinematics
as follows:

Ṙe ¼ −Re kR Re − R>
eð Þ∨f g∧: ð25Þ

The closed-loop system equilibrium points are obtained

as Re ¼fI; eÆπbsg :. Since the desired equilibrium point is Re ¼
I, we use two Lyapunov candidate functions to prove the
desired equilibrium point is stable and the remaining equi-
librium set is unstable. Consider V1 ¼ΨðReÞ : ¼ trðI −ReÞ :.
The function V1 is positive definite since V1>0 and V1 ¼ 0
if and only if Re ¼ I. Now, the time derivative of V1 is V̇ 1 ¼
− trðṘeÞ :. By including the closed-loop kinematics in V̇ 1, we
will get the following equation:

V̇ 1 ¼ −kR Re − R>
eð Þ∨k k: ð26Þ

The function V̇ 1 is negative definite. Hence, the equilib-
rium point Re ¼ I is asymptotic stable; however, the stability/
instability of the other equilibrium set cannot be concluded
with the Lyapunov function V1 and hence restricting the
attitude initial conditions to the level set ΓSOð3Þ to avoid the
trajectories reaching the equilibrium set. Now, consider
another Lyapunov function V2 ¼ 1þ trðReÞ :. V2 is positive

definite since V2>0 and V2 ¼ 0 if and only if Re ¼ eÆπbs . Also,
V̇ 2 ¼ trðReÞ : ¼ kRkðRe − R>

e Þ∨jj : which is positive definite.
Hence by using the Chetaev instability theorem [31], the
equilibrium set is unstable. Hence, the domain of attraction
of the equilibrium point I is almost global. □

Now, we propose the following torque control law by
including eR in the proportional control:

τext ¼ −kReR − kΩeΩ þΩ × JΩþ J R>
e Ω̇d − beΩR>

e Ωd

À Á
:

ð27Þ

Here, kΩ; kR 2R3×3 are positive definite control parame-
ters. The first two terms in Equation (27) represent the PD
controller that makes corrections in the torque to reduce the
error between desire and actual trajectory. The middle term
represents the dynamics of the system and the last term is a
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feed-forward term that helps the system to drive in a nomi-
nal path.

Proposition 2. The closed-loop system (controller (Equation (27))
applied to the system (Equation (20))) is asymptotically stable to the
equilibrium ðRe; eΩÞ : ¼ðI; 0Þ: and the domain of attraction is
almost global.

Proof. This proof is inspired by Sanyal and Chaturvedi [25] for
spacecraft attitude control and Lee [29] for quadcopter attitude
control. By substituting Equation (27) in Equation (20), the
closed-loop attitude error dynamics is as follows:

Ṙe ¼ RebeΩ;
JėΩ ¼ −kReR − kΩeΩ:

ð28Þ

The closed-loop error dynamics (Equation (28)) consists
of multiple equilibria given by Ec≜fðI; 0Þ ∪ ðeÆπbs ; 0Þg: and
the desired equilibrium is ðI; 0Þ :. Note that the equilibrium
set Ec is obtained by making Ṙe ¼ 0 and ėΩ ¼ 0 in the error
dynamics (Equation (28)). The stability of the error dynam-
ics is proved using the following Lyapunov function V :
SOð3Þ : ×R3×1 → R:

V Re; eΩð Þ ¼ 1
2
eΩ ⋅ JeΩ þ kRΨ Reð Þ: ð29Þ

Since, Ψ is a positive definite Morse function on SOð3Þ :,
V is a candidate Morse–Lyapunov function on SOð3Þ×R3.
V is positive definite since V>0 and V ¼ 0 if and only if ðRe;
eΩÞ : ¼ðI; 0Þ:. By differentiating the Lyapunov function V
along the trajectories of the closed-loop system
(Equation (28)) and by using the relation in Equation (23),
we get the following equation:

V̇ ¼ eΩ ⋅ JėΩ þ kRtr −Ṙe

À Á
;

V̇ ¼ −e>ΩkΩeΩ ≤ 0:
ð30Þ

From above, it is clear that V̇ is negative semidefinite and
V̇ ¼ 0 if and only if eΩ ¼ 0 (i.e., Ω¼Ωd). Hence, the dynam-
ics of the closed-loop system are stable. Now, the asymptotic
convergence of trajectories ðReðtÞ; eΩðtÞÞ : to the equilibrium

set Ec≜fðI; 0Þ ∪ ðeÆπbs ; 0Þg: can be proved through LaSalle’s
principle.

LaSalle’s Principle: All the solutions that start in set E0
given by E0 ¼fðRe; eΩÞ 2 SOð3Þ×R3jVðRe; eΩÞ≤VðReð0Þ;
eΩð0ÞÞg : converge to the invariant set EL ¼fðRe; eΩÞ 2
SOð3Þ×R3jeΩ ≡ 0g:. Further, by substituting the solution of
V̇ ¼ 0 (i.e., eΩ ¼ 0) in Equation (28), we get Ec as the largest
invariant set. Hence, by LaSalle’s principle, all the solutions
of the closed-loop system converge to either the equilibrium

point ðI; 0Þ : or the equilibrium set ðeÆπbs ; 0Þ : asymptotically.
Almost Global Convergence: Without loss of generality,

Proposition 1 can be used to claim that the equilibrium set

ðeÆπbs ; 0Þ: is unstable. Further, the stable submanifolds of the

unstable equilibrium set have measure zero [25]. Hence, the
equilibrium ðI; 0Þ : has almost global domain of attraction.□

5. Altitude Control of Bicopter

In this section, the altitude control of the Bicopter is dis-
cussed. The altitude control will ensure that the practical
position drifting of the Bicopter is limited to two position
directions (XY-plane). The desired torque τext is taken from
Equation (27) (since Fx dependent on τ2). Consider altitude
dynamics from Equation (6):

ż ¼ vz;
mv̇z ¼ −mgþ e>3 Re1Fx þ e>3 Re3Fz:

ð31Þ

Now, the force Fz should be designed such that the
Bicopter reaches a desired altitude zd with desired velocity
vzd . Let, ez ¼ z− zd and ev ¼ vz − vzd be the altitude position
and velocity errors. Here, z; zd; vz; vzd; ez; ev 2R. The altitude
error dynamics can be written as follows:

ėz ¼ ev;

ėv ¼ −gþ 1
m

e>3 Re1Fx þ e>3 Re3Fzð Þ − v̇zd:
ð32Þ

Proposition 3. Given an altitude control law Fz in
Equation (33) with the altitude control parameters kz>02
R and kv>02R, the altitude error dynamics in Equation (32)
with the altitude control law Fz is asymptotic stable:

Fz ¼
m gþ v̇zd − kvev − kzezð Þ − e>3 Re1Fx

e>3 Re3
: ð33Þ

Proof. Substituting the proposed Fz into altitude error dynam-
ics, the closed-loop error dynamics is obtained as follows:

ėz ¼ ev;
ėv ¼ −kvev − kzez:

ð34Þ

The stability of the above-proposed control law can be
proved using the Lyapunov function:

Vz ¼
kz
2
e2z þ

1
2
e2v; ð35Þ

where Vz is positive definite. Differentiating the Lyapunov
function and substituting altitude error dynamics, we will get
V̇ z ¼ − kvjevj2 which is negative semidefinite and hence
Equation (34) is stable. V̇z ¼ 0 implies ev ¼ 0 and by substi-
tuting in Equation (34), we will get invariant set as ðez; 0Þ : and
the largest invariant set is the zero equilibrium ð0; 0Þ:. Hence,
the asymptotic convergence of closed-loop altitude dynamics
is ensured according to LaSalle’s theorem. Note that the
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altitude control law Fz is well-defined on the set Γ¼fR2
SOð3Þ∣e>3 Re3>0g :. □

Notes:
(1) Since R is restricted to the set Γ for Fz to be well-

defined, Rd should also be restricted to a subset of
Γd ¼fRd 2 SOð3Þ∣e>3 Rde3>0g:. This is necessary for
RðtÞ : to avoid crossing the set fe>3 Re3 ¼ 0g :. Practi-
cally, the direction of the thrust vector Fb

ext is
restricted to some cone region of attitude.

(2) Since attitude dynamics is asymptotically stable, we can
limit the testing/validation of the controller to a limited
set of Rd which does not cause any singularity in Fz .

6. Simulation and Hardware Results

In this section, the stability of the Bicopter with the proposed
attitude controller is compared with the LMI-based attitude
controller, and the performance of the proposed attitude and
altitude tracking controller is verified through simulations
using MATLAB software, Finally, the altitude–attitude stabi-
lization is validated through experimental hardware. The
attitude and altitude control flow diagram is given in Figure 2.
The Bicopter developed in our laboratory is shown in
Figure 3 and the parameters of the Bicopter are taken from
the CAD model: J ¼ diag½0:366; 0:171; 0:391�: kg⋅m2, lm ¼
0:2539m, lp ¼ 0:1483m, m¼ 4:7 kg, and g¼ 9:8m⋅s−2. The
same parameters are used for both simulations and experi-
ments. Further, the power required for each thruster is cal-
culated using the relation Pl ¼ τl ⋅ ωl, Pr ¼ τr ⋅ ωr . Here, τl ¼
fl ×

cd
ct
, τr ¼ fr ×

cd
ct
are the left and right propeller drag torques

and ωl ¼
ffiffiffi
τl
cd

q
, ωr ¼

ffiffiffi
τr
cd

q
are the left and right propellers

speeds. The constants ct>0 and cd>0 are the thrust and drag

coefficients of the propeller, which are measured by the static
thrust analysis. The obtained values are ct ¼ 1:39× 10−6 and
cd ¼ 6:567× 10−8. The attitude and altitude control gains are
chosen as kR ¼ diag½6; 7; 6� :; kΩ ¼ diag½2:5; 2; 2:5� :; kz ¼ 2:5;
kv ¼ 1:9.

6.1. Simulations

6.1.1. Attitude and Altitude Trajectory Tracking. The desired
attitude RdðtÞ : is constructed from Euler angles, i.e., RdðtÞ : ¼
RdðϕdðtÞ; θdðtÞ;ψdðtÞÞ :, where ϕ, θ, and ψ are roll, pitch, and
yaw angles, respectively. A sinusoidal trajectory that alter-
nates through roll, pitch, and yaw directions after a specified
period was considered and is parameterized as follows:

Rd ϕd tð Þ; θd tð Þ;ψd tð Þð Þ ¼

ϕd ¼ 0; θd ¼ 0;ψd ¼ 0; 0s ≤ t ≤ 4s

ϕd ¼ 0; θd ¼ 0;ψd ¼ A sin ωtð Þ; 4s<t ≤ 16s

ϕd ¼ 0; θd ¼ 0;ψd ¼ 0; 16s< t ≤ 20s

ϕd ¼ A sin ωtð Þ; θd ¼ 0;ψd ¼ 0; 20s< t ≤ 32s

ϕd ¼ 0; θd ¼ 0;ψd ¼ 0; 32s< t ≤ 36s

ϕd ¼ 0; θd ¼ A sin ωtð Þ;ψd ¼ 0; 36s< t ≤ 48s

ϕd ¼ 0; θd ¼ 0;ψd ¼ 0; if t>48s

8>>>>>>>>>>>><>>>>>>>>>>>>:
; ð36Þ
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FIGURE 2: Bicopter attitude and altitude control flow.
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FIGURE 3: Bicopter experimental prototype developed in-house.
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where t is the time in seconds, A¼ π
6 is the amplitude, and

ω¼ 2π
5 is the frequency of the attitude trajectory. The respec-

tive ΩdðtÞ : and Ω̇dðtÞ : can be obtained from the kinematic
equation Ṙd ¼Rd

bΩd . The desired altitude is zd ¼ 0:6 m with
the initial altitude as z0 ¼ 0 m. For plots, the rotation matrix
RðtÞ : trajectories are converted to the Euler angles (Figure 4).
The tracking performance of the proposed control laws can

be observed from the MATLAB simulation and given in
Figure 4. From Figure 4, it is verified that the proposed
geometric attitude and altitude controllers follow the desired
attitude and altitude trajectories successfully. The desired
torque and the actuator commands required for the tracking
of the desired attitude and altitude trajectories are also shown
in Figure 4.
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6.1.2. Attitude Stabilization Comparison with an LMI
Controller. For comparing the attitude stabilization of our
strategy against an LMI controller, the simplified attitude
dynamics of the Bicopter using Euler angle representation
(roll (ϕ), pitch (θ), and yaw (ψ)) is given as follows [11, 12]:

ϕ̈¼ Jy − Jz
À Á

Jx
θ̇ψ̇ þ lm

Jx
τ1;

θ̈ ¼ Jz − Jxð Þ
Jy

ϕ̇ψ̇ þ lp
Jy
τ2;

ψ̈¼ Jx − Jy
À Á

Jz
θ̇ϕ̇ þ lm

Jz
τ3:

ð37Þ

Several control approaches based on LMI were found in
the literature [32–35]. In this work, a simple state feedback
control [36, 37] is used, and the controller gains are optimized

using the LMI approach. The advantage of this approach is
that the system dynamics need not be linearized as long as the
dynamics are in the below state space form:

Ẋ ¼ AX þ BU þ g X; tð Þ; ð38Þ

where X¼ ½x1 x2 x3 x4 x5 x6�> ¼ ½ϕ θ ψϕ̇ θ̇ ψ̇ �> 2R6 are sys-
tem state variables and U ¼ τext 2R3 is the control variable.
The nonlinear function gðXÞ : should be a Lipschitz function
such that:

g X1ð Þ − g X2ð Þk k ≤ γ X1 − X2k k; γ>0: ð39Þ

The nonlinear attitude dynamics (Equation (37)) expressed
in the form (Equation (38)) with thematricesA andB is given as
follows:

A¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

26666666664

37777777775
; B¼

0 0 0

0 0 0

0 0 0
lm
Jx

0 0

0
lp
Jy

0

0 0
lm
Jz

26666666666666664

37777777777777775
; g X; tð Þ ¼

0

0

0
Jy − Jz
À Á

Jx
x5x6

Jz − Jxð Þ
Jy

x4x6

Jx − Jy
À Á

Jz
x4x5

266666666666666664

377777777777777775
: ð40Þ

Now, the attitude stabilization is achieved by proposing a
state feedback control lawU ¼KX. The gain K is obtained by
solving certain LMIs developed using Lyapunov stability.
The LMIs adopted from Mukherjee and Sengupta [36] are
as follows:

QA> þ AQþ Y>B> þ BY þ αQþ ɛ−1I Q

Q −ɛ−1γ−2I

" #
<0

Q>0

;

ð41Þ

where we solve for the positive definite symmetric matrix Q.
Here, Y ¼KQ and the constants α; γ; ɛ are positive parame-
ters, and the gain K is obtained as K ¼YQ−1.

The stabilization performance of the proposed attitude
controller (Equation (27)) is compared with the LMI-based
attitude controller. The values for the constants are taken as
α¼ 0:4; ɛ¼ 0:02, and γ¼ 0:02. Consider the initial attitude
(ϕð0Þ:; θð0Þ :;ψð0Þ:)= (π=6; − π=6; π=6) and the desired atti-
tude is (ϕd; θd;ψd)= (0; 0; 0). The LMI in Equation (41) is
solved using the YALMIP tool with the LMILAB solver in
MATLAB for the unknowns Y and Q. Finally, the controller
gain K ¼YQ−1 is obtained as follows:

K ¼
−8:8666 0 0 −8:2950 0 0

0 −7:0886 0 0 −6:6316 0

0 0 −9:4722 0 0 −8:8616

264
375: ð42Þ

The controller U developed using the LMI approach is
further applied to the nonlinear attitude dynamics of the
Bicopter given in Equation (7). The attitude/Euler angles
simulation plots are shown in Figure 5. It is observed from

Figure 5 that both the LMI and Geometric attitude control-
lers give equivalent stabilization performance. The torque
demanded by the LMI approach is more for the attitude
stabilization, which is observed in Figure 6 torque plots.
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However, the increased torque is not due to an increase in thrust
forces, rather larger servo tilting angles are applied, as shown in
Figure 6. The power curves for both the LMI and geometric
attitude controller are given in Figure 7. From Figures 5–7, we
claim that our control approach has similar performance com-
pared to a state-of-the-art control technique.

6.2. Experimental Results

6.2.1. Hardware Description. The hardware setup is shown in
Figure 3. Two Tarot 5,008–340 kv BLDC motors are used for
the propulsion along with 18× 5:5 carbon fiber propellers
and ReadyToSky 40A ESC combination for each BLDC

motor. Each motor–propeller combination can generate
3.5 kg thrust individually. The total weight of the drone is
4.7 kg. Two Dynamixel AX-12A digital servos are used for
the thrust vectoring. For communication setup among sen-
sors and actuators, we developed a custom board that has
Cypress CY8C5568 MCU and power conversion circuits. We
also used a Raspberry Pi board for the control algorithm
calculations, state estimation, filter implementations, and
data logging. The communication between the two boards
used UART with a 115200 Baud rate. Two Skycell ð1×
11:1Vð3SÞ; 1× 22:2Vð6SÞÞ : lithium polymer batteries are
used for powering boards and actuators (6S battery is dedi-
cated to motor propulsion).
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6.2.2. Sensing, Estimation, and Filtering. Since the attitude
controller is developed globally on SOð3Þ : manifold that
seamlessly avoids parametrization issues such as singulari-
ties, it is appropriate to develop the attitude estimate also on
the same manifold. Most of the currently available off-the-
shelf flight controllers are providing attitude estimates either
in the form of Euler angles or quaternion variables, hence our
custom PCB and code helped in the development of attitude
estimation in the form of rotation matrices. A 9 DoF IMU
sensor (LSM9DS1) is used for the attitude estimation, which
has a three-axis accelerometer, a three-axis gyroscope, and a
three-axis magnetometer. The data from the IMU are
streamed through I2C communication protocol. The raw data
from each sensor are sent through a first-order low-pass filter
to avoid high-frequency noise in the data. Note that the mag-
netometer calibration is needed for a better andmore accurate
attitude estimate. In this project, we used a well-known least
squares ellipsoidal fit method for the magnetometer calibra-
tion to compensate for hard and soft iron effects [38].

Since the attitude controller for the Bicopter is developed
on the assumption of the North-West-Up (NWU) with the
right-handed coordinate system, the attitude estimator is
also constructed using the NWU coordinate system, as
shown in Figure 8 (proper rotations and reflections of the
IMU measurements are applied to make the IMU coordinate
system aligned with the drone body coordinate system). In
this work, we estimate the rotation matrix using Mahoney’s
Passive Complementary filter along with the online gyro bias
estimation [39]. The primary step involved in implementing

the complementary filter is to construct the instantaneous
attitude or rotation matrix (also known as a primary esti-
mate) using accelerometer and magnetometer measurement
vectors. The obtained primary attitude estimate is further
fused with the gyroscope measurements to obtain the final
attitude estimate. Consider R1 2 SOð3Þ : as the primary esti-
mate of R as shown in the following equation:

R1 ¼ r1 r2 r3½ �> 2 SO 3ð Þ; ð43Þ

where r1; r2; r3 2R3 are the three orthonormal unit vectors
along the three principal axes Xb;Yb;Zb of the UAV body
centered at Ob that determine the orientation of the body
frame B with respect to the inertial frame (Figure 8). Hence,
converting the accelerometer and magnetometer measure-
ments into the r1; r2; r3 vectors is sufficient to find the pri-
mary attitude estimate. Several methods are found in the
literature [40], and in this work, we employ TRi-Axial Atti-
tude Determination (TRIAD) algorithm [40, 41]. The mea-
surements from the IMU can be written as follows:

acc¼ R>
1 ai − ge3ð Þ þ ba þ μa ≃ R>

1 −ge3ð Þ;
mag¼ R>

1 Btrueð Þ þ bm þ μm;
gyro¼Ωtrue þ bg þ μg:

ð44Þ

where acc2R3 and mag2R3 are the accelerometer and
magnetometer measurements that measure instantaneous
linear acceleration and magnetic fields, respectively, and are
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expressed in UAV body fixed frame. gyro2R3 is the body
angular velocity measurements with respect to the inertial
frame expressed in the body frame. μa; μm, and μg are the
high-frequency noise components in the measurements and
can be filtered out. The terms ba 2R3 and bm 2R3 are the
constant bias in the accelerometer and magnetic disturbance
in magnetometer measurements and are eliminated by doing
the proper calibration. bg 2R3 is the fixed or slow time-
varying bias in gyroscope measurements and is estimated
using the complementary filter. Here, the term ai −ge3 is the
difference between instantaneous linear acceleration (ai) and

the acceleration due to gravity expressed in the inertial
frame. Since g is the dominating factor for small motions,
ai is neglected and hence can be modeled as acc ≃ −

gR>
1 e3 ¼ −gr3 that implies r3 ¼ −acc

jaccj, the normalized acceler-
ometer measurements. Further, let mn ¼ mag

jmagj be the normal-
ized measurement vector of the magnetometer. The
instantaneous directions of the vectors acc andmn are shown
in Figure 8. From the figure, r1 ¼ North

jNorthj ¼ p×r3
jp×r3j, where p¼

West
jWestj ¼ r3×mn

jr3×mnj and finally, r2 ¼ r3×r1
jr3×r1j and hence the primary

attitude estimate R1 is constructed. Now, the complementary
filter is implemented as follows.

FIGURE 9: Experimental setup to analyze and validate the attitude estimator.
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Consider, b̃ 2R3 as the estimated gyro bias bg, and R̃ 2
SOð3Þ: as the final attitude estimate of the complementary
filter, then the dynamics of passive complementary filter and
bias are as follows [39]:

ėR ¼ eR Ω − eb� �
∧ þ kp eR>R1 − R>

1
eRÀ Áh i

;

ėb ¼ −kb eR>R1 − R>
1
eRÀ Á∨: ð45Þ

For numerical integration, we use a small time approxi-
mation as shown below for the real-time calculation:

eR ¼ eRpexpm Ω − eb� �
∧ þ kp eR>

p R1 − R>
1
eRp

À Áh i
δt

n o
;eb ¼ ebp − kb eR>

p R1 − R>
1
eRp

À Á∨δt;
ð46Þ

where expm is the matrix exponential, R̃p 2 SOð3Þ :, b̃p 2R3

are previous estimates of attitude and bias, R̃, b̃, are current
estimates of attitude and bias, R1 2 SOð3Þ : is the primary
attitude estimate from TRIAD, δt is the sampling period,
and kp; kb 2R are the attitude gain and bias gain parameters.
We choose kp ¼ 1:6π (the complementary filter cut-off
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frequency say fp ¼ 0:8Hz, where kp ¼ 2πfp) and kb ¼ 0:05.
The attitude and bias gain parameters (kp; kb) must be
selected by comparing the estimates against the ground truth
and is described in Section 6.2.3.

6.2.3. Test-Bed for Attitude Estimator. To analyze and vali-
date the behavior of the complementary filter and to choose
the proper filter cut-off frequency (related to kp; kb), a two-
axis gimbal is developed using AX-12A servos. The servos
provide position feedback that can be used as a ground truth.
The experimental setup is shown in Figure 9. The IMU is
placed at the tip of the gimbal such that the motion of the
servos causes rotation around the IMU X-axis and Y-axis.
Both the servos are excited with a sinusoidal position com-
mand with the amplitude ofÆ200 and several swing frequen-
cies. The kp; kb are tuned such that the complementary filter
estimates are matching the ground truth as close as possible.

For a sample frequency of 1Hz, the rotation matrix estimate
is converted to Euler angles to compare with the ground
truth, as shown in Figure 10. From the plots, it is observed
that the final attitude estimate follows the ground truth, and
hence the filter is validated. Note that the ripples in the roll
angle are due to the presence of linear accelerations in the
accelerometer measurements (due to nonzero link lengths).

The final estimate R̃ is used to compute the torque
equations τext. A TFMINI-S Lidar with a 12-m range was
used for the altitude measurement through UART. The Lidar
provides measurements with respect to body frame he3 along
the third body fixed axis, where h2R. Hence, the data are
converted with respect to the inertial frame by premultiply-
ing with the rotation matrix as zest ¼ e>3 R̃he3 and given to the
proposed altitude control law Fz . Further, the desired actua-
tor input vector U1 is obtained using the mapping relation
given in Equations (16) and (17), and finally sent to the
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actuators (ESCs in the form of PWM signals and servos in
the form of digital data packets). The entire control loop
(Figure 2) runs at a frequency of 50 Hz.

6.2.4. Altitude and Attitude Stabilization Implementation.
For experimental validation of the proposed attitude and
altitude control algorithms, two test cases were considered.
In both cases, the Bicopter should reach the desired altitude
while stabilizing the attitude. In Case 1, the desired attitude
and altitude parameters were taken as zd ¼ 0:6m, vzd ¼ 0,
Rd ¼ I, and Ωd ¼ ½000�⊤. In Case 2, zd ¼ 0:4m, vzd ¼ 0,
Rd ¼ I, and Ωd ¼ ½0; 0; 0�⊤. The data collected during the
experiment is plotted in Figure 11. The drone take-off starts
at 1.2 s, and the experiments were concluded at around 11 s
since the position drift continued throughout the experi-
ment. From Figure 11, it is evident that the proposed control
algorithms can drive the Bicopter to the desired altitude and
can achieve attitude stabilization. Note that the LIDAR to
ground clearance is 0:1 m and hence the altitude trajectory
starts from 0.1m. Videos of the experiments can be found in
https://youtu.be/CIeeHbaqq18 for Case 1 and https://youtu.
be/ag4_ewl_3rc for Case 2.

6.2.5. Discussions and Future Work. The position drift in XY-
plane cannot be avoided with altitude control alone due to
the nonzero linear velocities in XY-plane even after the
Bicopter reaches the hovering mode ðRðtÞ¼ IÞ:. The nonzero
velocities and the position drift in the XY-plane are observed
in simulations as well (Figure 12). The position drift can be
observed from the time-lapse frames in Figure 13. To avoid
drift, the position control of the Bicopter needs to be imple-
mented, which needs position estimation algorithms and
position sensors, hence the topic is left for future work.

7. Conclusion

The Bicopter nontrivial control mapping was developed in
an algebraic framework. Geometric attitude and altitude
controllers were proposed for the Bicopter UAV. The pro-
posed geometric attitude and altitude controllers were math-
ematically analyzed and validated through simulations and
experiments. The attitude controller performance is shown
to be comparable to an LMI-based controller. Our future
focus is to develop a robust position controller on special
Euclidean group SEð3Þ : for the Bicopter system that can per-
form 3D position trajectory tracking.
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