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In an automatic ultrasonic testing system constituted by an ultrasonic probe and a six-axis manipulator, the manipulator needs to
run from a static state to the target velocity. To prevent equipment damage caused by sudden acceleration or deceleration, it is
necessary to plan the position and pose of the end effector of the manipulator at each detected point. In this manuscript, an
algorithm for planning the position and pose of the manipulator is proposed based on the information geometry structure of
special orthogonal groups. As the linear operation of the orthogonal matrix corresponding to the manipulator pose is not closed,
the manipulator pose at each detected point was calculated using the straightness of the Lie algebra of the special orthogonal group.
The matrix information geometry algorithm enabled not only the manipulator to accelerate and decelerate uniformly along the
detection trajectory, but also the angular acceleration of the end effector to accelerate uniformly at first, then keep a uniform
velocity, and finally decelerate uniformly. The platform motion experiments with the Turin TKB070S six-axis manipulator are
carried out to verify the effectiveness of the matrix information geometry algorithm for planning the pose of the manipulator.

1. Introduction

Ultrasonic testing is an important nondestructive testing
approach frequently applied to detect the internal defects
of composite materials with simple structures [1–4]. How-
ever, the fast-growing composite manufacturing technology
brings about the problem of complex shapes in many work-
pieces to be detected, such as curved shapes, variable thick-
ness, and intricate rotating structures. Aircraft engine blades
must have extremely high self-reliability as they serve in
high-temperature and high-pressure environments. There
are many methods for manufacturing blades, and we discuss
diffusion welding of the aviation blades. Its manufacturing
process first involves diffusion welding of flat alloy materials,
followed by high-temperature torsional plastic forming, and
finally, curved surface machining to obtain geometric con-
tours consistent with the design drawings. Blades belong to
the thin-walled parts, and after torsional deformation, the
unloading of the forming load will cause a rebound phenom-
enon, which leads to the error of the formed blade surface.

Usually, after the blade is twisted and deformed, and before the
curved surface is machined, it is still necessary to perform
ultrasonic testing on the blade to ensure the quality of the
diffusion welding interface. To achieve blade surface scanning,
a line laser profilometer is first used in conjunction with a
robotic multiaxis system to obtain blade point clouds, and
then point cloud data are used to fit and obtain the scanning
trajectory. Therefore, it is crucial to achieve the automatic
detection of workpieces with the complex structures.

Figure 1 shows the automatic monitoring system for civil
aviation engine blades. According to the requirements of
blade structure and water immersion ultrasonic C-scan,
Zhao et al. [5] designed a multiaxis detection system. The
blade was fixed on the workpiece rotation axis, and the six-
axis manipulator stood upright on the side of the blade. The
manipulator base could be translated parallel to the blade
rotation axis. During ultrasonic scanning inspection, a six-
axis manipulator held the ultrasonic probe and incident ver-
tically along the normal direction of the blade surface. The
manipulator and the blade rotation axis achieved a seven-
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axis linkage profile scanning, and then the manipulator base
stepped along the track and reversed the profile motion to
achieve the next line of scanning. By analogy, it completed
the overall scanning of this blade. A manipulator having six
degrees of freedom can reach any position and make any
pose within its working range. The position and pose of a
six-axis manipulator equipped with an ultrasonic probe on
its motion trajectory are simulated on an offline simulation
platform. This method greatly improves the curved surface
detection efficiency and accuracy [6–11].

In this manuscript, we mainly propose how to plan the
space trajectory of the manipulator and present a concrete
and feasible algorithm. The trajectory in space is a descrip-
tion of the expected motion of the manipulator, and the
trajectory in this paper specifically refers to the position
and pose of the flange at the manipulator end or the tool
clamped on the flange.

The positions and poses at detected points should be
subjected to interpolation treatment in trajectory planning.
The purpose of interpolation is to facilitate the smooth tran-
sition of the manipulator from the initial position and pose
to the desired position and pose. And it ensures that each
axis of the manipulator can arrive at the specified position
and angle within each interpolation period. Besides, interpo-
lation prevents fast acceleration or deceleration of the
manipulator during the detection process, helping the
manipulator to accomplish the detection task smoothly
and efficiently.

In the moving process of the manipulator, the position
and pose of the end effector are described as the 3× 1 vector
and 3× 3 orthogonal matrix in the three-dimensional (3D)
real vector space, respectively [12]. According to the linear
relationship of the 3D real vector space, the positions at all
detected points are planned at first, followed by the pose
planning at each detected point based on the proportional
relationship of position variations at the detected points. The
linear operation of the orthogonal matrix corresponding to
the pose is unclosed, so the Euler angle or quaternion trans-
formation method is usually adopted for interpolation [13].
However, the Euler angle method has multiple solutions, and
the quaternion method may also encounter illegal situations

caused by the rounding errors. To resolve the above pro-
blems, a matrix information geometry method [14–16] is
used to plan the pose of the manipulator at each detected
point in this paper. The pose of the manipulator in motion
corresponds to an element in the special orthogonal group
[17]. Based on the linear property of the Lie algebra of the
special orthogonal group, an algorithm is proposed to plan
the pose of the manipulator at each detected point. The
algorithm facilitates the steady movement of the probe at
the manipulator end according to the planned position and
pose. A matrix Lie group and its Lie algebra are transformed
through the exponential map and the logarithmic map. In
general, the information geometry algorithm does not need
to discuss multiple solutions [18], and the resulting pose
matrices are also legal. And, according to the physical mean-
ing of the Lie algebra of special orthogonal groups, the angu-
lar acceleration of the end effector is a uniform acceleration
and deceleration motion.

The matrix information geometry algorithm for the pose
planning of the manipulator can address the issue of
unclosed linear operation of the orthogonal matrices. In
fact, due to the nonlinear relationship between orthogonal
matrices of two different poses, it is difficult to determine the
transition pose of these two poses by ratio. In this manu-
script, the pose planning algorithm is constructed based on
the geometric structure of the special orthogonal group, and
the pose at the detected point is planned using the straight-
ness of the Lie algebra. The proposed algorithm promotes the
stable movement of the manipulator along the planned
trajectory.

The geometric structure of the special orthogonal group
will be introduced first in the following text. Then, the algo-
rithm for planning the pose of the manipulator will be pro-
posed based on the linear closure of the Lie algebra on the
special orthogonal group. Finally, the algorithm will be veri-
fied through manipulator motion experiments.

2. Geometric Structure of the Special
Orthogonal Group

The manipulator’s position and pose in the space can be
represented by 4× 4 matrices. All the orthogonal matrices
of the same order with the determinant of 1 form a special
orthogonal group, which is a critical matrix compact Lie
group. Next, a brief introduction is given to the concepts
of special orthogonal groups and their Lie algebras, which
are the theoretical basis for designing the pose-planning
algorithm [18–21].

2.1. Matrix Lie Group. The Lie group has both group and
manifold structures. Addition and inverse operations in the
group structure are analytical maps in the manifold struc-
ture. If a group G satisfies

(1) G is a smooth manifold,
(2) G×GÀ!G is closed,
(3) hÀ!h−1 is smooth, 8h2G,

G becomes a Lie group.

{M}

{S}

{W}

y
z

x

FIGURE 1: Automatic monitoring system for civil aviation engine
blades.
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The tangent space at the identity element of the Lie group
G is its Lie algebra g, which is a linear space. The exponential
map from the Lie algebra g to the Lie group G is denoted as
exp. Although, the exponential map is neither injective nor
surjective, it is a diffeomorphism from the neighborhood of
the identity element I of G to the neighborhood of the iden-
tity element 0 of g. The logarithmic map is indicated by log,
which is the local inverse map of the exponential map.

Lie groups in which all elements are matrices, are described
as the matrix Lie groups. Exponential and log maps enable the
transformation between the matrix Lie group and Lie algebra,
and play an essential role in the Lie group theories. The expo-
nential map from the Lie algebra to the matrix Lie group G is
represented as follows [22, 23]:

exp Vð Þ ¼ ∑
1

m¼0

Vm

m!
; ð1Þ

where V is an element in the Lie algebra g. The log map from
the matrix Lie group G to its Lie algebra g is defined as
follows:

log Xð Þ ¼ ∑
1

m¼1
−1ð Þmþ1 X − Ið Þm

m
; ð2Þ

where X belongs to the neighborhood of the identity element
I of G.

2.2. Special Orthogonal Group. The orthogonal group is
expressed as follows:

O nð Þ ¼ R 2 <n×n Rj RT ¼ If g; ð3Þ

where<n×n denotes all the elements in the real matrix. Its Lie
algebra represents all the elements in the antisymmetric
matrix as follows:

o nð Þ ¼ U U2j <n×n;UT ¼ −Uf g: ð4Þ

The special orthogonal group is as follows:

SO nð Þ ¼ R 2 O nð Þ det Rð Þj ¼ 1f g: ð5Þ

Its Lie algebra is soðnÞ, and

so nð Þ ¼ o nð Þ: ð6Þ

The pose variation of the rotating manipulator end effec-
tor is described by a 3× 3 rotation matrix R, which is an
element in the special orthogonal group SOð3Þ. A series of
motion poses of the manipulator corresponds to the several
elements in SOð3Þ.

The only expression for the antisymmetric matrix U in
soð3Þ is determined as follows:

U ¼
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

0
B@

1
CA ; ð7Þ

where ω¼ðωx; ωy; ωzÞT 2<3 and ω is the angular velocity
of the manipulator end effector [24]. In particular, the basis
of the Lie algebra soð3Þ of SOð3Þ is as follows:

U1 ¼
0 0 0

0 0 −1

0 1 0

0
B@

1
CA;U2 ¼

0 0 1

0 0 0

−1 0 0

0
B@

1
CA;

U3 ¼
0 −1 0

1 0 0

0 0 0

0
B@

1
CA ;

ð8Þ

which satisfies

U1;U2½ � ¼ U3; U2;U3½ � ¼ U1; U3;U1½ � ¼ U2 ; ð9Þ

where ½⋅;⋅� is the Lie bracket. The Lie bracket of U1;U2 2
soðnÞ is defined as follows:

U1;U2½ � ¼ U1U2 − U2U1 : ð10Þ

For any arbitrary U 2 soð3Þ, the exponential map has a
close form [24]:

exp Uð Þ ¼
I; θ ¼ 0

I þ sinθ
θ

U þ 1 − cosθ
θ2

U2; θ 2 0; 2πð Þ

8<
:  ;

ð11Þ

with θ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 trðUTUÞ

q
. The corresponding log map SOð3Þ

À!soð3Þ is as follows:

log Rð Þ ¼
0; θ ¼ 0
θ

2sinθ
R − RTð Þ; θj j 2 0; πð Þ

8<
:  ; ð12Þ

with R2 SOð3Þ and trðRÞ¼ 2cosθþ 1.
As a connected compact Lie group, the special orthogo-

nal group SOðnÞ is a complete manifold, and any two points
are connected by a geodesic curve. The geodesic curve on
SOðnÞ is represented as follows:

γ tð Þ ¼ R exp tUð Þ; 0 ≤ t ≤ 1; ð13Þ

where γðtÞ begins with R and takes RU as its direction. The
geodesic curve connecting the two points R1;R2 is expressed
by:
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γ tð Þ ¼ R1 RT
1 R2ð Þt ¼ R1exp t log RT

1 R2ð Þð Þ; 0 ≤ t ≤ 1 :

ð14Þ

The geodesic distance between the two orthogonal matri-
ces R1;R2 is calculated by:

d R1;R2ð Þ ¼ log RT
1 R2ð Þk k: ð15Þ

3. Algorithm for Planning the
Manipulator Trajectory

3.1. Generation of Aerial Paths. The basic description of tra-
jectory planning is to move a manipulator from the initial
position and pose fTsg to the desired position and pose
fTeg. As shown in Figure 2, the tool coordinate system of the
manipulator moves from the current value to the final target
value. This process includes changes in the position and the
pose of the tool. The detected points on the motion trajectory
of the manipulator should be planned according to the
motion period T of the manipulator and the external axis.
Owing to the introduction of the automatic control system,
themanipulator velocity at the starting stationary state is zero.
Therefore, the detected points should be planned tomake sure
that the manipulator can arrive at the next detected point
within a motion period. Violent acceleration or deceleration
give rise to the parts’ depreciation and the sudden vibration of
the manipulator. Therefore, the manipulator movement
should conform to the acceleration or decelerationmovement
law and the movement path should be smooth.

The velocity at the manipulator end is defined as a con-
tinuous function of time, which makes the displacement a
function of time with a continuous first derivative. Figure 3
illustrates the relationship between the time and the velocity
of the tool at the manipulator end on the whole planned
path. From 0 to t0, the manipulator moves with a constant
acceleration a. When the maximum velocity Vmax of the
manipulator is reached, it continues to move at a constant
velocity. From t1 to t2, the manipulator moves at a constant
deceleration − a, where t2 − t1 ¼ t0;Vmax ¼ at0. Using the
movement velocity function of the manipulator:

v tð Þ ¼
at; 0 ≤ t<t0

Vmax; t0 ≤ t<t1

−a t − t2ð Þ t1 ≤ t<t2

8><
>:  ; ð16Þ

the displacement function of the manipulator is obtained by:

s tð Þ ¼

1
2
at2 0 ≤ t< t0

1
2
at20 þ Vmax t − t0ð Þ t0 ≤ t< t1

1
2
at20 þ Vmax t1 − t0ð Þ

þ 1
2
a t1 − t2ð Þ2 − 1

2
a t − t2ð Þ2; t1 ≤ t< t2

8>>>>>>>>>><
>>>>>>>>>>:

 :

ð17Þ

The above trajectory planned ensures the steady accelera-
tion and deceleration of the manipulator end and prevents its
rapid acceleration and deceleration in the specified motion
period.

3.2. Algorithm for Planning the Position and Pose of the
Manipulator End. First, we introduce how to convert a motion
trajectory segment of the manipulator into a matrix in SOð3Þ.

The detected point is described as the coordinate system
of the tool position and pose relative to the operating plat-
form. The position and pose at each detected point are
expressed as ðx; y; z; α; β; γÞ. Here, x; y; z is the position of
the manipulator end in the coordinate system of the operat-
ing platform, and α; β; γ are the angles by which the coordi-
nate system at the detected point turns relative to the
coordinate system of the operating platform.

By using the X −Y −Z Euler angle coordinate system
method, the rotation matrix A is expressed as follows:

cβcγ −cβsγ sβ

sαsβcγ þ cαsγ −sαsβsγ þ cαcγ −sαcβ

−cαsβcγ þ sαsγ cαsβsγ þ sαcγ cαcβ

0
B@

1
CA; ð18Þ

FIGURE 2: Manipulator moving from the initial pose to the target pose.
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where sα;  sβ;  sγ are the abbreviations of α;  β;  γ  sine values
and cα;  cβ;  cγ are abbreviations of α;  β;  γ cosine values.

In addition to equidistant points in the space, the motion
velocity, acceleration a and motion period T of the manipu-
lator end effector should also be planned in the trajectory
planning process. The motion velocity should be smaller
than the maximum rated velocity Vmax of the manipulator
end, and the maximal motion velocity is generally fixed at
80% of the maximum rated velocity. In our experiments, the
velocity is 100mm/s, the acceleration is 100mm/s2, and the
motion interpolation period is 1ms. If the motion velocity
exceeds the maximum rated velocity of the manipulator end,
the torque overload may occur to the manipulator in its
moving process, resulting in abnormal sounds, increased
wear, and even damage to the manipulator. The acceleration
should also be lower than the maximum rated acceleration of
the manipulator. The motion period should be set according
to the German Beckhoff motion controller scan period of the
integrated system.

The motion period of the manipulator is set to be the
same as the scan period T (1ms) of the automatic control
system. Therefore, the distance between equidistant points
should not be greater than the product of the maximum
velocity Vmax and the period T . When the distance exceeds
the product, the manipulator is unable to arrive at the next
detected point from the current position within one period T
even if it moves at the maximum velocity. In ultrasonic test-
ing, the ultrasonic probe transmits and receives ultrasonic
signals according to the position. Thus, a manipulator posi-
tion deviation on the space trajectory will cause errors in the
imaging results of ultrasonic testing. Due to the symmetry
between the accelerated motion and decelerated motion of
the manipulator, the distance and the time of the uniformly
decelerated motion can be acquired in the same way. In
ultrasonic testing, trajectory points refer to the position
and pose of the probe held by the manipulator. In the experi-
ments, the uniform acceleration, uniform velocity, and uni-
form deceleration motion trajectory are planned based on
the probe detection speed of 100mm/s, acceleration of 100
mm/s2, and motion interpolation motion period of 1ms.
According to the principle of trapezoidal acceleration and
deceleration, the polynomial scanning trajectory is interpo-
lated. The typical cubic curve interpolation data points are
shown in Figure 4.

The algorithm for planning the position and the pose at
each detected point is developed as follows.

3.2.1. Calculation of the Positions at Detected Points. The
coordinates of scattered points on the workpiece collected
by the laser are fitted to acquire the cross-sectional curve of
the workpiece surface. Let the number of the detected points
on the cross-sectional curve be N þ 1, and the detected point
is represented as P0; P1;⋯; PN . Their corresponding position
coordinates and pose matrices are denoted by X0;X1;⋯;XN
and A0;A1;⋯;AN , respectively. Assuming that the coordi-
nates X0 and pose matrix A0 at the initial point P0 and the
coordinates XN and pose matrix AN at the target point PN are
known, the acceleration a is adjusted so that the duration of
accelerated, uniform, and decelerated motion is an integral
multiple of the period T .

Due to the small distance between adjacent detected
points, the arc length between two points approximates a
straight-line segment.

If the coordinates Xk of the detected point Pk are known,
the coordinates Xkþ1 of the detected point Pkþ1 can be
obtained by using the cross-sectional curve equation and
derivative function of the workpiece to be detected. The
arc length between detected points Pk−1 and Pk is denoted
by sk. As the manipulator end tool moves at a constant
acceleration, uniformly and at a constant deceleration on
the entire trajectory planned, the arc length sk is symmetrical.

t1t0

Vmax

V

0 t2 t

ðaÞ

t0 t1 t2 t

–amax

amax

a

0

ðbÞ
FIGURE 3: Velocity and acceleration of the manipulator end: (a) velocity and (b) acceleration.
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FIGURE 4: Interpolate data points.
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In fact, according to the displacement function
(Equation (17)), we have

sk ¼ s kTð Þ − s k − 1ð ÞTð Þ

¼

1
2
aT2 2k − 1ð Þ 0 ≤ k<N0

VmaxT N0 ≤ k<N1;
1
2
aT2 2 N þ 1 − kð Þ − 1ð Þ; N1 ≤ k<N

8>>>><
>>>>:

ð19Þ

with N0 ¼ t0
T ;N1 ¼ t1

T ;N ¼ t2
T . The arc length sk satisfies as

follows:

sk ¼ sNþ1−k: ð20Þ

3.2.2. Calculation of the Poses at Detected Points. Given the
pose matrices of the end effector of the manipulator at the
starting and target points, using logarithmic mapping, their
Lie algebras are obtained. By utilizing the proportional rela-
tionship of arc lengths between detected points, calculate the
Lie algebra of all detected points. Finally, using exponential
mapping, the pose matrices of all detected points can be
obtained.

First, using the ratio relationship between the arc lengths
of detected points, let

lk ¼
s1 þ s2 þ Lþ sk
s1 þ s2 þ Lþ sN

;   k¼ 1;⋯;N: ð21Þ

Based on the linear property of the Lie algebra on the
special orthogonal group, the Lie algebra at each detected
point is described as follows:

Uk ¼ U0 þ lk UN − U0ð Þ;   k¼ 1;⋯;N − 1; ð22Þ

where

U0 ¼ log A0ð Þ;  UN ¼ log ANð Þ: ð23Þ

According to the exponential map from the Lie algebra to
the Lie group, the pose matrix at each detected point is
further gotten as follows:

Ak ¼ exp Ukð Þ; k¼ 1;⋯;N − 1: ð24Þ

Thus, the pose matrix at each detected point between the
start and target points is acquired (Figure 5).

Figure 6 shows the flowchart of Algorithm 1.

3.3. Algorithm Analysis

3.3.1. The Rotation Equivalent Axes of the Poses at All
Detected Points Are Located on the Same Plane. The manip-
ulator can make any pose by rotating a certain angle around
an appropriate axis [25]. Specifically, the coordinate system
{B} first coincides with a known coordinate system {A}. Then

based on the right-hand rule, the coordinate system rotates θ
angle around a unit vector bK . bK is called the equivalent axis
of a finite rotation. Let the pose matrix be R, and bK is the
unitized angular velocity:

ExpLog

U0

A0
A1

A2

U1 U2 . . .

. . . . . .

. . .Uk

Ak

UN–1

AN–1AN

UN

so(3)

SO(3)

FIGURE 5: Algorithm for the pose matrix at each detected point.

Calculate the length Equation (19)
of the motion trajectory

segment between Pk–1 and Pk

Calculate the Lie algebra at
each detected point:
Uk = U0 + lk(Un – U0)

Position coordinates of all
detected points

Detection path curve, initial position and
pose of the manipulator, as well as the target

position and pose

Pose matrices Ak at all
detected points

Calculate pose matrix at each
detected point: Ak = exp(Uk)

FIGURE 6: Flowchart of Algorithm 1.

Input: detection path curve, initial and target positions, and
poses of the manipulator ðx; y; z; α; β; γÞi.
Output: position coordinates and pose matrices at all
detected points.

(1) According to the length Equation (19) of the motion
trajectory segment between Pk−1 and Pk as well as the curve
equation of the detection trajectory, the position coordinates
Xk ðk¼ 1;⋯;NÞ of each detected point Pk are calculated.

(2) Let the poses of the manipulator at the initial and target
positions be A0 and AN , respectively, and the Lie algebra at
each detected point is expressed as

Uk ¼U0 þ lkðUN −U0Þ; k¼ 1;⋯;N − 1.

Then the pose matrix at each detected point can be calculated by

Ak ¼ expðUkÞ; k¼ 1;⋯;N − 1.

Algorithm 1: Algorithm for the position and the pose matrix at each
detected point.
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bK ¼ ω

θ
¼ 1
θ

ωx

ωy

ωz

0
B@

1
CA ; ð25Þ

with

θ ¼ arccos
tr Rð Þ − 1

2

� �
: ð26Þ

The pose at each detected point in Algorithm 1 is
acquired by calculating the ratio of the Lie algebra of the
initial pose to that of the target pose. From the one-to-one
mapping relationship between the Lie algebra (Equation (7))
and the equivalent axis bK , it can be seen that the rotation
equivalent axes of the poses at all detected points obtained by
Algorithm 1 are located on the same plane.

3.3.2. The Manipulator End Effector Moves at a Constant
Angular Acceleration and Deceleration. According to
Equation (22), the angular velocity ωk of the manipulator
end effector at the detected point Pk satisfies

ωk ¼ ω0 þ lk ωN − ω0ð Þ;   k¼ 1;⋯;N − 1: ð27Þ

The angular acceleration ak at the detected point Pk is
approximated by the reverse difference of the angular veloc-
ity ωk as follows:

ak¼
ωk − ωk−1

T
 : ð28Þ

Bringing Equation (22) into the above equation, we have

ak ¼

2k − 1
2N

ωN − ω0ð Þa 0 ≤ k<N0

N0

N
ωN − ω0ð Þa N1 ≤ k<N2

2 N þ 1 − kð Þ − 1
2N

ωN − ω0ð Þa; N2 ≤ k<N:

8>>>>>><
>>>>>>:

ð29Þ

Obviously, Equation (29) satisfies symmetry as follows:

ak ¼ aNþ1−k : ð30Þ

Hence, the manipulator end effector moves at a constant
acceleration, uniformly and at a constant deceleration in the
detection process.

4. Numerical Simulations of Pose Planning

In the simulations, a Turin TKB070S manipulator is applied
to read the motion trajectory, and a Gocator-2350D laser is
used to retrieve the coordinates of discrete points on a cross-
section of the aircraft engine blade, where the step of the
scattered points was 0.5mm.

First, the spatial position of each detected point is calcu-
lated by Algorithm 1.

The scattered points are fitted with a quadratic curve
according to the curve shape. The motion period T of the
manipulator adopts 1ms and the acceleration a is set to 100
m/s2. The coordinates of the start and target points obtained
by the laser are X0 and XN ðN ¼ 11049Þ, respectively. The arc
between two adjacent points approximates to a straight-line
segment. The coordinates Xk of all detected points of the
manipulator can be calculated by Equation (19).

Second, the pose matrices of the manipulator at all
detected points are computed. In the experiment, the pose
matrices at the start point P0 and target point PN are as
follows:

A0 ¼
−0:9407 0:2361 0:2434

0:2434 0:9699 0

−0:2361 0:0593 −0:9699

0
B@

1
CA ; ð31Þ

and

AN ¼
0:7822 0:4127 0:4667

0:4667 0:8844 0

−0:4127 0:2178 −0:8844

0
B@

1
CA ; ð32Þ

respectively. Through log mapping, the Lie algebras of the
pose matrices A0 and AN are obtained as follows:

U0

0 −0:0439 2:8753

0:0439 0 −0:3553

−2:8753 0:3553 0

0
B@

1
CA ; ð33Þ

and

UN

0 −0:1587 2:5877

0:1587 0 −0:6408

−2:5877 0:6408 0

0
B@

1
CA ; ð34Þ

respectively. The angular velocities of the pose matrices A0
and AN are as follows:

ω1 ¼
0:3553

2:8753

0:0439

0
B@

1
CA;ωN ¼

0:6408

2:5877

0:1587

0
B@

1
CA ; ð35Þ

respectively. The equivalent axes of the pose matrices A0 and
AN are as follows:
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bK 1 ¼
0:1226

0:9923

0:0151

0
B@

1
CA; bKN ¼

0:2399

0:9689

0:0594

0
B@

1
CA ; ð36Þ

respectively.
To acquire the pose matrix Ak at each detected point on

the curve, the Lie algebra of each point is solved by
Equation (23) based on its linear property, and then the
Lie algebra is exponentially mapped to the Lie group by
Equation (24) (Figure 7). According to the one-to-one map-
ping relationship between the Lie algebra Equation (7) and
the equivalent axis bK Equation (25), the rotation equivalent
axes of pose matrices are obtained, which are located on the
same plane (Figure 8).

Third, the desired angle of each axis of the manipulator
effector is calculated by solving the inverse kinematics. By
arranging the effector angles at all detected points in order of
arrival time, the functional relationship of the axis variation
of the manipulator with time is obtained. Figure 9 shows the
change in the axis angle when the tandem-type six-axis
manipulator walks along a trajectory segment. The changes
in the manipulator axis and external axis with time can be
observed directly.

However, it is impossible to determine whether the axis
velocity changes suddenly or the angular velocity of the rota-
tion axis exceeds the motor limit merely according to the
displacement of an axis in a time period. Figure 10 presents

the functional relationship between the time and the axis
angular velocity of the tandem-type six-axis manipulator.
It can be seen that the function is continuous, which con-
firms that the axis variation is also continuous and no sudden
velocity change occurs when the manipulator moves along
this trajectory segment.

It can be seen that the function is continuous, which
confirms that when the manipulator moves along this trajec-
tory segment, the changes in the axis are also continuous and
there is no sudden velocity change.

The calculation results of Algorithm 1 are compared with
those of the classical Euler angle method and the quaternion
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method. For this set of data, the geodesic distance between
Ak and the pose matrices gotten by the Euler angle method or
the quaternion method is calculated by Equation (15). As
shown in Figure 11, the maximum error of the geodesic
distance at each detected point does not exceed 0.025. It
indicates that Algorithm 1 is consistent with the two classical
methods. At the 5,500th detected point, Algorithm 1 and the
two classical methods show the largest difference. Figure 12
compares the poses obtained by Algorithm 1, the Euler angle
method, and the quaternion method at the 5,500th detected
point. It can be seen that the difference in pose matrices
obtained by the three algorithms is very small.

Finally, the angular accelerations of the manipulator
end effector obtained by three algorithms are compared.

Figures 13−15 show the angular accelerations of the manipu-
lator end effector relative to the X, Y, and Z axes in the detec-
tion process. It shows that the end effectormoves at a constant
acceleration, uniformly, and at a constant deceleration. This
motion pattern ensures stable and smooth rotation of the
manipulator end effector and prevents rapid acceleration.

To sum up, the numerical experiments verify the effec-
tiveness of the trajectory point planning algorithm based on
the matrix information geometry. In addition, this algorithm
also has the following advantages: all the rotation equivalent
axes of the pose matrices are located on the same plane.
During the detection process, the end actuator moves at a
constant angular acceleration and a constant angular decel-
eration, which helps the manipulator move more stably.

5. Experiment of Trajectory Planning

In numerical simulations, discrete point coordinates of a
cross-section of an aircraft engine blade are retrieved using
a Gocator-2350D laser. After curve fitting, the coordinates of
11,050 detected points are obtained through interpolation.
For the given poses Equations (31) and (32) of the starting
and ending points, the poses at each detected point are
obtained using Algorithm 1, the Euler angle method, and
the quaternion method, respectively.

In this section, based on the inverse kinematics solutions
of three sets of pose matrices, the Turing TKB070S six-axis
manipulator is operated separately. First, the equivalent axis
of the attitude matrix obtained by Algorithm 1 is verified to
be located in the same plane. Second, for the three algo-
rithms, the actual data and numerical simulation data of
the end effector angular acceleration are compared.

Specifically, the pose matrices obtained from Algorithm 1
are transmitted to the controller. After the manipulator exe-
cutes according to instructions, the timer captures the 170
real-time pose matrices corresponding to the end effectors of
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the manipulator. Then, 170 pose matrices are obtained by
forward solutions and their equivalent axes are calculated
from Equation (25). Figure 16 shows that the rotation equiv-
alent axes of the 170 pose matrices of the manipulator end
effector are located in the same plane, which is consistent
with Figure 8.

Then, compare the experimental data and numerical
simulations of the angular acceleration of the end effector
of the manipulator obtained from the three algorithms.
Figure 17(a) shows that the data of Algorithm 1 is distributed

near the trapezoidal curve. Figures 17(b) and 17(c) illustrate
that the data from the Euler angle algorithm and the quater-
nion algorithm are also consistent with the numerical simu-
lation curves. Therefore, the three algorithms are feasible in
the motion experiments of the manipulator and consistent
with numerical simulations.

In summary, the experimental results are consistent with
the numerical simulation results, indicating the controlla-
bility of the detected point planning algorithm based on
matrix information geometry. During the test, the angular
acceleration of the end effector is a uniform acceleration and
deceleration movement, which ensures a more stable move-
ment of the manipulator.

6. Conclusion

(1) A manipulator detection trajectory planning algo-
rithm is proposed based on the geometric structure
of the special orthogonal group. The linear operation
of the orthogonal matrix corresponding to the
manipulator pose at each moment is unclosed.
Thus, based on the mapping relationship between
the special orthogonal group and its Lie algebra
and the linear property of the Lie algebra, the manip-
ulator pose at each detected point is acquired.

(2) The trajectory planning algorithm based on the
matrix information geometry achieves the same
results as the typical Euler angle and quaternion
transformation methods. The matrix information
geometry algorithm does not have the problem of
multiple solutions in the calculation process. Mean-
while, the rotation-equivalent axes of the pose matri-
ces are located in the same plane. Moreover, the
manipulator end effector moves with constant angu-
lar acceleration and deceleration in the detection
process, enabling the effector to move stably along
the given trajectory.

(3) The experiment on the Turin TKB070S manipulator
demonstrates that the manipulator can operate
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smoothly and steadily according to the detected
point position and pose planned.

Data Availability

The simulations and experiment data used to support the
findings of this study are available from the corresponding
author upon request.

Conflicts of Interest

The authors declare that there is no conflicts of interests
regarding the publication of this article.

Acknowledgments

The present research is supported by the National Natural
Science Foundation of China (No. 61401058) and the Basic

A
ng

ul
ar

 ac
ce

le
ra

tio
n 

of
 X

-a
xi

s b
y 

in
fo

rm
at

io
n 

ge
om

et
ry

 m
et

ho
d

–0.5

0

1

2

4

3.5

4.5

180160120 14080 100
Time

40 6020

× 10–5

0

3

0.5

1.5

2.5

Test
Simulation

A
ng

ul
ar

 ac
ce

le
ra

tio
n 

of
 Y

-a
xi

s b
y 

in
fo

rm
at

io
n 

ge
om

et
ry

 m
et

ho
d

–5

–4

–2

0

1

180160120 14080 100
Time

40 6020

× 10–5

0

–1

–3

Test
Simulation

A
ng

ul
ar

 ac
ce

le
ra

tio
n 

of
 Z

-a
xi

s b
y 

in
fo

rm
at

io
n 

ge
om

et
ry

 m
et

ho
d

–1

3

5

180160120 14080 100
Time

40 6020

× 10–5

0

4

0

1

2

Test
Simulation

ðaÞ

A
ng

ul
ar

 ac
ce

le
ra

tio
n 

of
 X

-a
xi

s b
y 

Eu
le

r a
ng

le
 m

et
ho

d

–0.5

0.5

1.5

3.5

3

4

180160120 14080 100
Time

40 6020

× 10–5

0

2.5

0

1

2

Test
Simulation

A
ng

ul
ar

 ac
ce

le
ra

tio
n 

of
 Y

-a
xi

s b
y 

Eu
le

r a
ng

le
 m

et
ho

d

–5

–3

–2

0

1

180160120 14080 100
Time

40 6020

× 10–5

0

–1

–4

Test
Simulation

A
ng

ul
ar

 ac
ce

le
ra

tio
n 

of
 Z

-a
xi

s b
y 

Eu
le

r a
ng

le
 m

et
ho

d

–1

–0.5

0.5

1.5

3.5

3

4

180160120 14080 100
Time

40 6020

× 10–5

0

2.5

0

1

2

Test
Simulation

ðbÞ

A
ng

ul
ar

 ac
ce

le
ra

tio
n 

of
 X

-a
xi

s b
y 

qu
at

er
ni

on
 m

et
ho

d

–10

–5

5

180160120 14080 100
Time

40 6020

× 10–5

0

0

Test
Simulation

A
ng

ul
ar

 ac
ce

le
ra

tio
n 

of
 Y

-a
xi

s b
y 

qu
at

er
ni

on
 m

et
ho

d

–6

–4

–2

2

10

8

12

180160120 14080 100
Time

40 6020

× 10–5

0

6

0

4

Test
Simulation

A
ng

ul
ar

 ac
ce

le
ra

tio
n 

of
 Z

-a
xi

s b
y 

qu
at

er
ni

on
 m

et
ho

d

–4

–3

–1

4

3

5

180160120 14080 100
Time

40 6020

× 10–5

0

–2

0

1

2

Test
Simulation

ðcÞ
FIGURE 17: Comparison of test data and simulation of the angular acceleration of end effector: (a) matrix information geometry method, (b)
Euler angle method, and (c) quaternion method.

Journal of Robotics 11



Scientific Research Projects of Liaoning Provincial Education
Department (No. JYTMS20230010).

References

[1] S. Cantero-Chinchilla, P. D. Wilcox, and A. J. Croxford,
“Deep learning in automated ultrasonic NDE—developments,
axioms and opportunities,” NDT & E International, vol. 131,
Article ID 102703, 2022.

[2] A. N. Sinclair and R. Malkin, “Sensors for ultrasonic
nondestructive testing (NDT) in harsh environments,”
Sensors, vol. 20, no. 2, Article ID 456, 2020.

[3] H.-C. Wu, N. Gupta, and P. Mylavarapu, “Blind multiridge
detection for automatic nondestructive testing using ultrasonic
signals,” IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 53, no. 10, pp. 1902–1911, 2006.

[4] C. Miki, N. Kazuhiro, S. Hiromi, and T. Minoru, “Performance
evaluation test of automatic ultrasonic testing systems for
welded joints of steel bridges,” Journal of Testing and
Evaluation, vol. 33, no. 4, pp. 246–257, 2005.

[5] X. Zhao, P. Li, H. Guo, X. Duan, and B. Zhang, “Motion
planning of curved surface part for automatic ultrasonic
testing,” Journal of Mechanical Engineering, vol. 58, no. 24,
pp. 41–48, 2022.

[6] B. Yuan, G. Shui, and Y. Wang, “Advances in research of
nonlinear ultrasonic wave mixing detection technology in
non-destructive evaluation,” Journal of Mechanical Engineer-
ing, vol. 55, no. 16, pp. 33–46, 2019.

[7] C. G. Xu, H. B. Wang, and D. G. Xiao, “Ultrasonic
transmission detection techniques for large complex curved
surface of composite material,” Fiber Composites, vol. 30,
no. 3, pp. 33–38, 2013.

[8] C. G. Xu, H. M. Zhang, and C. Z. Guo, “Nondestructive test
technology using robot manipulator,” Electro Mechanical
Engineering, vol. 33, no. 2, pp. 1–12, 2017.

[9] X. B. Li, Z. N. Xu, H. W. Hu, and X. Zhou, “Probe’s auto-
alignment in curved components ultrasonic survey,” China
Mechanical Engineering, vol. 19, no. 11, Article ID 1269,
2008.

[10] S. Zhu, S. Liu, X. Wang, and H. Wang, “Time-optimal and
jerk-continuous trajectory planning algorithm for manipula-
tors,” Journal of Mechanical Engineering, vol. 46, no. 3,
pp. 47–52, 2010.

[11] X. Zhao, X. Wen, and X. Duan, “Recognition method fort
testing manipulator trajectory change-point,” Journal of
Mechanical Engineering, vol. 56, no. 18, pp. 15–21, 2020.

[12] Y. Yang, X. Zhao, Q. Sun, J. Zhang, and B. Li, “Trajectory
optimization of manipulator for minimum working time
based on multi-body dynamic characters,” Journal of
Mechanical Engineering, vol. 50, no. 7, pp. 8–14, 2014.

[13] J. Mei, J. Zang, Z. Qiao, S. Liu, and T. Song, “Trajectory
planning of 3-DOF delta parallel manipulator,” Journal of
Mechanical Engineering, vol. 52, no. 19, pp. 9–17, 2016.

[14] F. Nielsen and R. Bhatia, Matrix Information Geometry,
Springer, Berlin, Germany, 2013.

[15] X. Hua, Y. Ono, L. Peng, Y. Cheng, and H. Wang, “Target
detection within nonhomogeneous clutter via total Bregman
divergence-based matrix information geometry detectors,”
IEEE Transactions on Signal Processing, vol. 69, pp. 4326–
4340, 2021.

[16] S. Feng, X. Hua, and X. Zhu, “Matrix information geometry for
spectral-based SPD matrix signal detection with dimensional-
ity reduction,” Entropy, vol. 22, no. 9, Article ID 914, 2020.

[17] W. Chen and S. Chena, “Application of the non-local log-
Euclidean mean to radar target detection in nonhomogeneous
sea clutter,” IEEE Access, vol. 99, pp. 36043–36054, 2019.

[18] M. L. Kevin and C. P. Frank, Modern Robotics: Mechanics,
Planning, and Control, Cambridge University Press, Cam-
bridge, 2017.

[19] Z. Bai, Y. Shen, and Y. Shui, Riemannian Geometry
Preliminary, Higher Education Press, Beijing, 2004.

[20] A. Cont, S. Dubnov, and G. Assayag, “On the information
geometry of audio streams with applications to similarity
computing,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 19, no. 4, pp. 837–846, 2011.

[21] M. L. Curtis, Matrix Groups, Universitext, Springer, New
York, 2 edition, 1984.

[22] S. Aminikhanghahi and D. J. Cook, “A survey of methods for
time series change point detection,” Knowledge and
Information Systems, vol. 51, no. 2, pp. 339–367, 2017.

[23] A. Kirillov, An Introduction to Lie Groups and Lie Algebras,
Cambridge University Press, 2010.

[24] H. F. Sun, Z. N. Zhang, L. Y. Peng, and X. M. Duan, An
Elementary Introduction to Information Geometry, Science
Press, Beijing, 2016.

[25] J. J. Craig, Y. Chao, and W. Wei, Introduction to Robotics,
Mechanical Industry Press, Beijing, 2006.

12 Journal of Robotics




