
Research Article
Hierarchical Stabilization and Tracking Control of a
Flexible-Joint Bipedal Robot Based on Anti-Windup and
Adaptive Approximation Control

Hayder F. N. Al-Shuka , Ahmed H. Kaleel , and Basim A. R. Al-Bakri

Department of Aeronautical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq

Correspondence should be addressed to Hayder F. N. Al-Shuka; dr.hayder.f.n@coeng.uobaghdad.edu.iq

Received 30 October 2023; Revised 3 February 2024; Accepted 22 February 2024; Published 13 March 2024

Academic Editor: Changsheng Li

Copyright © 2024 Hayder F. N. Al-Shuka et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Bipedal robotic mechanisms are unstable due to the unilateral contact passive joint between the sole and the ground. Hierarchical
control layers are crucial for creating walking patterns, stabilizing locomotion, and ensuring correct angular trajectories for bipedal
joints due to the system’s various degrees of freedom. This work provides a hierarchical control scheme for a bipedal robot that
focuses on balance (stabilization) and low-level tracking control while considering flexible joints. The stabilization control method
uses the Newton–Euler formulation to establish a mathematical relationship between the zero-moment point (ZMP) and the center
of mass (COM), resulting in highly nonlinear and coupled dynamic equations. Adaptive approximation-based feedback lineariza-
tion control (so-called adaptive computed torque control) combined with an anti-windup compensator is designed to track the
desired COM produced by the high-level command. Along the length of the support sole, the ZMP with physical restrictions serves
as the control input signal. The viability of the suggested controller is established using Lyapunov’s theory. The low-level control
tracks the intended joint movements for a bipedal mechanism with flexible joints. We use two control strategies: position-based
adaptive approximation control and cascaded position-torque adaptive approximation control (cascaded PTAAC). The interesting
point is that the cascaded PTAAC can be extended to deal with variable impedance robotic joints by using the required velocity
concept, including the desired velocity and terms related to control errors such as position, force, torque, or impedance errors if
needed. A 6-link bipedal robot is used in simulation and validation experiments to demonstrate the viability of the suggested
control structure.

1. Introduction

A local pattern generator on the spinal cord regulates
humans walking on flat ground without brain directives.
The control system is complex due to multiple local control-
lers and cerebellar commands. The central nervous system
maintains human equilibrium at various levels. The hierar-
chy of controls ranges from action planning to low-level
reflex or local control. Multiple walking and running modes
need a single stability or balance criterion. Still, the literature
on balance techniques needs to be revised, making it chal-
lenging to provide a coherent background [1, 2]. Four dis-
tinct criteria are used as balancing and stability indices for
bipedal locomotion:

(i) The zero-moment point (ZMP);
(ii) The Poincare map for limit-cycle walking;
(iii) The angular momentum-based criterion;
(iv) The footstep-based criterion.

In summary, the first two criteria are required to achieve
practical bipedal mobility, and the last two criteria may serve
as helpful cues for restoring the biped’s equilibrium. The
ZMP, center of mass (COM), angular momentum, and foot-
step are directly related, as detailed in [3–5]. The initial
design of bipedal robots relies on static equilibrium; COM
is preserved inside the support polygon (footprints). The
researchers then attempted to loosen the static constraint
by requiring that the center of pressure (COP) be contained
within the support polygon, forming the so-called ZMP
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requirement. The ZMP criterion can produce a nonrotated sup-
port foot during the walking phases. Still, it cannot ensure that
the upper body of the biped is in an upright position or orienta-
tion. Solving the challenging nonlinear equations related to the
COM and ZMP is frequently problematic. Investigators often
use simple models to estimate gait patterns of bipeds, but linking
walking periods with different COM speeds can be challenging,
necessitating a control strategy that considers both internal and
external modeling errors. In such a situation, regulating the
spinning angular momentum around the biped COM has
been researched to develop practicable, stable walking patterns.
The ZMP-based biped robots may require multilevel control
systems to provide the appropriate motion in light of the con-
cerns above. While a low-level control system is offered to track
the necessary angular joint trajectories, high-level control con-
sists of online walking patterns and balancing control techni-
ques. This study proposes a hierarchical control system for the
bipedal mechanism, which includes designing reference walking
patterns and controlling the ZMP or the COM. At the same
time, it is being tracked, maintaining balance and low-level con-
trol, as described later. The correlation between COM and ZMP
trajectories is crucial for creating walking patterns for biped
robots. Three methods have been effectively used to create
motion for bipedal robots: optimization-based gait, COM-based
gait, and interpolation-based gait. The optimization tool man-
ages minimal energy or input control effort, optimal design, and
dynamic and kinematic restrictions [6]. The ZMP criteria can be
viewed as a constraint or an objective function. The computa-
tional complexity allows for frequent offline use. The COM-
based gait assumes all masses are centered in the COM, and
the support foot’s ankle joint experiences a pushing force despite
no applied torque. This concept is suggested for the online
implementation of bipedal walking patterns. However, it
requires modification to account for errors caused by this
approximation and other disturbances [7]. Interpolation-based
gait requires proper polynomial or spline functions for the COM
and foot trajectory to track or satisfy the planned ZMP with
compensated ZMP offline or online. Real-time motion planning
is challenging due to the need for a single iteration of the walking
generator’s algorithm and the discontinuous COM velocity in
transition instances [8–11]. A multilevel control plan is always
required to stabilize bipedal locomotion, comprising trajectory
generation for the COM, ZMP, or ZMP tracking control, an
inverse kinematics approach, and joint tracking control. This
work provides a hierarchical control scheme for a bipedal robot
that focuses on balance and low-level tracking control while
considering flexible joints. Refer to [12–18] for further informa-
tion on bipedal mechanism control, balancing criteria, and
motion planning.

The following concerns are investigated in this research:

1.1. Balance and Stabilization Control Level. A high-level
control regulates the ZMP trajectory due to modeling errors
and disturbances or tracks the COM trajectory with bounded
ZMP values. The ZMP trajectory can be indirectly manipu-
lated by COMmotion using a straightforward linear inverted
pendulum model. Consequently, Sugihara et al. [19] created
real-time motion generation that indirectly controls the ZMP

to regulate the biped robot’s COM. Their algorithm is
divided into four sections: local control of joint angles, joint
angle localization, referential ZMP planning, and ZMP
manipulation. By manipulating the biped COM trajectory,
Choi et al. [20] took advantage of indirect ZMP control and
demonstrated the stability of its disturbance input-to-state
(ISS). After identifying the issue with the one-mass inverted
pendulum’s non-minimum phase property, Napoleon et al.
[21] used a two-mass inverted pendulum as a simplified
biped model to eliminate the unstable zeros. They used a
linear quadratic regulator (LQR) to track the desired ZMP
trajectory. Pole-zero cancelation was employed by Hong
et al. [22] as a feedforward controller to eliminate the unsta-
ble zeros, and LQR was used as a feedback controller for
tracking. Online walking patterns employing the cart-pole
system were successfully generated by Kajita et al. [23] using
the preview control mechanism of the ZMP. They recom-
mended using the preview control twice. Stage 1 might fol-
low the planned ZMP trajectory. Stage 2 would fix any ZMP
inaccuracies brought on by differences between the proposed
biped robot model and the actual multibody model. This
approach needs help specifying the appropriate ZMP at the
heel or toe of the foot to achieve human-like walking [24].
Auxiliary ZMP [25], observer-based preview control [26],
and hierarchical preview control [27] have all been
improved. The preview control has two drawbacks: (1) it
ignores ZMP limitations, and (2) it is affected by perturba-
tion and disturbance. To improve the preview control,
Wieber [28] adopted linear predictive control of biped
robots in the presence of perturbation without considering
the computing complexity, which is well handled in [29].
In addition to using the optimal control method, Miura et
al. [30] also tracked the target humanoid’s COM and ZMP
utilizing a time delay and a PID controller. Generally, most
linear control techniques can be used to control an inverted
pendulum model to follow the ZMP or COM states. As
mentioned previously, the preview control has several
issues, and [31] demonstrates how the ordinal control sys-
tem struggles to track ZMP accurately.

Furthermore, most ZMP/COM tracking control is cou-
pled with high computational complexity. Therefore, utiliz-
ing the boundary value problem, researchers have attempted
to directly solve the inverted pendulum differential equation.
Harada et al. [11] developed an analytical technique for con-
currently estimating the COM and ZMP during a change in
walking stride. Real-time and quasi-real-time strategies have
been successfully proposed for tying the new trajectory to the
existing one. In [32], the analytical procedure is extended.
See [33–38] for further information on bipedal robot balance
or stability control. As a result, the current study proposes a
high-level control system to maintain the ZMP trajectory
within a stable zone while following the intended COM
references. The system uses a bipedal robot’s centroidal
dynamics to form an equation connecting the output COM
to the input ZMP. An input saturation compensator is
required due to the constrained system. The adaptive com-
puted torque control (CTC) law is designed for uncertain
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bipedal parameters. Details on saturation compensators will
be provided later.

Remark 1. Some stabilization strategies are used for bal-
ance recovery when subjected to severe disturbances,
referred to as balance and push recovery. These strategies
can be exploited alternatively for ZMP/COM compensation.
Unique balance techniques are used by all four-legged ani-
mals to prevent unexpected falls and to preserve their general
rotational stability, dynamic stability, and postural stability
[39]. Humans can employ sophisticated tactics to maintain
equilibrium and prevent potential disturbances. The support
base must be adjusted to keep the body’s center of gravity
while standing, moving, or sprinting. The balance system
actively observes the surroundings and anticipates how
forces produced by voluntary movements will affect the
body. It then makes the required modifications to preserve
posture and equilibrium. The reactive balancing response
only appears when these adjustments are unsuccessful or
unexpected instability occurs [40]. Thus, the reactive mech-
anism (feedback control) and the proactive mechanism
(feedforward control) are used to establish balancing condi-
tions [2]. Al-Shuka et al. [3] classified four possible methods
for balance recovery:

(i) Ankle/hip modification;
(ii) Whole-body modification;
(iii) Foot-step strategy;
(iv) Predictive control strategy using a feedforward

technique.

One of the most potent control approaches is whole-
body control. This technique uses all degrees-of-freedom
(DOFs) of the bipedal robot to follow the desired COM
trajectory or the desired linear or angular momentum. For
further details, see [41–44].

1.2. Tracking Control of Desired Bipedal Joint Trajectories.
The low-level control’s task is to follow the intended angular
joint trajectories of the biped mechanism. As previously
stated, the ZMP criterion concept presupposes a fully actu-
ated biped robot in the single-support phase (SSP) to follow
the required path of the ZMP or meet it and an over-actuated
biped in the double-support phase (DSP). To effectively use
the traditional control approaches for manipulators, the
stance foot of the biped robot has to be fixed during the
SSP. Most of the methods studied in the excellent work by
the literatures [45–47] can successfully control ZMP-based
gait. However, the researcher should consider the biped
humanoid robot’s considerable degree of freedom. As a
result, most humanoid robots feature decoupled tracking
PID control systems. The early attempts at controlling the
bipedal robot were centered on linearizing the equation of
motion. Golliday and Hemami [48] linearized the three-link
biped robot with locking knees around the necessary opera-
tional points. Observability, controllability, and stability were
then examined. Feedback control systems for controlling the
speed and stride length of the investigated bipedal mecha-
nism were suggested. Their inverted pendulum-based biped

robot was controlled by a local PID controller created by
Kajita and Toni [49]. The abovementioned linearization-
based control has the drawback that its solution only applies
in a limited area surrounding the operational locations
(nominal trajectory) [50]. Any moving walking robot will
experience several abrupt geometric limitations, such as
knee locking, stepping on the ground, etc. These restrictions
in every walking machine lead to disturbances that resemble
impulses and are very challenging for a standard PID con-
troller to regulate [51]. The typical PID might be unable to
keep the gait stable if the uncertainty level (is greater than
80%). Raibert et al. [51] compared a local PD controller,
CTC, and sliding mode control (SMC) to simulate a five-
link planar biped robot. They demonstrated the superiority
of sliding-mode control for bipedal systems in the presence
of parameter uncertainty. Similar works utilizing SMC were
accomplished by the literatures [52–54]. The literature has
described various control strategies, such as learning control
algorithms [55–57], impedance control [58, 59], and torque
control [60, 61].

On the other hand, most researchers avoided using typi-
cal adaptive controls in complex bipedal systems because
they may depend on a regressor matrix only applicable to
six DOFs or fewer. Zhu’s virtual decomposition control
(VDC) [62] is a potential solution to this problem. Every
link in the complex system is broken down, giving each
subsystem similar classical adaptive control. It has been
used to underactuated bipeds via time-scaling-based adap-
tive VDC. Decentralized control strategies have been pro-
posed in [63–65]. This paper focuses on fully tracking
decentralized adaptive approximation control, considering
joint flexibility and input saturation, which will be briefly
discussed in subsequent subsections.

1.3. Compliant Actuation Systems. Electrical drives power
most robot actuators due to their accessibility and established
control mechanisms. Bipedal robots often use transmission
units, with harmonic drives being particularly interesting due
to their low backlash, high accuracy, small dimensions, and
high torque output. High gear ratios in manipulator robots
hinder back driving, causing issues with shock absorption. Stiff
actuators, which store energy, are preferred over compliant
joints for improved tracking accuracy. Therefore, well-known
ZMP-based bipedal robots, such as ASIMO [66], WEBIAN
[67], HRP series [68], Johnnie [69], and KHR series [8],
utilize position control strategies using stiff joints with
harmonic drive units. Legged robots may benefit from elastic
joint characteristics for shock absorption, energy storage, and
reduced control effort, even though their tracking accuracy is
less rigorous than overall dynamic stability. As a result, some
bipedal robots such as cCUP [70], Valkyrie [71], and COMAN
robots [72] use series elastic joint actuators to avoid the
shortcomings of stiff actuators. Series elastic actuators feature
an elastic element with constant stiffness attached to the robotic
joints, offering advantages over stiff actuators like low
impedance, impact load absorption, and increased peak
power output. Joint flexibility presents challenges in
modeling and control due to its additional degrees of
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freedom, causing the order of related dynamics to be twice that
of rigid robots. This results in more complex dynamic behavior
that requires further study and evaluation in mathematical
modeling. The control of rigid robots, such as full actuation
and passivity, is lost when joint flexibility is included in the
dynamic model. Flexible joint robots face control issues due to
quick dynamics, vibration, uncertainties in connection
dynamics, payload fluctuations, external distances, and drive
dynamics, particularly joint stiffness values. Over the past
decade, various strategies for controlling flexible joint robots
have been proposed, including feedback linearization [73],
which offers fast response and large bandwidth but requires
higher-order time derivatives. The cascaded control method is
a control method for flexible joint robots that involves breaking
down a high-order system into multiple lower-order
subsystems [74]. This method requires constant reference
input to the inner control loop, slowing down the response
time and resulting in a lower bandwidth in the state-space
approach. The singular perturbation approach [75] and
integral manifold approach are popular methods for
controlling joint torque subsystems, adding damping to the
fast mode. Other flexible joint robot control methods, such as
integral backstepping control [76], passivity-based control [77],
PD control [78], and so on, primarily focus on position control.
The joint torque tracking loop is crucial for robotic systems
operating in constrained environments. The torque control
loop faces a significant issue with noisy torque derivative
time signals, necessitating the use of a low-pass filter for
feasible results [79–83]. Two control algorithms are proposed
in this paper to address joint flexibility issues effectively.

1.4. Input Saturation. Actuators have practical limits like
saturation, dead zone, and hysteresis. These constraints can
reduce closed-loop system performance and cause instability.
Researchers have concentrated their efforts on developing
controllers for systems with saturation restrictions. There
are two approaches: changing the control effort signal and
building an auxiliary system to specify tracking errors. These
ideas are intended to solve these restrictions while also
improving the safety and performance of closed-loop sys-
tems. See [84–87] for more details.

This study presents a hierarchical control strategy for a
bipedal robot, emphasizing balance (stabilization) and low-
level tracking control while considering flexible joints. The
Newton–Euler (N–E) formulation is used in the stabilization
control approach to building a mathematical correlation
between the COM and the ZMP, leading to highly coupled
and nonlinear dynamic equations. Adaptive approximation-
based feedback linearization control, also known as adaptive
CTC, is paired with an anti-windup compensator to follow
the intended COM generated by the high-level command.
The ZMP with physical limits acts as the control input signal
along the length of the support sole. The Lyapunov theory is
used to prove the viability of the proposed controller. The
low-level control for a bipedal system with flexible joints
follows the planned joint motions. Position-based adaptive
approximation control (PAAC) and cascaded position-
torque adaptive approximation control (cascaded PTAAC)

are the two control techniques we employ. The intriguing
aspect is that by using the necessary velocity concept, which
also includes the desired velocity and terms relating to con-
trol faults such as position, force, torque, or impedance
errors as needed, the cascaded PTAAC may be expanded
to cope with variable impedance robotic joints. In simulation
and validation studies, a 6-link bipedal robot is employed to
show the effectiveness of the recommended control.

The rest of the paper is structured as follows: The diffi-
culties and imposed assumptions of the work are outlined in
Section 2. The methodology is described in Section 3, with
two control stages to stabilize and track the target robot’s
mobility. Section 4 introduces the simulation experiments
and the validation results, while Section 5 ends.

2. Problem Formulation and Assumptions

This study addresses two control issues using anti-windup
compensation principles: tracking the COM trajectory while
keeping ZMP control input within the stance sole and fol-
lowing desired joint states, considering joint flexibility and
physical torque input saturation. The study proposes a four-
level control strategy for legged mechanisms, focusing on
balance control (COM tracking) and low-level control (flex-
ible joint monitoring). The control architecture, shown in
Figure 1, uses the saturation compensator for motion stabi-
lization, addressing physical limitations on joint torques and
ground reaction forces. As illustrated in Figure 1, the pro-
posed control structure consists of the following key
elements:

Objective locomotion parameters (step
length, forward COM velocity, initial

conditions for biped posture)

Referential COM trajectory

Desired COM trajectory

Desired foot

Desired angular joint references

Inverse
kinematics

Foot trajectory
planner

Control inputs

Tracking joint control

Re
al
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ZMP constraints)

FIGURE 1: The proposed control structure. The focus of the current
work is stabilization and tracking joint controls.
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(1) COM planner. It is beyond the scope of this paper;
however, it is responsible for designing stabilized
walking patterns for the target bipedal. The desired
references for the COM and the ZMP can be gener-
ated using three possible methods: optimization-
based gait, COM-based gait, and interpolation-based
gait [6–11]. Among these methods, our motion plan-
ning algorithm proposed in [88] is selected.

(2) Stabilization control. It aims to regulate the con-
strained ZMP trajectory by tracking the referential
COM. It develops an explicit dynamic relationship
between the ZMP and the COM and designs an
adaptive CTC scheme, integrating it with an anti-
windup compensator for motion stabilization.

(3) Inverse kinematics. This topic is outside the purview
of the present work and should be discussed at a later
time. The inverse kinematics strategy is used to find
desired angular trajectories by calculating the desired
COM and referential foot trajectory. This strategy
can be integrated with multiple tasks for balancing
and stable configurations of the bipedal mechanism.
The geometry method is used instead, based on the
work of [31]. Please see [4, 89, 90] and the references
therein for more details on this topic.

(4) Tracking control of joint trajectories. It precisely
tracks desired angular joint references obtained by
inverse kinematics. In this stage, joint flexibility is
considered, complicating the control task due to
increasing the DOFs to double, under-actuation
behavior, and noisy torque signals if needed. Model-
ing the flexible-joint robots using Euler–Lagrange
(E–L) formulation leads to a cascaded system. The
control inputs for the link and joint subsystem are
the elastic torques and the motor torques, respec-
tively. Using the concept of the AAC, the system
can be decomposed into link-joint subsystems, and
hence, a decoupled controller for each link-joint sub-
system can be developed. Two control schemes are
proposed: position-based control and cascaded
position-torque control. The interesting point is
that the cascaded position-torque control scheme
can be extended to control a robotic system with
time-varying joint stiffness and damping.

In general, the following assumptions are consid-
ered [31, 66].

Assumption 1: The stance foot is fixed without rotation.
This assumption is crucial for ZMP-based locomotion to

maintain the ZMP location within the support polygon
(stance sole) in the SSP.

Assumption 2: The bipedal robot is fully actuated to
apply the ZMP criteria.

This assumption coincides with Assumption 1, which
includes a fixed-stance foot. If a rotating stance foot is
selected, then the ZMP criteria cannot be held, and the
bipedal system is underactuated; see [91, 92] for more details.

Assumption 3. The gait cycle consists solely of the SSP
due to the short duration of the DSP.

Assumption 4. The dynamic coefficients of the system
equation involving the COM and ZMP can be linearly
parameterized using orthogonal functions.

This assumption is necessary for the application of adap-
tive approximation control [83].

Assumption 5. The COM velocity and displacement are
all measurable.

Assumption 6. The physical parameter values for the link
and joint dynamics are unknown and can be linearly param-
eterized in terms of orthogonal functions.

The implementation of adaptive approximation control
requires Assumption 7 [83].

Assumption 7. The elastic torque is measurable up to the
second order.

3. Methodology

This section comprehensively describes balance and tracking
control using various control scenarios.

3.1. Stabilization Control. Balance, stabilization, or postural
control compensate for modeling errors and disturbances in a
bipedal robot. It aims to track the COM trajectory while
maintaining the ZMP within a safe range. The relationship
between the COMandZMP is determined usingN–E dynam-
ics, which is nonlinearly coupled. Adaptive control is based on
the function approximation technique and windup strategy,
with an anti-windup compensator integrated to deal with the
limits of the control input, the ZMP trajectory. The output
and input variables are the COM and ZMP trajectories,
respectively. Saturation restriction is a common challenge in
actuator design due to physical properties and safety issues. It
can improve closed-loop system efficiency and potentially
cause instability. In our case, however, the ZMP signals are
the control input and should be positioned within the stance
sole of the SSP. Researchers have developed controllers for
systems with saturation constraints using two techniques:
readjusting the control effort signal and building an auxiliary
system. The method involves readjusting the control input
signal using the function approximation technique based on
Chebyshev orthogonal polynomials.

Using the N–E formula, the following explicit expression
can be obtained relating the ZMP–COM trajectories; see [4]
for details.

Ic c̈ þ αc ¼ uc; uc ≤ uc ≤ uc ; ð1Þ

with

Ic ¼
−cz
c̈z þ g

0

0
−cz
c̈z þ g

2664
3775; c¼ cx cy

Â Ã
T ;

αc ¼
cx −

τy
Ṗz þMg

cy þ
τx

Ṗz þMg

2664
3775; and uc ¼ px py

Â Ã
T ;

ð2Þ
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where, Pz is the total linear momentum in z-dimension,
τ¼ τx τy τz

Â Ã
T is the moment vector about the COM,

and pð:Þ is the ZMP location. The control input signals repre-
sented by uc has upper and lower bounds denoted by uc and
uc , respectively.

Figure 2 shows the external force and moments affected
on a bipedal robot. The ZMPmoments (torques) in the x and
y axes should be small, approximately zero, to ensure stability.
The bipedal robot maintains a constant height for the COM
or hip.

Adaptive feedback linearization, or so-called CTC based
on the function approximation technique, is suggested to
stabilize the nonlinear system in Equation (1). The feedback
linearization control technique aims to create a nonlinear
control law that makes the dynamics of the closed-loop lin-
ear. Equation (1) can be recast as Equation (3) to address
saturated control input [93].

Ic c̈ þ αc ¼ uc ¼ v þ δ; ð3Þ

where

uci ¼ sat við Þ ¼
ucimax; vi ≥ ucimax

ui; ucimin<vi<ucimax

ucimin; vi ≤ ucimin

8><>: ; i¼ 1; 2: ð4Þ

The control tolerance value (δi; i¼ 1; 2) with δ¼ δ1δ2½ �T
can be written as follows:

δi ¼
ucimax − vi; vi ≥ ucimax

0; ucimin<vi<ucimax

ucimin − vi; vi ≤ ucimin

8><>: : ð5Þ

The proposed control structure accounts for nonlinear
control saturation by tracking desired references using adap-
tive feedback linearization control and function approxima-
tion technique, with the chosen control law being as follows:

v¼ bI c c̈d − Kd ċ − ċdð Þ − Kp c − cdð ÞÀ Á
− κsgn BTPTxð Þ þ bαc −

bδ; ð6Þ

where cd is the desired reference for the COM trajectory,
the estimation is represented by the symbol, Kd 2R2×2 and
Kp 2R

2×2
are both diagonal positive definite matrices, κ 2R2×2

is a robust sliding gain, B¼ 0

I2

� �
: 2R4×2; x¼ eT ėT

Â Ã
T 2R4,

and, P¼ PT 2R4×4 is a symmetric positive definite matrix
meeting the Lyapunov equation as follows:

ATP þ PA¼ −Q; ð7Þ

with

A¼ 0 I2

−Kp −Kd

" #
2 R4×4; ð8Þ

and Q¼QT 2R4×4 is also a symmetric positive definite
matrix. Notice that if bδ¼ δ in the controller (Equation (6)),
then it results an algebraic loop. The compensation of the
dead-zone function estimation bδ only works in a compact set
of the state space, resulting is local stability.

Substituting Equation (6) into Equation (3) leads to the
following closed-loop dynamics:

ë þ Kdė þ Kpeþ κsgn BTPTxð Þ ¼ −bI c−1 eI c c̈ þ eαc −
eδ� �

þ ε:

ð9Þ
Equation (9) is basically a linear closed-loop dynamics

with residual error, ε2R2, and ð∼⋅ Þ : ¼ð:Þ : − ð ∧⋅ Þ :. However due
to the robust sliding term, κsgnðBTPTxÞ :, it’s no longer linear.
The FAT can represent mass and nonlinear matrices and
vectors as follows:

Ic ¼WT
I φI þ εI

αc ¼WT
αφα þ εα

δ¼WT
δ φδ þ εδ

; ð10Þ

where the weighting matrices are WI 2R2β×2, Wα 2R2β×2,
and Wδ 2R2β×2, the basis function matrices are WI 2R2β×2;

c

ZMPZ

Y

X{O}

p

f

FIGURE 2: A bipedal robot with the definition of the ZMP. The force
f is the ground reaction force while the torque (moment) vector at
the ZMP has only component in z-axis. By taking a moment about
point O and using the N–E formulation, Equation (1) is obtained
for a multibody robot.
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φα 2R2β, and φδ 2R2β, and β denotes the number of basis
function terms. The estimated matrices using the same set of
basis functions are as follows:

bI c ¼ cWT
I φIbαc ¼ cWT
αφαbδ ¼ cWT

δ φδ:

ð11Þ

Consequently, the control law (Equation (6)) is formu-
lated as follows:

u¼cWT
I φI c̈d − Kd ċ − ċdð Þ − Kp c − cdð ÞÀ Á

− κsgn BTPTxð Þ þ cWT
αφα −

cWT
δ φδ;

ð12Þ

then the closed-loop dynamics (Equation (9)) becomes the
following:

ë þ Kdė þ Kpeþ κsgn BTPTxð Þ
¼ − cWT

I φI

� �
−1 fWT

I φI q̈ þfWT
αφα −

fWT
δ φδ

� �
þ ε:

ð13Þ

Expressing Equation (13) in a state space form as follows:

ẋ ¼ Ax − B bI−1 fWT
I φI c̈ þfWT

αφα −
fWT

δ φδ

� ��
− εþ κsgn BTPTxð ÞÞ:

ð14Þ

Selecting the relevant updated laws as follows:

ċW I ¼ −Ψ IφI c̈ xTPBbI−1� �
ċWα ¼ −Ψαφα xTPBbI−1� �
ċW δ ¼ Ψδφδ xTPBbI−1� �

;

ð15Þ

where the adaptation matrix is Ψ ð:Þ 2R2β×2β.
In effect, the estimate bI of the inertia matrix I is not

always invertible, even though it is nonsingular for every
t> 0. As a result, as the determinant of bI approaches zero,
Equation (15) may experience a singularity issue, and a

projection change is necessary. A well-known method based
on the passivity design was put out by Slotine and Li [94] to
address these issues.

The L2 and L1 stability of target systems is frequently
demonstrated in this paper using the following lemma [62]:

Lemma 1. Assuming that Q 2Rn×n is a symmetric positive-
definite matrix, xðtÞ : 2Rn; n≥ 1; and that VðtÞ : is a nonnega-
tive piecewise continuous function defined as follows:

V tð Þ ≥ 1
2
x tð ÞTQx tð Þ: ð16Þ

If the time derivative of VðtÞ : is determined by the
following:

V̇ ≤ −y tð ÞTPy tð Þ − σ tð Þ ≤ −σ tð Þ; ð17Þ

where yðtÞ : 2Rm, m≥ 1, P 2Rm×m is a symmetric positive-
definite matrix, and σðtÞ : is as follows:Z 1

0
σ tð Þdt ≥ −ρ; ð18Þ

with 0≤ ρ<1, then VðtÞ: 2 L1; xðtÞ: 2 L1, and yðtÞ : 2
L2 hold.

The proof of Lemma 1 is described in the appendix.

Theorem 1. In the sense of L2 and L1 stability introduced in
Lemma 1, the ZMP-COM dynamics in Equation (1) are stable
when combined with the control law, closed-loop dynamics,
and related update laws stated in Equation (12) through
Equation (15).

Proof. Choosing the following Lyapunov-like function along
the closed-loop dynamics (Equation (14)):

V ¼ 1
2
xTPx þ 1

2
tr fWT

I Ψ
−1
I
fWI þfWT

αΨ
−1
α
fWα þ fWT

δ Ψ
−1
δ
fWδ

� �
:

ð19Þ

By substituting Equation (14) for the time-derivative of
Equation (19), we obtain the following:

V̇ ¼ −
1
2
xTQx − xTP B bM−1 fWT

I φI c̈ þ fWT
αφα −

fWT
δ φδ

� �
− Bεþ Bκsgn BTPTxð Þ

h i
− tr fWT

I Ψ
−1
I
ċW I

� �
− tr fWT

αΨ
−1
α
ċWα

� �
− tr fWT

δ Ψ
−1
δ
ċW δ

� �
:

ð20Þ
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It is possible to rewrite Equation (20) as follows:

V̇ ¼ −
1
2
xTQx − tr fWT

I φI c̈ xTPB bM−1
� �

þ Ψ−1
I
ċW I

� �� �
− tr fWT

α φα xTPB bM−1
� �

þ Ψ−1
α
ċWα

� �� �
− tr fWT

δ φδ xTPB bM−1
� �

− Ψ−1
δ
ċW δ

� �� �
− xTPB −εþ κsgn BTPTxð Þð Þ;

ð21Þ

by substituting Equation (15) into the previous equation, we
get the following:

V̇ ¼ −
1
2
xTQx − xTPB −εþ κsgn BTPTxð Þð Þ

¼ −
1
2
xTQx þ ζTε − ∑κi ζij j;

ð22Þ

where ζ¼BTPTx and choosing the components κi so that

κi ≥ εij j þ χi; ð23Þ

where χ i is a positive constant, making Equation (22)
become

V̇ ¼ −
1
2
xTQx − ∑κi ζij j: ð24Þ

In the perspective of Lemma 1, Equation (21) implies L2
and L1 stability. □

3.2. Tracking Control of Joint Trajectories. In this section, two
tracking control strategies—position control and cascaded
position and torque control—are presented for tracking
joints with unknown parameters and input saturation. The
complexity of the problem is compounded by the inclusion
of joint stiffness and damping, as the system will be under-
actuated due to the doubling of the DOFs. Furthermore, it is
challenging to design control laws that are decoupled while
taking into account the uncertainty of joint stiffness and
damping. To fix the control issue, you need an adaptive
backstepping control system. Figure 3 shows a 6-link bipedal
robot with flexible joints.

3.2.1. Position-Based Adaptive Control. This section develops
the E–L dynamics for an n-DOF bipedal robot with flexible
joints and torque input saturation [95, 96]. It is made up of
cascading link subsystems coupled by joint impedance. The
control law’s goal is to apply the AAC’s principles to decouple
the n-DOF bipedal system into link-joint subsystems. An
orthogonal basis function with particular terms is used to
approximate the nonlinear coupling expressions. Consequently,
the E–L formulation for the n-DOF bipedal robot is expressed as
follows:

Mq̈ þ Cq̇ þ g¼ τt; ð25aÞ

Imθ̈ þ Bmθ̇ þ τt ¼ u; ð25bÞ

and

τt ¼ Ks θ − qð Þ þ Cv θ̇ − q̇
À Á

; ð25cÞ

where M 2Rn×n is a positive definite and symmetric inertia
matrix, q2Rn is the angular displacement of links, C 2Rn×n

is the Coriolis and centripetal matrix, g2Rn is the gravity
vector, τt 2Rn is the elastic joint torque, Im 2Rn×n is a diag-
onal inertia matrix with a diagonal element rðrþ 1Þ :Jr with r
being gear ratio, Jr is the rotor and gear inertia, Bm 2Rn×n is
the viscous damping matrix, Ks 2Rn×n is the stiffness matrix
for flexible element, Cv 2Rn×n is damping matrix for the joint
flexibility, θ2Rn is the angular displacement of motor, and
u2Rn is the control input and subjected to the following
constraints:

ui ¼ sat μið Þ ¼
uimax; μi ≥ uimax

μi; uimin<μi<uimax

uimin; μi ≤ uimin

8><>: ; i¼ 1; 2; 3;…; n:

ð26Þ

The elements of the control tolerance vector, γ, can be
written as follows:

γi ¼
uimax − μi; μi ≥ uimax

0; uimin<μi<uimax

uimin − μi; μi ≤ uimin

8><>: : ð27Þ

Equations (25a–25c)–(27) can be reformulated for the ith
link-joint subsystems as follows:

mii qð Þ q̈i þ cii q; q̇ð Þq̇i þ Δi q; q̇ð Þ ¼ τti ; ð28aÞ

Imi
θ̈ i þ Bmi

θ̇ i þ τti ¼ ui; ð28bÞ

with

Δi q; q̇ð Þ ¼ ∑
n

j¼ 1
j ≠ i

mij qð Þ q̈j þ ∑
n

j¼ 1
j ≠ i

cij q; q̇ð Þq̇j þ gi qð Þ; ð28cÞ
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ksi θi − qið Þ þ cvi θ̇ i − q̇i
À Á¼ τti : ð28dÞ

Equations (28a)–(28d) describe a cascade system where
the elastic transmission torque serves as a virtual control
input for the ith link, with suitable control laws selected as
follows:

bmii qð Þ q̈ri þbcii q; q̇ð Þq̇ri þ kisi þ bΔi q; q̇ð Þ þ σisgn sið Þ ¼ τtdi ;

ð29aÞ

bksi θri − qri
À Áþbcvi θ̇ri − q̇ri

� �
¼ τtdi ; ð29bÞ

bImi
θ̈ri þ bBmi

θ̇ri þ τtdi þ kθisθi þ σθisgn sθið Þ ¼ ui ¼ μi þ γi;

ð29cÞ

where

q̇ri ¼ q̇di þ λi qdi − qi
À Á

θ̇ri ¼ θ̇di þ λθi θdi − θi
À Á; ð30Þ

where the subscript (d) refers to desired reference, and λi is a
positive parameter denoting the time constant. The FAT-
based adaptive control is adopted to estimate the uncertainty
in Equations (29a)–(29c). The uncertain dynamic matrices
and vectors are assumed as functions of time, and then select-
ing an orthogonal polynomial approximator to estimate the
uncertainty. Thus, the control law in Equations (29a)–(29c)
becomes the following:

bwT
mi
φmi

qð Þ q̈ri þ bwT
ciφci q̇ri þ kisi þ bwT

Δi
φΔi

þ σisgn sið Þ ¼ τtdi ;

ð31aÞ

bwT
Imi
φImi

θ̈ri þ bwT
bi
φbi θ̇ri − bwT

γiφγiτtdi þ kθi sθi þ σθisgn sθi
À Á¼ μdi ;

ð31bÞ

where wð:Þ 2Rβ and φð:Þ 2Rβ are the weighting-coefficients
and orthogonal basis function vectors, respectively. Subtract-
ing Equations (31a) and (31b) from Equations (28a)–(28d),
we obtain the following closed-loop dynamics:

miiṡi þ ciisi þ kisi þ σisgn sið Þ
¼ − ewT

mi
φmi

q̈r − ewT
ciφci q̇r − ewT

Δi
φΔi

þ τtdi − τti
À Áþ εi;

ð32aÞ

Imii
ṡθi þ Bmii

si þ kisθi þ σθisgn sθi
À Á

¼ − ewT
Imi
φImi

θ̈ri − ewT
bi
φbi θ̇ri þ ewT

γiφγi

− τtdi − τti
À Áþ μi − μdi

À Áþ εθi :

ð32bÞ

The following update adaptive laws are chosen to achieve
stable closed-loop dynamics:

ḃwmi
¼ Φmi

φmi
q̈ri siḃw ci ¼ Φciφci q̇ri siḃwΔi

¼ ΦΔi
φΔi

si;

ð33aÞ

ḃw Imi
¼ ΦImi

φImi
θ̈ri sθiḃwbi ¼ Φbiφbi θ̇ri sθiḃw γi ¼ −Φγiφγi sθi ;

ð33bÞ

where Φð:Þ 2Rβ×β is positive-definite gain matrix for adapta-
tion. The following theorem proves the stability of the pro-
posed control structure:

Theorem 2. The dynamics of link-joint subsystems in
Equations (28a)–(28d), and the control laws described in
Equations (31a) and (31b) with associated update adaptive
laws in Equations (33a) and (33b) and the corresponding
closed-loop dynamics presented in Equations (32a) and
(32b) is stable in view of L2 and L1 stability introduced in
Lemma 1 if

μdi ¼ μi; ð34aÞ

and

bksi ¼ αki θri − qri
À Á

θ̇ri − θ̇ i
À Á

− q̇ri − q̇i
� �h i

bcvi ¼ αci θ̇ri − q̇ri

� �
θ̇ri − θ̇ i
À Á

− q̇ri − q̇i
� �h i

;
ð34bÞ

where αð:Þ is a scalar adaptation gain.

Proof. Consider the following Lyapunov’s like-function for
the link-joint subsystem as follows:

Z
Y

X

Joint i

ksi

qi
cvi

θi

{O}

FIGURE 3: A 6-link bipedal robot with flexible joints.
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Vi ¼ Vli þ Vji ; ð35aÞ

with

Vli ¼
1
2
miis2i þ

1
2
ewT
mi
Φ−1

mi
ewmi

þ 1
2
ewT
ciΦ

−1
ci ewci þ

1
2
ewT
Δi
Φ−1

Δi
ewΔi

;

ð35bÞ

Vji ¼
1
2
Imis2θi þ

1
2
ewT
Imi
Φ−1

Imi
ewImi

þ 1
2
ewT
bi
Φ−1

bi
ewbi þ

1
2
ewT
γiΦ

−1
γi ewγi

þ 1
2

ek2si
αki

þ 1
2

ec2vi
αci

þ 1
2
ksi θri − θi

À Á
− qri − qi
À ÁÂ Ã

2;

ð35cÞ

where ηð:Þ is a positive scalar adaptation gain. By taking the time
derivative of Equation (35b) and substituting Equation (32a)
into it, we obtain

V̇ li ¼
1
2

ṁii − 2ciið Þs2i − kis2i þ si τtdi − τti
À Á

− σisisgn sið Þ þ εisi

− ewT
mi

Φ−1
mi
ḃwmi

þ φmi
q̈ri si

� �
− ewT

ci φci q̇ri si þ Φ−1
ci ḃw ci

� �
− ewT

Δi
φΔi

si þ Φ−1
Δi
ḃwΔi

� �
:

ð36Þ

Using the passivity property with the adaptive laws in
Equation (33a), Equation (36) becomes the following:

V̇ li ¼ −kis2i þ si τtdi − τti
À Á

− σisisgn sið Þ þ εisi: ð37Þ

In a similar manner, taking the time derivative for
Equation (35c) and substituting Equation (32b) into it to
get the following:

V̇ ji ¼ −bis2θi − kθi s
2
θi
− sθi τtdi − τti

À Á
− σθi sθisgn sθi

À Á
þεθi sθi − ewT

Imi
Φ−1

Imi
ḃw Imi

þ φImi
θ̈ri sθi

� �
− ewT

bi
φbi θ̇risθi þ Φ−1

bi
ḃw bi

� �
− ewT

γi φγi sθi þ Φ−1
γi ḃw γi

� �
−

eksiḃksi

αki
−
ecviḃcvi
αci

:

ð38Þ

Substituting Equation (33b) into the above equation
results in the following:

V̇ ji ¼ −bis2θi − kθis2θi − sθi τtdi − τti
À Á

− σθisθisgn sθið Þ þ εθisθi:

ð39Þ

Thus, the time-derivative of Equation (35a) becomes the
following:

V̇ i ¼ −kis2i þ si τtdi − τti
À Áþ εisi − σisisgn sið Þ

−bis2θi − kθi s
2
θi
þ sθi τtdi − τti

À Á
−σθi sθisgn sθi

À Áþ εθi sθi −
eksi ḃksi

αki
−
ecviḃcvi
αci

:

ð40Þ

Simplifying Equation (40) leads to the following:

V̇ i ¼ −kis2i − bis2θi − kθi s
2
θi
− sθi − si
À Á

τtdi − τti
À Á

− σisisgn sið Þ

−σθi sθisgn sθi
À Áþ εisi þ εθi sθi −

eksiḃksi

αki
−
ecviḃcvi
αci

:

ð41Þ

Using Equations (28d) and (29b), we obtain the following:

τtdi − τti
À Á¼ −ecvi θ̇ i − q̇i

À Á
− eksi θi − qið Þ þ cvi sθi − sqi

À Á
þksi θri − θi

À Á
− qri − qi
À ÁÀ Á

:

ð42Þ

Substituting Equation (42) into Equation (41) and using
Equation (34b) results in the following:

V̇ i ¼ −kis2i − bis2θi − kθi s
2
θi
− σisisgn sið Þ − σθi sθisgn sθi

À Á
þεisi þ εθi sθi :

ð43Þ

Selecting the robust gains in Equation (43) such that

σi ≥ εij j þ ρi
σθi ≥ εθi

�� ��þ ρθi
: ð44Þ

Equation (43) becomes the following:

V̇ i ≤ −kis2i − bis2θi − kθi s
2
θi
− ρisi − ρθi sθi : ð45Þ

This completes the proof. □
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3.2.2. Cascade Position-Joint Torque Control. In this section,
a different strategy is developed to track and stabilize the
motion of flexible-joint bipedal robots. The same control
laws developed in Equations (29a) and (29c) are used; how-
ever, the difference lies in computing the required angular
velocity of the motor. The key idea is to integrate a torque
error in the required velocity of the motor. Thus, the desired
angular velocity of the motor is computed via

bcvi θ̇di − q̇ri

� �
þ bksi θdi − qdi

À Á¼ τtdi ; ð46Þ

while the required motor velocity is determined as follows:

θ̇ri ¼ θ̇di þ λti τ tdi − τ ti
À Á

; ð47Þ

where λti is a constant gain and

τ tdi − τ ti
À Á¼ τtdi − τti

1þ ωis
; ð48Þ

with ωi is a cutoff frequency and s denoting the Laplace
variable. The following theorem proves the stability of the
proposed control structure:

Theorem 3. The dynamics of link-joint subsystems in
Equations (28a)–(28d), and the control laws described in
Equations (31a), (46)–(48) with associated update adaptive
laws in Equations (33a) and (33b) and the corresponding

closed-loop dynamics presented in Equations (32a) and (32b) is
stable in view of L2 and L1 stability introduced in Lemma 1 if

μdi ¼ μi; ð49aÞ

and

bksi ¼ Φki θdi − qri
À Á

θ̇di − θ̇ i
À Á

− q̇ri − q̇i
� �h i

bcvi ¼ Φci θ̇di − q̇ri

� �
θ̇di − θ̇ i
À Á

− q̇ri − q̇i
� �h i: ð49bÞ

Proof. Consider the following Lyapunov’s like-function for
the link-joint subsystem

Vi ¼ Vli þ Vji ; ð50aÞ

with

Vli ¼
1
2
miis2i þ

1
2
ewT
mi
Φ−1

mi
ewmi

þ 1
2
ewT
ciΦ

−1
ci ewci þ

1
2
ewT
Δi
Φ−1

Δi
ewΔi

;

ð50bÞ

Vji ¼
1
2
Imis2θi þ

1
2
ewT
Imi
Φ−1

Imi
ewImi

þ 1
2
ewT
bi
Φ−1

bi
ewbi þ

1
2
ewT
γiΦ

−1
γi ewγi þ

λti
2
ωi τtdi − τti
À Á

2

þ 1
2

ek2si
αsi

þ 1
2

ec2vi
αci

þ 1
2
ksi θdi − θi

À Á
− qri − qi
À ÁÂ Ã

2:
ð50cÞ

By taking the time derivative of Equation (50b) and
substituting Equation (32a) into it, we obtain the following:

V̇ li ¼
1
2

ṁii − 2ciið Þs2i − kis2i þ si τtdi − τti
À Á

− σisisgn sið Þ þ εisi − ewT
mi

Φ−1
mi
ḃwmi

þ φmi
q̈ri si

� �
− ewT

ci φci q̇ri si þ Φ−1
ci ḃw ci

� �
− ewT

Δi
φΔi

si þ Φ−1
Δi
ḃwΔi

� �
:

ð51Þ

Using the passivity property with the adaptive laws in
Equation (33a), Equation (51) becomes the following:

V̇ li ¼ −kis2i þ si τtdi − τti
À Á

− σisisgn sið Þ þ εisi: ð52Þ

In a similar manner, taking the time derivative for
Equation (50c) and substituting Equation (32b) into it to
get the following:
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V̇ ji ¼ −bis2θi − kθi s
2
θi
− sθi τtdi − τti

À Á
− σθi sθisgn sθi

À Á
þ εθi sθi − ewT

Ii
Φ−1

Imi
ḃw Imi

þ φImi
θ̈ri sθi

� �
− ewT

bi
φbi θ̇ri sθi þ Φ−1

bi
ḃw bi

� �
− ewT

δi
φγi sθi þ Φ−1

γi ḃw γi

� �
þ λtiωi τtdi − τti

À Á
τ̇ tdi − τ̇ ti
À Á

−

eksiḃksi

αki
−
ecviḃcvi
αci

:

ð53Þ

Substituting Equation (33b) into the above equation
results in the following:

V̇ ji ¼ −bis
2
θi
− kθi s

2
θi
− sθi τtdi − τti

À Á
− σθi sθisgn sθi

À Áþ εθi sθi

þ λtiωi τtdi − τti
À Á

τ̇ tdi − τ̇ ti
À Á

−

eksi ḃksi

αki
−
ecviḃcvi
αci

:

ð54Þ

Thus, the time-derivative of Equation (50a) becomes the
following:

V̇ i ¼ −kis2i þ si τtdi − τti
À Áþ εisi − σisisgn sið Þ − bis2θi − kθi s

2
θi
− sθi τtdi − τti

À Á
−σθi sθisgn sθi

À Áþ εθi sθi þ λtiωi τtdi − τti
À Á

τ̇ tdi − τ̇ ti
À Á

−

eksi ḃksi

αki
−
ecviḃcvi
αci

:
ð55Þ

However,

si τtdi − τti
À Á

− sθi τtdi − τti
À Á

¼ − λti τtdi − τti
À Á

2
− λtiωi τ̇ tdi − τ̇ ti

À Á
τ tdi − τ ti
À Á

þecvi θ̇di − q̇ri

� �
θ̇di − θ̇ i
À Á

− q̇ri − q̇i
� �h i

þ eksi θdi − qri
À Á

θ̇di − θ̇ i
À Á

− q̇ri − q̇i
� �h i

−cvi θ̇di − θ̇ i
À Á

− q̇ri − q̇i
� �h i

2
− ksi θdi − θi

À Á
− qri − qi
À ÁÂ Ã

θ̇di − θ̇ i
À Á

− q̇ri − q̇i
� �h i

:

ð56Þ

Substituting Equation (56) into Equation (55) and using
Equation (34b) results in the following:

V̇ i ¼ −kis2i − bis2θi − kθi s
2
θi
− σisisgn sið Þ − σθi sθisgn sθi

À Á
þεisi þ εθi sθi :

ð57Þ

Selecting the robust gains in Equation (57) such that

σi ≥ εij j þ ρi
σθi ≥ εθi

�� ��þ ρθi
: ð58Þ

Equation (57) becomes the following:

V̇ i ≤ −kis2i − bis2θi − kθi s
2
θi
− ρisi − ρθi sθi : ð59Þ

This completes the proof. □

4. Results and Discussions

The section focuses on making several simulation experi-
ments to investigate the validation of the proposed control
architecture on a planar 6-link bipedal robot depicted in
Figure 3 with physical parameters shown in Table 1. Four
control levels are designed to stabilize bipedal walking:
design of desired walking patterns, stabilization controller,
inverse-kinematics control, and tracking control of desired
joint trajectories. The desired walking patterns are selected
based on a previous work [88] that proposes an algorithm to
tune walking parameters to satisfy kinematic and dynamic
constraints, such as singularity conditions at the knee joint,
ZMP, and unilateral contact constraints, whereas an alge-
braic inverse kinematics algorithm is used for capturing
the desired joint trajectories [31]. The simulation experi-
ments are focused on stabilization and tracking controls.
Figure 4 shows the stick diagram for the target biped in
the SSP, where the desired COM and swing foot trajectories
are developed according to Al-shuka et al. [88].
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4.1. Stabilization Control. In this subsection, several experi-
ments are implemented to investigate the effectiveness of the
proposed stabilization controller suggested in Section 3.1. As
was already indicated, the COM serves as the stabilization
control law’s output variable and the ZMP serves as the
control input. A constrained control should be considered
due to the limits of the ZMP within the stance sole in the SSP.
To highlight the strength of the proposed adaptive CTC, a
comparison study is performed with the classical PID con-
troller, considering the input saturation (Figure 5). The feed-
back gains used are selected, as shown in Table 2.

The desired COM reference with COM position error
is shown in Figure 5. The control algorithm proposed in
Section 3.1 is performed considering the control input satu-
ration. The control input signal for the ZMP is shown in
Figure 6 with and without saturation. The evolution of the
ZMP signal with saturation input is necessary to avoid
exceeding the stability margin limited by the support sole
in the SSP. A simple comparative study with the PID con-
sidering the saturation effect is performed, and the superior
of our control algorithm is clear concerning the COM posi-
tion error.

4.2. Tracking Low-Level Control. This subsection is focused
on low-level tracking control for the trajectories of the biped
joints. A 6-link bipedal robot with full actuation is tested.
The biped is provided with flexible joints that complicate the
control problem. As discussed in Section 3.2, two control

methods are proposed: AAC-based position control and
AAC-based cascade position-torque control. A comparison
study is implemented to test the features of the proposed two
control methods. The control gains are listed in Table 3.
Figure 7 shows the position error for the proposed control
methods, while Figure 8 shows the control inputs with satu-
rated signals with torque limits Æ150 N:m. The AAC-based
position control provides more precise tracking than the
cascade position-torque method. This occurs since the tor-
que control has noisy torque signals with higher orders.

5. Conclusions

This work proposes a multilevel control architecture for a
bipedal robot governed by the ZMP balance criteria. The
joint flexibility is considered complicating the control prob-
lem. Two-level control scheme is proposed: stabilization
(balance control) and tracking joint control. The proposed
stabilizer includes designing an adaptive CTC based on the
function approximation technique, whereas two control
methods are proposed for tracking the motion of the

0
–0.6 –0.4 –0.2 0

x-axis (m)
0.2 0.4 0.6

0.2

0.4

0.6z-
ax

is 
(m

) 0.8

1

1.2

1.4

FIGURE 4: Stick diagram for the simulated biped with desired COM
and swing foot references.

–0.015
0 0.05 0.1 0.15 0.2

Time (s)
0.25 0.3 0.35 0.4 0.45

COM position error—PID
COM position error—CTC

0.5

–0.01

–0.005

0

0.005

CO
M

 p
os

iti
on

 er
ro

r (
m

)

0.01

0.015

0.02

0.025

0.03

FIGURE 5: Position error for the COM trajectory using two control
strategies.

TABLE 1: Physical parameters of the bipedal robot.

Bipedal
parts

Moments of inertia
(kgm2)

Lengths
(m)

Masses
(kg)

Foot 0.016 0.3 2
Shank 0.06 0.45 3.6
Thigh 0.06 0.45 3.7
Trunk 0.145 0.45 10

TABLE 2: Gains parameters used for simulation of stabilization
control.

Control method Gain values

CTC

β¼ 11, Kp= 20, Kd= 70, Ψ I ¼ I11;
Ψα ¼ 50I11;Ψδ ¼ 50I11, Q¼ I2,

P¼ 1:9179 0:0071
0:0071 0:0254

� �
:

PID
Proportional gain (p)= 14, integral gain
(I)= 60, derivative gain (D)= 1, filter

coefficient (N)= 754∗

∗A low-pass filter with a time constant of (1/N) is added to the derivative
term to filter out the noise.
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flexible-joint bipedal robot: position control and cascade
position-torque control. The control architecture can be
extended to deal with high-level motion planning and
inverse kinematic control. The following points are investi-
gated in future work:

(1) Future research will focus on 3D locomotion, inverse
kinematics, and motion planning, incorporating
camera sensor integration, obstacle avoidance, and
redundancy in high-level control with real-time
experiments.

(2) Whole-body control with input saturations.
(3) Flexible joints with variable impedance or stiffness.
(4) Integrating the angular momentum with the stabili-

zation controller.
(5) The effect of trunk and upper-limb parts on balanc-

ing the robot.

Appendix

Proof of Lemma 1. Reformulate Equation (17) as follows:

y tð ÞTPy tð Þ ≤ −V̇ − σ tð Þ: ðA:1Þ

Integrate (A1) results in the following:Z 1

0
y tð ÞTPy tð Þdt ≤ −

Z 1

0
V̇ dt −

Z 1

0
σ tð Þdt; ðA:2Þ

≤V 0ð Þ − V 1ð Þ þ ρ; ðA:3Þ

≤V 0ð Þ þ ρ; ðA:4Þ

which indicates yðtÞ : 2 L2.

TABLE 3: Control gains.

Control method∗ Gain values

AAC-based position control
ki ¼ 200, kθi ¼ 150, Φmi ¼Φci ¼ΦImi

¼Φbi ¼ I11, ΦΔi
¼ 100I11;Φγi ¼ 75I11;

λi ¼ 5; λθi ¼ 200;Φki = 50

AAC-based cascade position-torque control
ki ¼ 70, kθi ¼ 150, Φmi ¼Φci ¼ΦImi

¼Φbi ¼ I11, ΦΔi
¼ 100I11;Φγi ¼ 75I11;

λi ¼ 5; λti ¼ 500;ωi ¼ 0:05;Φki = 50
∗1. The approximation modeling error is assumed to be zero, and hence, the robust gains are neglected. 2. The damping coefficient in the flexible elements is set
to zero.
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By integrating Equation (17) and applying Equation (18),
it yields VðtÞ : ≤Vð0Þ : þ ρ; 8t>0; which indicates that VðtÞ: 2
L1 holds. Define a¼ λminðQÞ :. Based on Equation (16), it can
be concluded that

x tð Þk k2 ≤ 2V
a

<1: ðA:5Þ

holds for t> 0, yielding xðtÞ : 2 L1. □

Abbreviations

AAC: Adaptive approximation control
COM: Center of mass
COP: Center of pressure
CTC: Computed torque control
DOF: Degrees-of-freedom
DSP: Double-support phase
E–L: Euler–Lagrange
ISS: Input-to-state stability
LQR: Linear quadratic regulator
PAAC: Position-based adaptive approximation control
PD: Proportional derivative control
PID: Proportional–integral–derivative control
PTAAC: Position-torque adaptive approximation control
SMC: Sliding mode control
SSP: Single-support phase
VDC: Virtual decomposition control
ZMP: Zero moment point.
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