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This paper empirically shows that the effect of applying selected feature subsets on machine learning techniques significantly
improves the accuracy for solar power prediction. Experiments are performed using five well-known wrapper feature selection
methods to obtain the solar power prediction accuracy of machine learning techniques with selected feature subsets. For all the
experiments, the machine learning techniques, namely, least median square (LMS), multilayer perceptron (MLP), and support
vector machine (SVM), are used. Afterwards, these results are compared with the solar power prediction accuracy of those same
machine leaning techniques (i.e., LMS, MLP, and SVM) but without applying feature selection methods (WAFS). Experiments
are carried out using reliable and real life historical meteorological data. The comparison between the results clearly shows that
LMS, MLP, and SVM provide better prediction accuracy (i.e., reducedMAE andMASE) with selected feature subsets than without
selected feature subsets. Experimental results of this paper facilitate to make a concrete verdict that providing more attention and
effort towards the feature subset selection aspect (e.g., selected feature subsets on prediction accuracy which is investigated in this
paper) can significantly contribute to improve the accuracy of solar power prediction.

1. Introduction

Feature selection can be considered one of the main pre-
processing steps of machine learning [1]. Feature selection is
different from feature extraction (or feature transformation),
which creates new features by combining the original features
[2]. The advantages of feature selection are manyfold. First,
feature selection significantly saves the operating time of
a learning procedure by eliminating irrelevant and redun-
dant features. Second, without the intervention of irrel-
evant, redundant, and noisy features, learning algorithms
can centrally point on most essential features of data and
build simpler but more precise data models. Third, feature
selection can help build a simpler and more common model
and get a better insight into the fundamental perception
of the task [3–5]. The feature selection aspect is fairly
significant for the reason that with the same training data,
it may happen that an individual regression algorithm can
perform better with different feature subsets. The success
of machine learning on a particular task is affected by

many factors. Among those factors first and foremost is
the representation and quality of the instance data [6].
The training stage becomes critical with the existence of noisy,
irrelevant, and redundant data. Sometimes, the real life data
contain too much information; among those, very little is
useful for desired purpose. Therefore, it is not important to
include every piece of information from the raw data source
for modelling.

Usually, features are differentiated [7] as

(1) relevant: this class of features has strong impact on the
output;

(2) irrelevant: opposite to relevant features, irrelevant fea-
tures do not have any bias on the output;

(3) redundant: a redundancy occurs when a feature cap-
tures the functionality of other;

All the algorithms to perform feature selection consist of two
common aspects. One is the search method which is actually
a selection algorithm to generate designed feature subsets
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Figure 1: Key sequences of feature selection.

and attempts to reach the most advantageous ones. Another
aspect is called evaluator which is basically an evaluation
algorithm to make a decision about the goodness of the
planned feature subset and finally returns the assessment
about righteousness of the search method [8]. On the other
hand, lacking an appropriate stopping condition, the feature
selection procedure could run exhaustively or everlastingly
all theway throughout the rawdataset. Itmay be discontinued
whenever any attribute is inserted or deleted but ultimately
not producing a better subset or whenever a subset is
produced which provides the maximum benefits according
to some assessing functions. A feature selector may stop
manipulating features when the merit of a current feature
subset stops improving or conversely does not degrade. A
usual feature selection procedure revealed in Figure 1 consists
of four fundamental steps: (A) subset generation; (B) subset
evaluation; (C) stopping criterion; and (D) result validation
[9].The procedure begins with subset generation that utilizes
a definite search strategy to generate candidate feature sub-
sets. Then, each candidate subset is evaluated according to a
definite evaluation condition and comparedwith the previous
best one. If it is better, it replaces the previous best. The
process of subset generation and evaluation is repetitive until
a given stopping condition is satisfied. Finally, the selected
best feature subset is validated by some test data. Figure 1
graphically demonstrates the previous mentioned steps and
procedures of feature selection process.

Based on some evaluation functions and calculations,
feature selection methods find out the best feature from
different candidate subsets. Usually, feature selection meth-
ods are classified into two general groups (i.e., filter and
wrapper) [10]. Inductive algorithms are used by wrapper
methods as the evaluation function whereas filter methods
are independent of the inductive algorithm. Wrapper meth-
ods work along wrapping the feature selection in conjunction
with the induction algorithm to be used, and to accomplish
this wrapper methods use cross validation. With the same
training data, it may happen that individual regression algo-
rithm can perform better with different feature subsets [11].
Widely used wrapper selection methods are briefly discussed
in the following section. Section 3 deals with real life data
collection and analysis of the dataset. Sections 4 and 5 show
the experimental results using machine learning techniques
and selected feature subsets. Comparison of the results and
graphical presentation of those results are presented in those
two sections. Section 6 demonstrates the performance of
those obtained prediction results by paired 𝑡-tests.The results

from the experiments demonstrate that LMS, MLP, and SVM
supplied with selected feature subsets provide better predic-
tion accuracy (i.e., reducedMAE andMASE) than when they
are without the selected feature subsets. Concluding remarks
are provided in final section of this paper.

2. Wrapper Methods of Feature Selection

In the field of machine learning, the feature subset selection
that is also named as attribute subset selection, variable selec-
tion, or variable subset selection is an important method that
helps to select an appropriate subset of significant features
for model development. In machine learning based advanced
and sophisticated applications (e.g., solar power prediction),
feature selection methods have become an obvious need.
Generally, feature selection methods are categorised into
three different classes [3, 12]: filter selection methods select
feature subsets as a preprocessing act, autonomously of
the selected predictor; wrapper selection methods exploit
the predictive power of the machine learning technique to
select suitable feature subsets; and to conclude, embedded
selection methods usually select feature subsets in the course
of training. Wrapper methods were used for the experiments
in this paper. Therefore, in the subsequent section, widely
used and accepted wrapper methods are placed.

The wrapper methods use the performance (e.g., regres-
sion, classification, or prediction accuracy) of an induction
algorithm for feature subset evaluation. Figure 2 shows the
ideas behind wrapper approaches [3]. For each generated
feature subset 𝑆, wrappers evaluate its goodness by applying
the induction algorithm to the dataset using features in subset
𝑆. Wrappers can find feature subsets with high accuracy
because the features match well with the learning algorithms.

The easiest method among all the wrapper selection
algorithms is the forward selection (FS). This method starts
the procedurewithout having any feature in the feature subset
and follows a greedy approach so that it can sequentially
add features until no possible single feature addition results
in a higher valuation of the induction function. Backward
elimination (BE) begins with the complete feature set and
gradually removes features as long as the valuation does
not degrade. Description about forward selection (FS) and
backward selection (BS) can be found in [13] where the
authors proved that wrapper selection methods are better
than methods having no selection.

Starting with an empty set of features, the best first search
(BFS) produces every possible individual feature extension
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[3]. BFS exploits the greedy hill climbing approach in con-
junction with backtracking to search the space of feature
subsets. BFS has all the flexibility to start with an empty subset
and search in forward direction. Alternatively, it can start
having full set of attributes and search in backward direction
or it can start randomly from any point and move towards
any direction. Extension of the BFS is the linear forward
selection (LFS). A limited number of attributes 𝑘 are taken
into consideration by LFS. This method either selects the top
𝑘 attributes by initial ordering or it can carry put a ranking
[14, 15].

Subset size forward selection (SSFS) is the extension of
LFS. SSFS carries out an internal cross validation. An LFS is
executed on every fold to find out the best possible subset
size [15, 16]. Through the individual evaluations, attributes
are ranked by the ranker search. It uses this search in
combination with attribute evaluators [16].

GA performs a search using the simple genetic algorithm
described in Goldberg’s study [17]. Genetic algorithms are
random search techniques based on the principles of natural
selection [17]. They utilize a population of competing solu-
tions evolved to an optimal solution. For feature selection,
a solution is a fixed length binary sequence representing
a feature subset. The value of each position—typically 1 or
0—in the sequence represents the presence or absence of
a particular feature, respectively. The algorithm proceeds
in an iterative manner where each successive generation is
produced by applying genetic operators to the members of
the current generation. Nonetheless, GAs naturally involves a
huge quantity of evaluations or iterations to achieve optimal
solution. Other than all these conventional methods, we have
experimentally verified an unconventional approach. In this
method, we calculated the correlation coefficient for each
(except the target attribute) of the competing attributes with
respect to the target attribute of the used dataset. For this
purpose, we used Pearson’s correlation coefficient formula
which is described in the next section. After the attribute wise
calculation, we selected those attributes whose correlation
coefficient values are positive only as feature subset. The
attributes having negative correlation coefficient are ignored

for this case. We named this method positive correlation
coefficient selection (PCCS) [18].

3. Real Life Data Collection and Analysis

One of the key conditions to successfully perform the experi-
ments of this paper is to collect recent, reliable, accurate, and
long-term historical weather data of the particular location.
However, finding accurate multiyear data near the experi-
ment site has always proved to be challenging because these
data are not readily available due to the cost and difficulty
in measurement [19]. There are only few sites in Australia
providing research-quality data of solar radiation; so, these
data are generally not available. Rockhampton, a subtropical
town in North Australia, was chosen for the experiments of
this research. The selected station is “Rockhampton Aero,”
having latitude of −23.38 and longitude of 150.48. According
to the Renewable Energy Certificates (RECs) zones within
Australia, Rockhampton is identified within the most impor-
tant zone [20]. The recent data were collected from Com-
monwealth Scientific and Industrial Research Organization
(CSIRO), Australia.

Data were also collected from the Australian Bureau of
Meteorology (BOM), the National Aeronautics and Space
Administration (NASA), and the National Oceanic and
Atmospheric Administration (NOAA). All of this mission-
critical information on solar radiation was being estimated
from cloud cover and humidity at airports. Free data are avail-
able from National Renewable Energy Laboratory (NREL)
and NASA. These are excellent for multiyear averages but
perform poorly for hourly and daily measurements. After
analyzing the raw data collected from different sources, the
data provided by CSIRO were finally selected. The data used
in this paper are based on hourly global solar irradiance
ground measurements which are a significant aspect of the
dataset. These data were gathered for a period of five years
from 2006 to 2010.

The attributes in the used dataset are average air temper-
ature, average wind speed, current wind direction, average
relative humidity, total rainfall, wind speed, wind direction,
maximum peak wind gust, current evaporation, average
absolute barometer, and average solar radiation. Table 1 rep-
resents the statistical properties of the raw data.

4. Applying Feature Selection Techniques on
the Dataset

All the research works related to solar radiation prediction
select the input features or attributes randomly. Unlike
the conventional way, this research experimented with the
maximumnumber of features and found out the best possible
combination of features for the individual learning models of
the hybrid model. To perform the experiments for selecting
significant feature subsets for individual machine learning
technique, the traditional BFS, LFS, SSFS, ranker search, GS,
and our very own PCCS selection methods are used. To
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Table 1: Statistical description of the raw data set.

Min. Max. Mean Std. dev
Avg. air temp. (DegC) −5.8 40.1 20.47 6.99
Avg. wind speed (Km/h) 0 27.1 6.99 4.78
Current wind dir. (Deg) 0 359 158.91 103.66
Avg. relative humidity (%) 0 100 55.11 24.26
Total rainfall (mm) 0 30.4 0.07 0.69
Wind speed (Km/h) 0 24.83 5.77 4.38
Wind direction (Deg) 0 360 169.91 109.84
Max. peak wind gust (Km/h) 0 106 20.45 11.33
Current evaporation (mm) −1.36 1.36 0.31 0.28
Avg. abs. barometer (hPa) 921 1020 966.59 12.09
Solar radiation (W/m2) 1 1660 300.75 325.17

carry out experiments, three algorithms for machine learn-
ing technique, namely, least median square [21], multilayer
perceptrons [22], and support vector machine [23], are used.

Evaluating the degree of fitness, that is, how well a
regressionmodel fits to a dataset, is usually obtained by corre-
lation coefficient. Assuming the actual values as 𝑎
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To find out the correlation coefficient of the model, the full
training set is partitioned into ten mutually exclusive and
same-sized subsets. The performance of the subset depends
on the accuracy of predicting test values. For every individual
algorithm, this cross validation method was run over ten
times, and finally, the average value for 10 cross validations
was calculated. In 𝑘-cv, a dataset 𝑆
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where 1(𝑖, 𝑗) = 1 if and only if 𝑖 ̸= 𝑗 and equal to zero
otherwise. So, the 𝑘-cv error estimator is the average of the
errors made by the classifiers 𝜓
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𝑃
𝑖
.

According to Zheng and Kusiak in [24], the mean abso-
lute error (MAE) and mean absolute percent error (MAPE)
are used to measure the prediction performance; we have
also used these evaluation metrics for our experiments. The
definitions are expressed as

MAE =
∑
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where PE = (𝐸/𝑎) ∗ 100, 𝐸 = (𝑎 − 𝑝), 𝑎 = actual values,
𝑝 = predicted values, and 𝑛 = number of occurrences.

Error of the experimental results was also analyzed
according to mean absolute scaled error (MASE) [25]. MASE
is scale free, less sensitive to outlier; its interpretation is very
easy in comparison to other methods and less variable to
small samples. MASE is suitable for uncertain demand series
as it never produces infinite or undefined results. It indicates
that the predictionwith the smallestMASEwould be counted
the most accurate among all other alternatives [25]. Equation
(5) states the formula to calculate MASE as
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4.1. Prediction of the Machine Learning Techniques Using
the Selected Feature Subsets. Various feature subsets were
generated or selected using different wrapper feature selec-
tion methods. Afterwards, six-hours-ahead solar radiation
prediction by the selected machine learning techniques,
namely, LMS, MLP, and SVM, was performed. For this
instance, the selected feature subsets were supplied to the
individual machine learning techniques.The intention of this
experiment was to observe whether this initiative produces
any improvement in the error reduction of those selected
machine learning techniques or not. For these experiments,
any tuning of the particular algorithms to a definite dataset
was avoided. For all the experiments, default values of
learning parameters were used. In general, in the following
tables, one can see the CC, MAE, MAPE, and MASE of six-
hours-ahead prediction for each machine learning technique
supplied with different feature subsets. For all the experi-
ments, “W” is used to indicate that a particular machine
learning technique supplied with the selected feature subsets
statistically outplays the one without applying feature selec-
tion (WAFS) methods.

Tables 2 and 3 represent the obtained CC and MAE for
applying LMS, MLP, and SVM machine learning technique
for six hours in advance prediction on the used dataset before
and after feature selection process.

In Tables 4 and 5, theMAPE andMASE are shown before
and after feature selection processes are applied to LMS,MLP,
and SVMmachine learning technique for the same purpose.
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Table 2: Achieved CC after applying various wrapper selection methods on LMS, MLP, and SVM.

WAFS BFS LFS SSFS Ranker GS PCCS
LMS 0.95 0.96 0.96 0.96 0.96 0.96 0.97 W
MLP 0.98 0.97 0.97 0.98 0.99 W 0.97 0.98
SVM 0.96 0.96 0.96 0.96 0.97 W 0.96 0.96

Table 3: Achieved MAE after applying various wrapper selection methods on LMS, MLP, and SVM.

WAFS BFS LFS SSFS Ranker GS PCCS
LMS 77.19 76.81 74.49 74.12 74.93 87.53 73.37 W
MLP 91.02 168.34 222.73 119.11 84.31 W 288.83 110.57
SVM 126.88 123.46 129.51 123.42 122.12 W 125.59 124.52

Table 4: Achieved MAPE after applying various wrapper selection methods on LMS, MLP, and SVM.

WAFS BFS LFS SSFS Ranker GS PCCS
LMS 17.65 19.53 17.08 17.04 16.93 17.49 16.82 W
MLP 20.17 50.53 41.83 23.46 17.87 W 32.83 21.50
SVM 21.72 21.53 22.35 21.35 20.88 W 21.35 21.65

Table 5: Achieved MASE after applying various wrapper selection methods on LMS, MLP, and SVM.

WAFS BFS LFS SSFS Ranker GS PCCS
LMS 0.63 0.71 0.61 0.60 0.61 0.62 0.59 W
MLP 0.74 2.35 1.81 0.97 0.68 W 1.37 0.90
SVM 1.03 1.02 1.05 1.00 0.99 W 1.00 1.01

The results from the experimental results show that the
PCCS is somewhat a superior feature selection method for
LMS algorithm considering all the instances. It is noticeable
that all the feature selection methods contributed to improve
the CC of LMS algorithm. However, in the case of MAE, all
the selection algorithms except the GS improve the results
for LMS. In both the case of MAPE and MASE, BFS is the
only selectionmethod which does not improve the results for
LMS. It is found from those results that the ranker search
is to some extents superior feature selection method for
MLP algorithm. It is noticeable that all the feature selection
methods present a nearly close CC for MLP algorithm but
in the case of MAE, MAPE, and MASE, ranker search is the
only selectionmethodwhich improves the results. Finally, the
obtained results illustrate that again the ranker search is to
some extent a superior feature selectionmethod for SVM. It is
also noticeable that all the feature selection methods present
either nearly close or equal CC for SVM.However, in the case
of MAE, MAPE, and MASE, LFS is the only one which is
unable to improve the results for SVM.

5. Prediction Results: Before versus after
Applying the Feature Selection Techniques

In Table 6, the prediction errors (MAE and MASE) of the
individual machine learning techniques are compared on the
basis of before supplying selected feature subsets and after
supplying selected feature subsets on them. The comparative
results show that errors are reduced for all the instances after
supplying selected feature subsets. The terms MAE BEFORE

and MASE BEFORE represent the results for having no
selected feature subsets for MAE and MASE, respectively,
whereas the terms MAE AFTER and MASE AFTER repre-
sent the results having selected feature subsets for MAE and
MASE, respectively.

Figure 3(a) graphically demonstrates the prediction accu-
racy comparison of LMS, MLP, and SVM before and
after applying selected feature subsets in terms of MAE.
Figure 3(b) graphically demonstrates the prediction accuracy
comparison of LMS,MLP, and SVMbefore and after applying
selected feature subsets in terms of MASE.

Figure 4(a) graphically illustrates the significance of
applying and without applying (WAFS) various feature selec-
tionmethods on LMS in terms of CC. Figure 4(b) graphically
illustrates the significance of applying and without applying
(WAFS) feature selection methods onMLP in terms of MAE.
In both the cases, results are improved after applying selected
feature subsets.

Figure 5 graphically illustrates the significance of apply-
ing and without applying (WAFS) feature selection methods
on SVM in terms of MAPE. The graphical representation
clearly shows that the result is improved in terms of MAPE
after applying selected feature subsets.

6. Performance Analysis through
Statistical Tests

A statistical test provides a mechanism for making quanti-
tative decisions about a process or processes. The intention
is to determine whether there is enough evidence to “reject”
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Table 6: Error measurements of the top most three decisive regression algorithms’ prediction accuracy with feature selection.

MAE before MAE after MASE before MASE after Rank
LMS 77.19 73.37 0.63 0.59 1
MLP 91.02 84.31 0.74 0.68 2
SVM 126.88 122.11 1.03 0.99 3
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Figure 3: MAE (a) and MASE (b) comparison of LMS, MLP, and SVM before and after feature selection process.
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Table 7: Paired samples statistics.

Mean 𝑁 Std. deviation Std. error mean
Pair 1

Actual data 639.17 6 177.41 72.43
LMS prediction 712.54 6 107.25 43.78

Pair 2
Actual data 639.17 6 177.41 72.43
MLP prediction 584.77 6 263.11 107.41

Pair 3
Actual data 639.17 6 177.41 72.43
SVM prediction with RBF kernel 504.13 6 209.35 85.47

Pair 4
Actual data 639.17 6 177.41 72.43
SVM prediction with poly kernel 517.05 6 183.19 74.79

Table 8: Paired samples correlations.

𝑁 Correlation Sig.
Pair 1

Actual data & LMS prediction 6 0.967 0.002
Pair 2

Actual data & MLP prediction 6 0.985 0.000
Pair 3

Actual data & SVM prediction with RBF kernel 6 0.961 0.002
Pair 4

Actual data & SVM prediction with poly kernel 6 0.962 0.002

an inference or hypothesis about the process. For a single
group, themeans of two variables are usually compared by the
paired-samples 𝑡-test. It considers the differences between the
values of two variables in a case-by-case basis and examines
whether the average varies from 0 or not. It carries out
various types of outputs such as statistical description for
the test variables, the correlation among the test variables,
meaningful statistics for the paired differences, the 𝑡-test
itself, and a 95% confidence interval. The paired-samples 𝑡-
tests are carried out in order to justify whether any significant
difference exists between the actual and predicted results
achieved by the selected three machine learning techniques
for ensemble method. The 𝑡-test is executed with the SPSS
package—PASW Statistics 20 [26]. In this paper, the paired
𝑡-test is employed to verify the performance of the machine
learning techniques used in the experiments. Here, the null
hypothesis and the alternative hypothesis are termed as 𝐻

0

and 𝐻
𝑎
, respectively, where 𝐻

0
means there is no significant

difference between the actual and predicted mean values,𝐻
𝑎

means there is significant difference between the actual and
predicted mean values.

In Tables 7, 8, and 9, the paired samples statistics, the
paired sample correlations, and paired samples tests for the
actual and predicted values of LMS, MLP, and SVM are
represented, respectively. Observing Table 9, we find that for
pair 1, 𝑡(5) = −2.28, 𝑃 > 0.0001; for pair 2, 𝑡(5) = 1.43,
𝑃 > 0.0001; for pair 3, 𝑡(5) = 5.28, 𝑃 > 0.0001; and for pair 4,
𝑡(5) = 5.99, 𝑃 > 0.0001. Due to the means of the actual and

predicted values of each pair and the direction of the 𝑡 values,
it can be concluded that there was no statistically significant
difference between actual and predicted values for all the
cases. Therefore, the test failed to reject the null hypothesis
𝐻
0
.

7. Conclusions

Feature selection is a fundamental issue in both the regression
and classification problems especially for the dataset having a
very high volume of data. Applying feature selectionmethods
on machine learning techniques may significantly contribute
to increase performance in terms of accuracy. In this paper,
various methods of feature selection methods have been
briefly described. In particular, the wrapper feature selection
methods are found better, which is also justified by the results
obtained from the experiments performed in this paper.
From the experiments performed in this paper, it is found
that for LMS, the MAE before and after applying selected
feature subsets is 77.19 and 73.37, respectively, and MASE
0.63 and 0.59, respectively. In the case of MLP, the MAE
before and after applying selected feature subsets is 91.02 and
84.31, respectively, andMASE 0.74 and 0.68, respectively. For
SVM, the MAE before and after applying selected feature
subsets is 126.88 and 122.11, respectively, and MASE 1.03 and
0.99, respectively.The comparison between the results clearly
shows that LMS, MLP, and SVM provide better prediction
accuracy (i.e., reducedMAE andMASE)with selected feature
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Table 9: Paired samples test.

Paired differences

𝑡 df Sig. (2-tailed)
Mean Std. deviation Std. error mean

95% confidence interval of
the difference

Lower Upper
Pair 1

Actual data - LMS
prediction −73.37 78.62 32.09 −155.88 9.14 −2.28 5 0.071

Pair 2
Actual data - MLP
prediction 54.39 93.47 38.16 −43.69 152.48 1.43 5 0.213

Pair 3
Actual data - SVM
prediction with
RBF kernel

135.04 62.63 25.57 69.31 200.76 5.28 5 0.003

Pair 4
Actual data - SVM
prediction with
poly kernel

122.11 49.95 20.39 69.69 174.53 5.99 5 0.002

subsets than without selected feature subsets. Experimental
results of this paper facilitate to make a concrete verdict
that providing more attention and effort towards the feature
subset selection aspect (e.g., selected feature subsets on
prediction accuracy which is investigated in this paper) can
significantly contribute to improve the accuracy of solar
power prediction.

It is mentionable that for these experiments, the machine
learning techniques were applied with the default learning
parameter settings. In the near future, the new experiments
will be performed with the intention to achieve better pre-
diction accuracy of the selected machine learning techniques
by applying both the optimized or tuned learning parameter
settings and selected feature subsets on them.

Nomenclature

𝑎
𝑖
: Actual values

𝐻
𝑎
: Alternative hypothesis

𝐶: Class attribute; 𝐶 ∈ {1, . . . , 𝑟}

𝑇
𝑖
= 𝑆
𝑛
/𝑃
𝑖
: Complement dataset of 𝑃

𝑖

cv: Cross validation
𝑃
𝑖
: Divisions

𝑘-cv: Error estimator
𝐴(⋅): Induction algorithm
M: Mean
𝐻
0
: Null hypothesis

𝑘: Number of folds
𝑁: Number of instances
𝑃: Set of 𝑛 points
𝑆: Standard deviation
𝑆
𝑛
: Training set

𝑃: Two-tailed significance value
𝑟
𝑖
: Unknown errors or residuals

𝑥: Unlabeled instance.

Greek Symbols
Ψ
𝑖
: Classifiers

𝜉
𝑘
: Randomized error estimator

𝛼: Significance level = 0.05.

Abbreviations

BOM: Bureau of meteorology
BE: Backward elimination
BS: Backward selection
BFS: Best first search
CSIRO: Commonwealth Scientific and Industrial

Research Organization
CC: Correlation coefficient
Deg: Degree
DegC: Degree Celsius
FCBF: Fast correlation-based feature selection
FS: Forward selection
GA: Genetic algorithm
GS: Genetic search
hPa: Hectopascals
Km/h: Kilometer per hour
LFS: Linear forward selection
LMS: Least median square
MAE: Mean absolute error
MASE: Mean absolute scaled error
MAPE: Mean absolute percent error
MLP: Multilayer perceptron
PASW: Predictive analytic software
RECs: Renewable energy certificates
mm: Millimeter
NASA: National Aeronautics & Space Admin
NOAA: National Oceanic & Atmospheric Admin
NREL: National Renewable Energy Laboratory
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PCCS: Positive correlation coefficient selection
SPSS: Statistical Package for Social Sciences
SSFS: Subset size forward selection
SVM: Support vector machine
WAFS: Without applying feature selection
W/m2: Watt per meter square.
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