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High sampling frequencies in acoustic wireless sensor network (AWSN) are required to achieve precise sound localisation. But they
are also mean analysis time and memory intensive (i.e., huge data to be processed and more memory space to be occupied which
form a burden on the nodes limited resources). Decreasing sampling rates below Nyquist criterion in acoustic source localisation
(ASL) applications requires development of the existing time delay estimation techniques in order to overcome the challenge of low
time resolution. This work proposes using envelope and wavelet transform to enhance the resolution of the received signals through
the combination of different time-frequency contents. Enhanced signals are processed using cross-correlation in conjunction with
a parabolic fit interpolation to calculate the time delay accurately. Experimental results show that using this technique, estimation
accuracy was improved by almost a factor of 5 in the case of using 4.8 kHz sampling rate. Such a conclusion is useful for developing
precise ASL without the need of any excessive sensor resources, particularly for structural health monitoring applications.

1. Introduction

Integration of acoustic sensors into wireless sensor networks
(WSNs) opens up new horizons for developing wired acous-
tic source localisation (ASL) systems to wireless systems
[1]. This involves the utilisation of distributed sensor nodes
which are able to realize onboard computation to achieve
either distributed or centralized data manipulation. Such
integration is adapted to a large variety of applications, in-
cluding vehicle identification [2], structural health monitor-
ing [3], and military activities [4, 5].

WSNss have been widely used in such applications due to
the enormous number of advantages that are highlighted in
[6]. This technology is also facing challenges as discussed in
[7], where the authors provided a review and a discussion
of the various issues associated with WSNs, including band-
width and computational limitations at the level of sensor
node.

High acquisition sampling rate is an important factor
in ASL using WSNs. Thus, it still needs to be investigated
in order to optimise this valuable technology as will be
discussed in this paper. For example, high acquisition sam-
pling rates, which are commonly used in wired ASL systems

[8] based on the Nyquist criterion and required for precise
localisation, not only result in a high volume of data but also
demand sufficient memory size and a large bandwidth for
data transmission. In addition, the heavy traffic load is not
applicable in WSNs due to the introduced high latency in
data collection and increased power consumption [9].

This means that using high acquisition sampling rates in
wireless ASL leads to more hardware complexity, more power
consumption, and hence significantly higher production
costs. Additionally, for other applications such as structural
health monitoring, for example, powerful devices are not
always available. This is especially so when the size of sensor
node is restricted and power supply is difficult to obtain.
Therefore, utilization of low sampling rates in this case will
help in solving such problems, since the power consumption
is linearly proportional to the sampling rate of an analog-
to-digital converter [10]. Recently, there has been interest in
the use of low data acquisition sampling rates in WSNs [11],
so that low-cost commercial off-the-shelf (COTS) wireless
nodes can be implemented without extra hardware.

Nevertheless, lowering the sampling frequency below the
Nyquist criterion is detrimental due to information loss,
which will produce inaccurate results for sound localisation.



In this case, conventional time-series methods such as cross-
correlation (CC) will deliver inaccurate results if they are
used directly to estimate the time delay. This is because, in the
time domain, the sampling period determines the time reso-
lution which is very low due to the low sampling frequency
which means loss in time information. In frequency domain,
the frequency contents are violated since we sample below
Nyquist criterion.

This problem compels one to combine the time and the
frequency domain information which results in time-fre-
quency domain analysis. Such a domain provides infor-
mation about how the signal content changes with time,
thus providing an ideal technique to process and interpret
the received signals at low sampling rates. A variety of
time-frequency methods have been developed, including
the short-time Fourier transform (STFT), Hilbert-Huang
transform (HHT), Wigner-Ville distribution (WVD), and
wavelet transform (WT). In this work, the last approach is
utilized to overcome the challenge of using law sampling
rates mentioned early as will be discussed in Section 2.

To the best of our knowledge, there is no previous
wireless ASL system yet that uses low sampling rates below
Nyquist criterion. Therefore, the goal of this research is to
explore the feasibility of using low sampling rates in WSNs to
develop low-cost, energy-efficient, and reliable wireless ASL
and to achieve a reasonable estimation accuracy of sound
location using time-frequency domain analysis, even if the
Nyquist rule is violated. More specifically, our contribution
in this paper is to

(1) counteract the impact of using low sampling rates on
the estimation accuracy of sound source location by
proposing the utilisation of envelope and wavelet
transform cross-correlation (EWTCC) in conjunc-
tion with parabolic fit interpolation;

(2) show that as a result of employing EWTCC with para-
bolic fit interpolation technique low-cost COTS wire-
less nodes can be used in ASL applications through
conducting several wireless ASL measurements and
comparing the estimation performance of the pro-
posed EWTCC algorithm by the conventional CC
algorithm.

The paper is organized as follows. After explaining the
reasons behind lowering sampling rate, Section 2 introduces
the proposed method for locating a sound source using a
wireless system. Section 3 presents the experimental setup for
the wireless ASL system. In Section 4, we discuss and com-
pare the estimation results of sound localisation using both
proposed and conventional CC methods. Finally, conclusion
is laid out in Section 5.

2. Proposed Localisation Approach at
Low Sampling Rates

To the best of our knowledge, there is no specific algorithm
yet that is suitable for time delay estimation (TDE) at
low sampling rates. However, in [11], it has been shown
that for sound source localisation applications low sampling
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frequencies can be used in WSNs provided that time-
frequency domain and an appropriate analyse technique
are utilized. If frequency domain algorithms are used to
analyse the aliased version of the received signal, they will
be unable to show the dominant spectral component at the
original signal frequency. This means that a major portion of
frequency contents is lost and any TDE in this domain will
lead to inaccurate results. Furthermore, surrounding noise
may affect the original signals. Therefore, using the aliased
version of the received signal directly in the time or frequency
domain will be insufficient and other techniques are, indeed,
needed to counteract the effect of violence Nyquist criterion
as well as noise effects and to improve the time resolution in
order to gain feasible results.

In literature, utilisation of signal envelope instead of am-
plitudes in the TDE process is one of the preferable methods
for accuracy improvement. This has been used in several
applications such as ultrasonic ranging measurements [12—
15]. The reason behind is to minimize the ambiguity present-
ing around the onset of signal amplitudes and peak indices if
conventional cross correlation (CC) is used.

So far, using the envelope instead of amplitude signal
values is an essential step but it is insufficient to establish a
robust localisation algorithm at low sampling rates. Further
steps are needed to enhance the estimation accuracy. Time-
frequency domain algorithm such as WT which uses feature-
based contents is a good candidate in this case, because
it relies on the analysis of the time and spectral contents
of the signal. In addition, WT has a distinctive attribute
of utilizing changeable time-frequency windows in the
analysis with respect to the conventional windowed cross-
correlation method where a constant size window is applied.
These significant WT properties help to induce further
improvement in the TDE accuracy. Therefore, this kind of
approach is selected in this work for extraction of time and
frequency contents as well as noise elimination to estimate
the time delay amongst received signals.

The proposed technique is a three-stage strategy as
shown in Figure 1. In the first stage, the envelopes of the
received signals (denoted by X;(¢), i € {1,2,3}) are extracted
using the methods explained in Section 2.1. In the second
stage, the WTs of these envelopes are computed. This is
satisfied by the utilisation of discrete values of scaling s;, j =
1,2,...,N. For each scaling value, the cross-correlation in
conjunction with a parabolic fit interpolation in the wavelet
domain is applied to estimate the time delay 7. Finally,
the average of the computed delays is calculated in order to
obtain the final time delay 7,. These steps are explained in
more details in Section 2.3.

2.1. Envelope Extraction. As pointed out previously, the utili-
sation of envelopes rather than the absolute amplitude values
of the aliased versions helps to optimise the signal shapes.
It also minimizes the ambiguity around peak indices of CC.
This means that envelopes present a nonambiguous feature
for the sound source localisation.

In the literature, there are several methods, which can
be employed to extract the envelopes of captured signals.
Actually, any extraction methods can be used here as long as



Journal of Sensors

i=12,...,N

T12]' = argmaxT(Aj ®Bj)

(parabolic fit interpolation)
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FI1GURE 1: Detailed block diagram of the proposed algorithm.

no time delay is introduced due to this operation. Envelopes
are usually extracted from bandpass filter outputs by full-
wave rectification and lowpass filtering. Another method,
which is implemented in this work, is to use the square root
of the energies of the original and the Hilbert transformed
signals as shown in (1) [16]:

Xi(t) =\ + (D)7, (1)

where x;(t) is the original signal, X;(¢) is the Hilbert trans-
formed signal, X;(¢) is the obtained envelope, and i € {1,
2,3},

2.2. Wavelet Transform. Both continuous wavelet transform
(CWT) and discrete wavelet transform (DWT) have been
found that they are effective approaches in many applications
including signal processing fields. In this study, we propose
to apply WT to counteract the impact of using low sampling
rates on the estimation accuracy of a sound source location.
In mathematics, WT is defined for a signal x(¢) as in (2):

WTY(1,5) = |s|-1/zjx(t)w* (t - T)dt, 2)
where a mother wavelet can be expressed as in (3) [17]:
_ t—
Ve (6 = 1572y (25, )

where y(t) is the transforming function (mother wavelet),
and 7 € R and s > 0 are the translation and scale parameters
of the mother wavelet, respectively. 1/v/[s| is an energy
normalization factor and “*” denotes the complex conjugate
[18]. Equation (2) is also known as the CWT which has the
ability to break up a continuous-time function into wavelets
through performing an inner production between the signal
and a series of son wavelets. These series are generated
by stretching and translation of the mother wavelet via
controlling s and 7 values [19]. Such an operation provides
a capability to analyse the signal at different levels of res-
olutions and to present the processed signal in the time-
frequency domain which offers a good time and frequency
localisation as explained in the next section.

In addition, thanks to wavelet transform which offers
several different valuable mother wavelets that can be
employed in the CWT, DWT, and in the signal analysis,
including Haar, Meyer, Morlet, Daubechies, Mexican Hat,
Gabor, Gaussian, and others. This is, indeed, the strength of
this transform which means that based on the signal features
we are looking for we can select an optimum mother wavelet
to ease our detection of that particular feature. In our
proposed technique, we chose the Haar mother wavelet for
processing the received signals because its shape is similar to
the acoustic signals received by sensor nodes and therefore
high correlations between them will result in. On the other
hand, noises will be uncorrelated with the Haar wavelet and
thus their effects can potentially be reduced in the estimation
process.

DWT is another form of WT which involves the use of the
dyadic scheme. This is satisfied by the utilisation of discrete
values of scaling and translation s = 2/,7 = k2/,j,k € Z
[17], where Z denotes the set of integers. In this work,
CWT is applied instead of DWT since the last transform
is unsuitable for feature extraction [17]. This is because
CWT does not require that the wavelet has to satisfy the
orthogonality condition which makes it easy for the selection
of an appropriate wavelet for feature extraction. Another
reason for the utilisation of CWT is that it can be time-
invariant which means that the same phase relationship is
reserved and no additional time delay is introduced [17, 20,
21].

2.3. Sound Localisation Using Cross-Correlation. The trian-
gular configuration, illustrated in Figure 2, shows the posi-
tions of three sensor nodes. They are positioned in a straight
line to construct a sensor array with a known geometry. One
of the sensor nodes acts as a reference node and is positioned
at P,. The location of the two other sensor nodes varies
between points Py and P4 and accordingly the propagation
path differences (PPDs) d, and d,, also vary. The PPDs are
the extra distances that the acoustic signals generated from
“S” travel in order to reach the two sensor nodes with respect
to the reference node. For simplicity, we assume that these
nodes are located at points Py and P,. Before we describe the



FiGure 2: Triangular configuration of sensor nodes-sound source
for the localization where P; represents sensor node position and R
is the shortest path between sound source “S” and the sensor node
located at P,.

proposed algorithm to estimate the PPDs, a mathematical
model for the acoustic signals received at any microphone
is illustrated.

As described in [8, 11] a mathematical model for the
acoustic signal captured by any microphone of sensor node
xi(t), i € {1,2,3} can be expressed as in (4):

xi(t) = a; s(t — ;) + pi(1), (4)

where a; represents an attenuation factor; 7; is the delay time
from the acoustic source s(t) to the ith node; y;(t) is assumed
as a zero mean additive white Gaussian noise with average
power Ny = 202, where ¢ is the noise variance at the ith
node.

To estimate the time delay between any two received sig-
nals, for instance, x;(¢) and x,(¢), there are many techniques
that can be applied to these signals such conventional CC,
which is expressed as in (5) [22] and used here for compari-
son purpose:

1 T
Run(0) = s | mmt-nd, ()

where T is the observation time interval. The aim of (5)
is to examine the coherence between the received signals to
estimate the lag at which the CC function has its maximum.

In the proposed algorithm, the CWT is applied to the
envelopes of the received signals, for example, X)(¢) and
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%, (t) just before doing CC. Equations (6) and (7) represent
the CWT of these envelopes:

CWT, (1) = j?q(t)w* (t . T)dt, (6)

J

WL (1) = [ R(0y* (H)dt. 7)

Sj

As stated in the previous section, varying the s parameter in
the mother wavelet in (6) and (7) leads to dilate or compress
the signals which allows to searching the similarity in terms
of frequency contents between the series of son wavelets and
Xi(t) at each scale value: sj»j = 1,2,...,N, where N is the
number of variations and 7 is assumed to be equal to the
sampling period [17]. The process of dilating or compressing
the signal via the scale variation allows us to analyse the
signal and to compute the wavelet coefficients at different
resolutions (multiresolution analysis). The CWT coefficients
represent a measure of the cohesion between the signal and
the mother wavelet at the current scale. If the frequency
components of the signal are corresponding to the current
scale of the mother wavelet, then the computed coefficients
at this time instant in the time scale are a comparatively large
quantity [17]. Two of 2D wavelet coefficients matrices will be
generated for both (6) and (7), say A and B, respectively, as
shown in Figure 1. Each row in A and B corresponds to the
jth wavelet coefficients. The size of these matrices is (N X M)
where M is the length of the processed signal. At each level
of resolution the time delay is estimated. As seen in Figure 1
after obtaining the jth wavelet coefficients matrices, the CC
algorithm in conjunction with curve-fitting interpolation is
applied on the individual rows A; and B; and the delay under
the jth scale is estimated as in (8):

Tioj = argmaxT(Aj ® Bj), (8)

where “®” denotes conventional cross-correlation. This pro-
cess is repeated until j = N and then the actual time delay
712 between x;(¢) and x,(t) can be calculated by taking the
average of 715; as given in (9):

LN
™=y > ;. 9)
=1

Once the time delays are estimated as shown in the previous
paragraph using (9), the PPDs (d,, and d,, shown in Figure 2)
can be computed using (10):

dn = CT12, dm = CT23, (10)
where 7, and 13 are the relative time delays between
x1(t) and x,(t) as well x,(t) and x3(¢), respectively. c is the
propagation speed of sound in air at room temperature and
assumed to be constant in these experiments (340 ms-1). As
a result, the acoustic source location can be estimated by
applying a triangulation method between the sound source
and the three sensor node positions as reported in the
following paragraph.
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In the following derivation of sound source location in
2D space, we assume that the sensor nodes (one, two, and
three) are located at the positions Py, P, and Py, respectively.
Nevertheless, this derivation can be generalized for using
any three combinations of sensor locations. From the two
triangles SPyP, and SP4P,, we can derive the cosine relations
for both angles ¢, and ¢,, which are azimuths for sensor
nodes one and three, respectively, as in (11) and (12):

B +(R+dy,) — R
2l (R+dy)

(11)

Cos @y =

B+ (R+d,)" - R
2L,(R+d,)

Cos ¢, = (12)

where I, and I, represent the separation distances between
sensor nodes as shown in Figure 2 and they are known. R
is the shortest path between sound source and reference

node. Similarly, from the triangle SPyP4 we can develop the
expression in (13):

(bn +1,)* — (R+dy)" — (R+d,)’
2(R+d,)(R+d,)

cos(@m + @n) = (13)

Using (11)—(13) it is now possible to calculate, via appropri-
ate substitutions, the three variables R, ¢,, and ¢,, as in (14)—
(16):

LB —d}) - 1. (12— d;)
R= Wl v dyl,) (14)

B+ (R+dy)* — R?
_ 1 'm m
®m = cos A Rtd) (15)

L B+(R+d) R
Pn =08 L (R + dy)

(16)

As we can see in (14)—(16), by knowing the variables R, ¢,
and ¢,, we can estimate the sound source location in 2D.
Moreover, the propagation path differences d, and d,, play an
important role in estimating these parameters, and the more
accurate d, and d,, are, the better the localisation results
become.

As it is known in the classical time delay estimation mea-
surements, the discrete cross-correlation is only calculated at
integer indices. This means that it gives an inaccurate esti-
mation if the true delay between two signals is a nonintegral
multiple of the sample period. There are several techniques
that can be used to optimise this resolution [23]. A common
method which is used widely in resolution optimization is
to use a parabolic interpolation. This is because the shape
of cross-correlation output is similar to the Gaussian curve
where the position of the peak is located at the center
of this curve. Theoretically, fitting a parabola requires at
least three points as shown in Figure 3: the maximum peak
of correlation coefficients, its preceding, and subsequent
neighbors. The blue dotted curve represents the fitted curve

Abs ()

Index

-e- CC
—=— Poly-interp.

F1Gure 3: Curve-fitting interpolation using three points.

to the cross-correlation output (red dashed curve). These
three points are needed to calculate the coefficients a, b, and
¢ in (17) which represents the applied parabola [23]:

y=ax*+bx+c (17)

To use this polynomial in the fitting process, we need to first
calculate the coefficients a, b, and c. After that, by taking the
derivative of (17) which equals zero at the maximum peak,
we can compute the interpolated peak, I,, as illustrated in
(18):

I (18)

2a’
A series of experiments have been conducted concentrating
on the estimation of the propagation path differences to show
the performance of the proposed approach.

Based on the used sample frequency (4807 Hz), the min-
imum distance resolution is 7.07 cm. To improve this resolu-
tion, we apply the parabolic fit interpolation on the output of
the EWTCC. This results in an improvement in this distance
resolution from 7.07 to 1.50 cm, which is almost five times
better. Such a resolution improvement will contribute to the
estimation accuracy of sound source location using WSNs at
low sample rates as illustrated in the next section.

3. Experimental Work

The wireless acoustic source localisation system used in this
work is depicted in Figure 4. The system was employed to
study the utilisation of a single-hop WSN for sound source
localisation at low sampling frequencies. Three acoustic
sensor nodes were placed in a straight line. The sensor
nodes are (MICAz) motes equipped with the sensor board
(MTS310), which has different sensor modalities. The nodes
sense simultaneously the omnidirectional microphone sen-
sor modality of the sensor boards and send the data to a
base station. All the sensor nodes communicate with the
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FIGURE 4: Three sensor nodes (SN;, SN,, and SN3) positioned at locations Py, P>, and Py, respectively, are used for acoustic source

localization.

base station via an RF interface. The base station is plugged
into the gateway board: MIB520, and it is used to forward
the received signals to a PC where they are processed.
The sensor nodes are programmed under TinyOS (TinyOS
is a tiny operating system and has been widely used for
WSNs design) environment. A Listen application is used to
eavesdrop on messages sent over the mote radios and the
data received are saved in a hexadecimal format. The received
data are processed off-line using MATLAB. Time delays
and the propagation path differences are estimated from
acoustic signals captured using the approaches explained in
Section 2.

Since we sample much below the Nyquist criterion and
our proposed algorithm for TDE is based on the shapes con-
tents of received signals, we have assumed that the acoustic
signal which will be used as a test signal in the experimental
work is a narrow bandwidth and not periodic signal because
it is the type of signal we expect from a real scenario. This
means that the generated acoustic signals has a finite pulse
duration and the repetition period of this pulse is greater
than the sampling duration in order to have one spike
vanishes before the next spike is started. The length of the
sampling duration also should be long enough to be admit-
ted in order to collect a sufficiently amount of samples that
represents a complete pulse.

Based on the aforementioned conditions an acoustic
pulse test signal is used and simulated using a function gener-
ator through generating a tone burst of 50-sinusoidal cycles
of frequency 10 kHz. The test signal is played through a PC
speaker and such values are selected experimentally in order
to generate a reasonable pulse shape for the conducted ex-
periments. The generated acoustic signals are acquired at a
4807 Hz sampling rate for a sampling duration of 0.25s. The
4807 Hz is almost the lowest sampling rate that MICAz mote
can achieve using the hardware event handler (HEH) mode
while in [11] it has been shown that sampling rates below this
sampling rate can be used. An important condition here for
reducing the sampling rate is that the samples should contain
enough samples from the acoustic signal acquired in order to
extract the envelope of the signal which should be sufficient
to use in the time delay estimation process.

The experiments were conducted in an ordinary indoor
laboratory environment which has objects, such as tables,
PCs, and equipment. Street traffic and people talking con-
tribute to the background noise where the experiments were
being conducted. They were conducted as follows: a base
station broadcasts a start sample command. Once sensor
nodes receive it, they start sensing until the buffer becomes
full (1200 data points). At this point, each node starts to send
the acquired data back to the base station. To avoid data col-
lisions nodes will send their own packets in sequence to the
base station. In the future work, it is planned to process the
received signals locally in the sensor node so that the advan-
tage of utilizing low sampling rates will be obviously. The
received data will be processed as shown in the next section.

4. Results and Discussion

In the conducted experiments, for the evaluation study the
three sensor nodes were arranged in a straight line at different
positions (Py-P4) as shown in Figure 4. Once the sensor
nodes receive simultaneously a start sample command, they
commence to acquire the generated acoustic signal as ex-
plained in Section 3.

Before presenting and discussing the results of this work,
it is significant important to mention that sound source lo-
calisation using WSNs depends highly upon time synchro-
nization among the sensors. However, from previous work
in the area [24] and our preliminary experimental results, it
is noticeable that the use of time-synchronized sensor nodes
based on a global time does not guarantee that the acquired
acoustic signals (i.e., sensing operation) are perfectly syn-
chronized with each other. The adopted approach in per-
forming a data acquisition operation also has a significant
impact on achieving synchronized data acquisition opera-
tions. In general, nondeterministic (if the execution time of
the same code varies at each repeated execution) operating
systems have the disadvantage that they do not allow the
user to control the execution process of their measurement
process (i.e., setting priorities to the measurement steps).
Such a property makes the execution of the data acquisition
operations start at different time instants and also it does not
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FIGURE 5: Received signals (zoom-in): (a) captured signals, (b) signal envelopes.

take the same amount of time for every execution, especially
if it is performed on different microcontrollers, as in the case
of WSNE.

TinyOS, which is used in this work as well as others [24],
has two modes of execution threads: tasks and hardware
event handler (HEH) [25]. The first mode has a nondeter-
ministic nature, which introduces an unpredictable waiting
time during the acquisition operation due to the TinyOS
scheduler as it executes posted tasks. This results in unequal
intervals which makes acoustic sensing tasks at all sensor
nodes unsynchronized. To counteract this problem, the HEH
mode is proposed to realize a synchronized data sensing
amongst sensor nodes because it is a deterministic mode and
asynchronous commands are executed immediately.

To verify this, sensor nodes were located at the same point
where real PPD values are zeros. This configuration repre-
sents the extreme case and helps to test the performance
of both modes (tasks and HEH) as it requires a high time
resolution for accurate TDE from amongst the received
signals. The experiments were repeated 15 times, and in each
time, the PPDs were estimated through applying EWTCC
algorithm to acquired signals as described in Section 2. The
results of this test show clearly that the HEH mode exhibits
much better performance than tasks mode. The RMS error
of HEH mode is 1.7 cm whereas it is 24.11 cm for tasks mode
case.

From the previous discussion, we can conclude that the
tasks mode is not applicable in achieving a synchronized
sensing process amongst all nodes. In contrast, the HEH
mode results show much less synchronization errors. Min-
imizing these errors results in an improvement in the esti-
mated sound source location. This is because such errors are
accumulated to the real-time delays among received signal.
Therefore, the HEH mode is chosen for realizing a synchro-
nized data acquisition operation and designing a wireless
sound localisation system.

Figure 5(a) shows the acoustic signals (zoom-in) cap-
tured using sensor nodes 1, 2, and 3 as they were positioned

at Py, P, and P, in Figure 2, respectively. In contrast,
Figure 5(b), depicts the signals envelopes extracted from
these signals. In both figures, the solid curves represent the
signals received at sensor node one and the dashed curves
show the signals received at sensor node three. While the
dotted curves illustrate the signals received at sensor node
two (reference). As we can see in Figure 5(b), the extracted
envelopes are much clearer than the original signals and
therefore feeding these envelopes, instead of the original
signals, to the Wavelet transform is an important step to-
wards improving the localisation accuracy. In the conducted
experiments, the distance between the reference node and
the sound source represents the shortest path and that why
the received signal from this sensor node appears first in
Figure 5, whereas the other two sensor nodes were located
equally apart from the reference node. Therefore, their
received signals appear second and at the same time instance.

Figure 6 illustrates (zoom-in) the results of applying
the CC and EWTCC with and without curve-fitting inter-
polation on envelopes shown in Figure 5(b). Such results
illustrate the functionality of the proposed approach and give
an example about how it improves the spatial resolution of
the sound source localisation. The advantage of using the
EWTCC here over the traditional CC method is to enhance
the signal-to-noise ratio (SNR) due to the high correlation
between these envelopes and used the Haar mother wavelet
as well as to sharp the output of CC which makes the
identification of the final (most accurate) index much easier
when curve-fitting interpolation is utilised.

The experiments were also conducted for different values
for d,, and d, (i.e., positions of sensor nodes one and three
were varied between Py and P,). The results of these
experiments are reported in Table 1. This table summarises
the estimation results obtained by the developed wireless
localisation system using both conventional CC and our
proposed EWTCC with and without curve-fitting interpo-
lation approaches in d, and d,, estimations. It summarises
the averages and the standard deviations of test results
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TABLE 1: Averages (AVGs) and standard deviations (STDs) of estimated propagation path differences (PPDs) for 15 experiments.

Configuration of Actual PPDs Estimated PPDs (cm)
SNi SN; SN (cm) cC EWTCC- Fitting
AVG STD AVG STD AVG STD
dn 00.00 6.14 3.07 1.83 1.17 1.15 0.81
p, P, P,
d, 00.00 2.56 4.58 1.96 1.87 1.27 1.06
dm 15.00 12.26 5.65 14.10 3.53 15.19 2.64
Py P, Ps
d, 36.00 26.41 20.62 37.11 3.89 36.49 3.71
dn 21.00 23.11 9.44 22.95 5.02 21.40 4.12
P, P, Ps
d, 15.00 12.26 10.51 16.55 5.69 15.65 4.53
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FiGgure 6: Output (Zoom-In) of CC and EWTCC with and without
parabolic fit interpolation.

gained from 15 experiments in order to show that replicated
measurements can provide closely similar results. It is
apparent from this table that results of applying EWTCC
with curve-fitting interpolation are much more correlated
to the real values of d, and d,, than the other results. A
good example of this is the case where d, = 15cm. The
average of the estimated result using EWTCC with fitting
is 15.65 cm, while it is 12.26 cm using CC and 16.55 using
EWTCC without fitting. Again, the variation of the EWTCC
with fitting result is 4.53 compared to the other two cases.
This means that errors in estimation of d, and d, using
EWTCC with curve-fitting interpolation are much less than
errors in the CC method due to the multiresolution analysis
property of CWT and curve interpolation. Consequently, the
use of such method in estimation of PPDs exhibits better
performance than employing the CC method as shown in
Figure 7.

Figure 7 illustrates the RMS computed errors for the
three configurations shown in Table 1. As seen from this
figure, the maximum RMS errors in estimation of d, and
dy, using EWTCC with curve-fitting interpolation is 1.70 cm
while it is 2.68 cm using just EWTCC and 9.97 cm using

dp =du =0 dn =15,dp =21 dy = 36,dp, = 15
W CC
EWTCC

B EWTCC-Fitting

FIGURE 7: RMS errors for CC, EWTCC, and EWTCC-Fitting algo-
rithms.

CC. In addition, the trend of the RMS errors using the
proposed method shows that RMS errors decreases with
moving away from the worst case scenario, whereas, they are
randomly for the CC algorithm case. Such an enhancement
in the estimation accuracy of sound localisation correlated
to two reasons: (1) employing envelopes of acquired signals
reduces the ambiguity present around peak indices of CC;
(2) processing these envelops in time-frequency domain
using WT integrates both time and spectral contents in the
estimation-process. Thus, EWTCC algorithm in conjunction
with curve-fitting interpolation is able to achieve a sufficient
level of estimation accuracy for wireless ASL at low sampling
rates compared to the CC method.

5. Conclusion

Envelope and wavelet transform cross-correlation, EWTCC,
in conjunction with a parabolic fit interpolation method is
proposed for wireless ASL employing low sampling rates.
The new technique, in comparison to conventional CC algo-
rithm, offers a multiresolution analysis domain which shows
a potential performance in counteracting the ambiguous
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peaks due to the low time resolution. The proposed approach
also enhances the spatial resolution of the localisation pro-
cess from 7.07 cm to 1.50 cm. Such results of the conducted
experiments show the consistence and low errors for the case
study; further evaluation work can be done for large-scale
measurement, including complex geometrical and local data
processing scenarios as well as optimisation of the estimation
process through selection of the best scale values which
delivers the best resolution. In addition, the proposed HEH
mode realizes a synchronized data acquisition operation for
all sensor nodes in the TinyOS-based WSNs. It must be
emphasized here that such conclusions can open up new
horizons for the development of efficient low-cost, reliable
wireless ASL systems based on low-cost COTS sensor nodes
without the need to support excessive sensor resources, as
low sampling rates not only contribute to a cost reduction
but also minimize power consumption and extend the
lifetime of sensor nodes which allows having the processing
operations in real time.
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