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Because of the rapid advancement of the airborne sensors and spaceborne sensors, large volumes of fully polarimetric synthetic
aperture radar (PolSAR) data are available, but they are too complex to interpret difficultly. In this paper, a modified hybrid
Freeman/eigenvalue decomposition method for the coherency matrix derived from the fully PolSAR sensors is proposed. The
proposedmodified hybrid Freeman/eigenvalue decomposition uses a real unitary transformation on the coherencymatrix to release
correlations between the copolarized term and cross polarized term, and the scattering models are derived from eigenvectors of
the coherency matrix with reflection symmetry condition. The anisotropy and entropy are used to determine whether the volume
scattering component is derived from the man-made structures or not. Moreover, the scattering powers from the proposed hybrid
Freeman/eigenvalue decomposition are all nonnegative values. Fully PolSAR data on San Francisco acquired by AIRSAR sensor
are used in the experiments to prove the efficacy of the proposed decomposition.

1. Introduction

Since 1985, the first fully polarimetric AIRSAR at L-band was
launched by the Jet Propulsion Laboratory (JPL) [1] which
started a rapid advancement stage of PolSAR sensors, such
as the well-known airborne sensors: EMISAR [2] by the
Technical University of Denmark and E-SAR [3] by DLR of
Germany, and the famous spaceborne sensors: TerraSAR-X
[4] byDLR of Germany and Radarsat-2 [5] by CSA of Canada
and so forth. Large volumes of the fully PolSAR data need
to be interpreted. Polarimetric target decomposition is an
important and useful tool for understanding the PolSAR
data [6] by separating received measurements into basic
scattering mechanisms. The scattering mechanisms of the
PolSAR media are analyzed for the purpose of parameter
inversion, terrain classification, and so forth. Currently,
eigenvector-based decompositions and model-based decom-
position methods are commonly used on the second-order
statisticsmatrix of the PolSARdata. Cloude andPottier devel-
oped themost notable eigenvector-based decomposition, that
is, Entropy/Alpha method [7]. The classical model-based
decomposition was Freeman-Durden decomposition (FDD)

developed by Freeman and Durden [8], which decomposed
the coherency matrix of PolSAR data into three components:
surface scattering, double-bounce scattering, and volume
scatteringwith the reflection symmetry condition.The reflec-
tion symmetry condition implies that the correlation between
copolarized term and cross polarized term is zero. Freeman-
Durden decomposition is used in various applications since
it is easy to understand and accomplish.

When applying Freeman-Durden decomposition on the
real PolSAR data, some scattering powers are negative those
most frequently occur in the double-bounce scattering pow-
ers. To solve this deficiency, various modified methods have
been developed [9–15]. Cloude improved Freeman-Durden
decomposition via setting surface scattering model and
double-bounce scattering model to be orthogonal [14], that
is, well-known hybrid Freeman/eigenvalue decomposition.
After the rotation of the coherency matrix, the scattering
powers derived from hybrid Freeman/eigenvalue decom-
position are effective at avoiding negative values. Singh
improved the hybrid Freeman/eigenvalue decomposition by
using different volume scattering models [15] for vegetation
areas and oriented structures.
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In this paper, a modified version of hybrid Freeman/
eigenvalue decomposition for PolSAR data is proposed by
using different volume scattering models for the vegeta-
tion areas and man-made structures. Moreover, the surface
scattering model and double-bounce scattering model are
defined as the eigenvectors of the coherencymatrix of PolSAR
data. The eigenvector with scattering angle 𝛼 greater than
𝜋/4 denotes the double-bounce scattering model, while the
other scattering angle 𝛼 less than 𝜋/4 represents the surface
scattering model. The volume scattering model for the man-
made structures is also derived from the eigenvectors of the
coherency matrix. We will show how the eigenspace of the
coherency matrix enables the proposed Freeman/eigenvalue
decomposition and solve the scattering powers as the linear
combinations of eigenvalues. In addition, the scattering
powers are all nonnegative values.

The rest of this paper is organized as follows. The
hybrid Freeman/eigenvalue decomposition is summarized
in Section 2. The proposed decomposition is presented in
Section 3. Results and discussion of experiments performed
on the real PolSAR data are provided in Section 4. Section 5
presents our conclusions.

2. Freeman/Eigenvalue Decomposition

In this section, the Freeman/eigenvalue decomposition is
simply introduced for the integrity of this paper. The detail
content has been shown in [14].

For monostatic PolSAR sensor with {𝐻,𝑉} basis, a Pauli
vector is used to represent the single look PolSAR data as (1)
and the coherency matrix is used to represent the multilook
PolSAR data as (2) as follows:

⃗
𝑘𝑝 =

1

√2

[𝑆𝐻𝐻 + 𝑆𝑉𝑉 𝑆𝐻𝐻 − 𝑆𝑉𝑉 2𝑆𝐻𝑉]
𝑡 (1)
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⃗
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𝑘
∗𝑡

𝑝
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𝑇
∗

12
𝑇22 𝑇23

𝑇
∗

13
𝑇
∗

23
𝑇33

]

]

, (2)

where 𝑡 denotes a transposition operator, ∗ implies a complex
conjugation processing, and ⟨⟩ denotes the multilook pro-
cessing.

In the model-based decomposition, such as Freeman-
Durden decomposition [8] and hybrid Freeman/eigenvalue
decomposition [14], the measured coherency matrix of the
PolSAR data is expanded into three components, surface
scattering, double-bounce scattering, and volume scattering
as follows:

⟨[𝑇]⟩ = 𝑚𝑠𝑇𝑠 + 𝑚𝑑𝑇𝑑 + 𝑚V𝑇V, (3)

where 𝑇𝑠, 𝑇𝑑, and 𝑇V are surface scattering model, double-
bounce scattering model, and volume scattering model,
respectively.

In hybrid Freeman/eigenvalue decomposition, those
three scattering models are defined in (4), (5), and (6).

𝑚𝑠, 𝑚𝑑, and 𝑚V are the corresponding scattering powers in
the proper order:

𝑇𝑠

=
[

[

cos2𝛼𝑠 cos𝛼𝑠 sin𝛼𝑠𝑒
−𝑗𝜙
𝑠

0

cos𝛼𝑠 sin𝛼𝑠𝑒
𝑗𝜙
𝑠 sin2𝛼𝑠 0

0 0 0

]

]

, 𝛼𝑠 ≤
𝜋

4

,

(4)

𝑇𝑑

=
[

[

cos2𝛼𝑑 cos𝛼𝑑 sin𝛼𝑑𝑒
−𝑗𝜙
𝑑

0

cos𝛼𝑑 sin𝛼𝑑𝑒
𝑗𝜙
𝑑 sin2𝛼𝑑 0

0 0 0

]

]

, 𝛼𝑑 >
𝜋

4

,

(5)

𝑇V =
[

[

𝐹𝑠 0 0

0 1 0

0 0 1

]

]

(6)

𝛼𝑠 and 𝛼𝑑 imply the type of the scattering model; namely,
𝛼𝑠 ≤ 𝜋/4 denotes the surface scattering, while 𝛼𝑑 >

𝜋/4 represents the double-bounce scattering. In [14], the
condition 𝛼𝑠 + 𝛼𝑑 = 𝜋/2 is set to reduce the number of
unknowns. 𝐹𝑠 is the volume parameter. If 𝐹𝑠 = 2, hybrid
Freeman/eigenvalue decomposition becomes equivalent to
Freeman-Durden decomposition [8]. The cross polarized
term 𝑇33 only exists in the volume scattering model, so the
volume scattering power 𝑚𝑑 is solved as follows:

𝑚V = 𝑇33. (7)

Since the rank of either surface scattering model 𝑇𝑠 or
double-bounce scattering model 𝑇𝑑 is equal to 1, the corre-
sponding scattering powers𝑚𝑠 and𝑚𝑑 are the eigenvalues of
𝑇SD as (10), and 𝑚𝑠 and 𝑚𝑑 can be solved as (11).

𝛼𝑠 and 𝛼𝑑 are obtained as follows:

𝛼𝑑,𝑠 = cos−1 [

[

(1 +

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑇12

𝑇22 − 𝑇33 − 𝑚𝑑,𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

)

−1/2

]

]

. (8)

Whichever of 𝑚𝑠 and 𝑚𝑑 is smaller is always set to zero, and
then volume parameter 𝐹𝑠 can be estimated as

𝐹𝑠 =

𝑇11 ⋅ (𝑇22 − 𝑇33) −
󵄨
󵄨
󵄨
󵄨
𝑇12

󵄨
󵄨
󵄨
󵄨

2

𝑇33 ⋅ (𝑇22 − 𝑇33)

. (9)

It enables solving for the scattering powers𝑚𝑠 and 𝑚𝑑 by
substituting (9) into (11):

𝑇SD = ⟨[𝑇]⟩ − 𝑚V𝑇V

=
[

[

cos𝛼 sin𝛼 0

− sin𝛼 cos𝛼 0

0 0 1

]

]

⋅
[

[

𝑚𝑠 0 0

0 𝑚𝑑 0

0 0 0

]

]

⋅
[

[

cos𝛼 − sin𝛼 0

sin𝛼 cos𝛼 0

0 0 1

]

]

(10)
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𝑚𝑑,𝑠

= ((𝑇11 + 𝑇22 − (𝐹𝑠 + 1) 𝑇33)

±√(𝑇11 − 𝑇22 − (𝐹𝑠 − 1) 𝑇33)
2
+ 4

󵄨
󵄨
󵄨
󵄨
𝑇12

󵄨
󵄨
󵄨
󵄨

2
)

⋅ (2)
−1

(11)

⟨[𝑇 (𝜃)]⟩

=
[

[

1 0 0

0 cos 2𝜃 sin 2𝜃

0 − sin 2𝜃 cos 2𝜃
]

]

⟨[𝑇]⟩
[

[

1 0 0

0 cos 2𝜃 − sin 2𝜃

0 sin 2𝜃 cos 2𝜃
]

]

.

(12)

3. Proposed Decomposition

3.1. Rotation of the Coherency Matrix. To reduce the power
of cross polarized term 𝑇33, a real unitary transformation has
been proposed to be implemented on the coherency matrix
[12, 16] before decomposition as (12).

𝜃 is the angle of rotation about the radar line of sight. To
minimize 𝑇33, two angles are solved as

𝜃 =

1

4

tan−1 (
2 (Re (𝑇23))
𝑇22 − 𝑇33

) . (13)

After the rotation of the coherency matrix, the imagery
element of 𝑇23 is equal to zero.

3.2. Eigenvalue Decomposition of the Rotated Coherency
Matrix. We assume that the reflection symmetry condition
(i.e., ⟨𝑆𝐻𝐻𝑆

∗

𝐻𝑉
⟩ ≈ ⟨𝑆𝑉𝑉𝑆

∗

𝐻𝑉
⟩ ≈ 0) holds; then each pixel for

multilook PolSAR data is represented as

⟨[𝑇 (𝜃)]⟩ =
[

[

𝑇11 (𝜃) 𝑇12 (𝜃) 0

𝑇
∗

12
(𝜃) 𝑇22 (𝜃) 0

0 0 𝑇33 (𝜃)

]

]

. (14)

The average coherency matrix after rotation is decom-
posed [7] as

⟨[𝑇 (𝜃)]⟩ = 𝑈 ⋅
[

[

𝜆1 0 0

0 𝜆2 0

0 0 𝜆3

]

]

⋅ 𝑈
∗𝑡
, (15)

where 𝜆1, 𝜆2, and 𝜆3 are the eigenvalues of the rotated
coherency matrix ⟨[𝑇(𝜃)]⟩, and 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0. Because
of the reflection symmetry condition and the rotation of the
coherency matrix, 𝑈 consists of the corresponding eigenvec-
tors 𝑘1, 𝑘2, and 𝑘3 as

𝑈 = [𝑘1 𝑘2 𝑘3] =
[

[

cos𝛼1 cos𝛼2 0

sin𝛼1𝑒
𝑗𝛾
1 sin𝛼2𝑒

𝑗𝛾
2

0

0 0 1

]

]

, (16)

where eigenvectors 𝑘1, 𝑘2, and 𝑘3 are orthogonal unit vectors,
𝛼1 + 𝛼2 = 𝜋/2.

3.3. Scattering Models. Because in hybrid Freeman/eigen-
value decomposition, the condition 𝛼𝑠 + 𝛼𝑑 = 𝜋/2 is set, and,
in eigenvectors of the coherency matrix, it can be seen that
𝛼1 + 𝛼2 = 𝜋/2, we can draw the conclusions: the eigenvectors
𝑘1 and 𝑘2 contain a surface scattering component and a
double-bounce scattering component, and the scattering
angles 𝛼1 and 𝛼2 are equivalent to the angles 𝛼𝑠 and 𝛼𝑑 of the
hybrid Freeman/eigenvalue decomposition. The eigenvector
𝑘1 or 𝑘2 in 𝑈 with 𝛼 ≤ 𝜋/4 is shown in (17) which denotes
the surface scattering targets, and the other eigenvector with
𝜋/4 ≤ 𝛼 ≤ 𝜋/2 is a double-bounce scattering target (18) under
the reflection symmetry condition:

𝑘𝑠 =
[

[

cos𝛼𝑠
sin𝛼𝑠𝑒

𝑗𝛾
𝑠

0

]

]

, 𝛼𝑠 ≤
𝜋

4

, (17)

𝑘𝑑 =
[

[

cos𝛼𝑑
sin𝛼𝑑𝑒

𝑗𝛾
𝑑

0

]

]

,

𝜋

4

≤ 𝛼𝑑 ≤
𝜋

2

. (18)

If 𝛼1 ≤ 𝜋/4, we obtain 𝛼𝑠 = 𝛼1, the corresponding
eigenvector 𝑘𝑠 = 𝑘1 as (17), and surface scattering model
𝑇𝑠 = 𝑘1𝑘

∗𝑡

1
whose form is the same as the one in (4); 𝛼𝑑 =

𝜋/2−𝛼1 = 𝛼2 and double-bounce scatteringmodel𝑇𝑑 = 𝑘2𝑘
∗𝑡

2

is identical to (5). In other cases, if 𝛼2 ≤ 𝜋/4, 𝛼𝑠 = 𝛼2, surface
scattering model 𝑇𝑠 = 𝑘2𝑘

∗𝑡

2
as (4), 𝛼𝑑 = 𝜋/2 − 𝛼2 = 𝛼1, and

double-bounce scattering 𝑇𝑑 = 𝑘1𝑘
∗𝑡

1
as (5).

3.3.1. Volume ScatteringModel from theMan-Made Structures.
The entropy and anisotropy are defined in the eigenspace
of the coherency matrix to measure the randomness of the
targets [7, 17]:

𝐻 = − ∑

𝐼=1,2,3

𝑝𝑖 log 3 (𝑝𝑖) ,

with 𝑝𝑖 =
𝜆𝑖

(𝜆1 + 𝜆2 + 𝜆3)

,

𝐴 =

(𝜆2 − 𝜆3)

(𝜆2 + 𝜆3)

.

(19)

For theman-made structures, usually the value of entropy
(𝐻) is large (usually 𝐻 > 0.7), and anisotropy is often
larger than 0.5 [7, 17]. Based on these, we defined the volume
scattering model as

𝑇 =

1

2

[

[

1 0 0

0 0 0

0 0 1

]

]

. (20)

The rank of the volume scattering model is equal to two.
The volume scattering model is designed as a distributed
target that is diffused from the surface scatterers whose
scattering angle 𝛼 = 0 and orientation angle 𝛽 = 0 and
the oriented objects whose scattering angle 𝛼 = 90 and
orientation angle 𝛽 = 90. For the real PolSAR data, the
oriented objects can be modeled as angle 𝛼 = 90 and
orientation angle 𝛽 = 90 because of the reflection symmetry
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condition. But the surface scatterers usually are not the same
as “𝛼 = 0 and 𝛽 = 0,” so the surface scattering case is relaxed
as (17), and the volume scattering model for the man-made
structures is defined as

𝑇V 2 =
1

2

(𝑘𝑠𝑘
∗𝑡

𝑠
+ 𝑘3𝑘
∗𝑡

3
) . (21)

3.3.2. Volume Scattering Model from the Vegetation Areas.
Thevolume scatteringmodel is used as a unit diagonalmatrix
whose rank is equal to 3 which has been proposed by An et al.
[12]. Because the unit diagonal matrix has the largest entropy
(𝐻 = 1) and least anisotropy (𝐴 = 0), the unit diagonal
matrix is also used for the vegetation areas in this paper:

𝑇V 1 =
1

3

[

[

1 0 0

0 1 0

0 0 1

]

]

. (22)

3.4. Freeman/Eigenvalue Decomposition of the Rotated Coher-
ency Matrix. For vegetation areas, the cross polarized term
only presents in the volume scattering model, and volume
scattering power can be solved as 𝑚V = 3𝑇33(𝜃). In the
eigenspace of the rotated coherency matrix under the reflec-
tion symmetry condition, the cross polarized term 𝑇33(𝜃) is
one of the eigenvalues. After the real unitary transformation,
𝑇33(𝜃) reaches the minimum value, usually, 𝑇33(𝜃) = 𝜆3. So
the volume scattering power is solved as

𝑚V = 3𝜆3. (23)

The surface scattering power𝑚𝑠 and double-bounce scat-
tering power 𝑚𝑑 are the eigenvalues of 𝑇SD. According to the
eigenvalue decomposition of the rotated coherency matrix
with reflection symmetry condition, 𝑇SD can be expanded as

⟨[𝑇 (𝜃)]⟩SD = 𝑚𝑠𝑇𝑠 + 𝑚𝑑𝑇𝑑

= ⟨[𝑇 (𝜃)]⟩ − 𝑚V𝑇V 1

= ⟨[𝑇 (𝜃)]⟩ − 3𝜆3𝑇V 1

= (𝜆1 − 𝜆3) 𝑘1𝑘
∗𝑡

1
+ (𝜆2 − 𝜆3) 𝑘2𝑘

∗𝑡

2
.

(24)

From (23), 𝛼1 ≤ 𝜋/4, the surface scattering power 𝑚𝑠, and
double-bounce scattering power 𝑚𝑑 are solved as (25) while
𝛼2 ≤ 𝜋/4, 𝑚𝑠, and 𝑚𝑑 are solved as (26):

𝑚𝑠 = 𝜆1 − 𝜆3,

𝑚𝑑 = 𝜆2 − 𝜆3,

(25)

𝑚𝑠 = 𝜆2 − 𝜆3,

𝑚𝑑 = 𝜆1 − 𝜆3.

(26)

For man-made structures, that is, 𝐻 < 0.7 and 𝐴 > 0.5

[7, 17], similar to the case of vegetation areas, the volume
scattering power is solved as

𝑚V = 2𝜆3. (27)

Expand the coherency matrix after the real unitary transfor-
mation into eigenspace:

⟨[𝑇 (𝜃)]⟩ = 𝑚𝑠𝑇𝑠 + 𝑚𝑑𝑇𝑑 + 𝑚V𝑇V

= ⟨[𝑇 (𝜃)]⟩SD + 𝑚V𝑇V 1

= ⟨[𝑇 (𝜃)]⟩SD + 2 ⋅ 𝜆3 ⋅
1

2

(𝑘𝑠𝑘
∗𝑡

𝑠
+ 𝑘3𝑘
∗𝑡

3
)

= 𝜆1𝑘1𝑘
∗𝑡

1
+ 𝜆2𝑘2𝑘

∗𝑡

2
+ 𝜆3𝑘3𝑘

∗𝑡

3

= (𝜆1 − 𝜆2) 𝑘1𝑘
∗𝑡

1
+ 𝜆2𝑘2𝑘

∗𝑡

2

+ 2 ⋅ 𝜆3 ⋅
1

2

(𝑘1𝑘
∗𝑡

1
+ 𝑘3𝑘
∗𝑡

3
)

= 𝜆1𝑘1𝑘
∗𝑡

1
+ (𝜆2 − 𝜆3) 𝑘2𝑘

∗𝑡

2

+ 2 ⋅ 𝜆3 ⋅
1

2

(𝑘2𝑘
∗𝑡

2
+ 𝑘3𝑘
∗𝑡

3
) .

(28)

If 𝛼1 ≤ 𝜋/4, it can be seen that, 𝛼𝑠 = 𝛼1, 𝑘𝑠 = 𝑘1, then
the surface scattering model 𝑇𝑠 = 𝑘1𝑘

∗𝑡

1
, and the volume

scattering model 𝑇V 2 = (1/2)(𝑘1𝑘
∗𝑡

1
+ 𝑘3𝑘

∗𝑡

3
). In addition,

𝛼𝑑 = 𝛼2, 𝑘𝑑 = 𝑘2, and double-bounce scattering model
𝑇𝑑 = 𝑘2𝑘

∗𝑡

2
. From the fifth line of (28), we can solve surface

scattering powers 𝑚𝑠 and double-bounce powers 𝑚𝑑 as

𝑚𝑠 = 𝜆1 − 𝜆3,

𝑚𝑑 = 𝜆2.

(29)

If 𝛼2 ≤ 𝜋/4, then 𝛼𝑠 = 𝛼2, 𝑘𝑠 = 𝑘2, 𝑇𝑠 = 𝑘2𝑘
∗𝑡

2
, and

𝛼𝑑 = 𝛼1, 𝑇𝑑 = 𝑘1𝑘
∗𝑡

1
. The volume scattering model is 𝑇V 2 =

(1/2)(𝑘2𝑘
∗𝑡

2
+ 𝑘3𝑘
∗𝑡

3
). From the last line of (28), we can solve

surface scattering powers 𝑚𝑠 and double-bounce powers 𝑚𝑑

as

𝑚𝑠 = 𝜆2 − 𝜆3,

𝑚𝑑 = 𝜆1.

(30)

Because of 𝜆1 ⩾ 𝜆2 ⩾ 𝜆3 ⩾ 0 and because the scattering
powers are solved as (23), (25), and (26) or (27), (29), and (30),
the scattering powers are all nonnegative values.

4. Experimental Study

To prove the efficacy of proposed Freeman/eigenvalue
decomposition, the experiments are conducted on the L-
band fully PolSAR data of San Francisco which were acquired
by NASA/JPL ARISAR. The spatial resolution and range
resolution are both about 10m and the radar incidence angle
is from 5∘ to 60∘. The used PolSAR data is open access from
the internet [18].The original image is shown in Figure 1, with
the selected regions, which are used in the later tests.The size
of the used PolSAR image in these experiments is 900 × 1024.
Before expanding the coherency matrix, the Sigma filter is
used to process the speckle of the PolSAR data.

In order to demonstrate the efficacy of the proposed
hybrid Freeman/eigenvalue decomposition, the compared
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Figure 1: Original image of San Francisco.

Table 1: Means of dominated scattering powers in Region 1.

mean 𝑚𝑠 mean 𝑚𝑑 mean 𝑚V

FDD 1 0.9192 0.0013 0.0794
FDD 2 0.9475 0.0033 0.0492
HFED 1 0.9348 0.0164 0.0488
HFED 2 0.9348 0.0164 0.0488
Proposed method 0.9634 0.0053 0.0313

methods used Freeman-Durden decomposition [8] (FDD 1),
Freeman-Durden decomposition with the rotation of the
coherency matrix [12] (FDD 2), hybrid Freeman/eigenvalue
decomposition [14] (HFED 1), and hybrid Freeman/eigen-
value decomposition with extended volume scattering model
[15] (HFED 2). The PolSAR data are decomposed into three
components: surface scattering power 𝑚𝑠 (blue), double-
bounce scattering power 𝑚𝑑 (red), and volume scattering
power 𝑚V (green) in Figure 2.

From Figures 2(a)–2(e), three main terrain types in the
used data, that is, ocean areas, city blocks, and forests are
reconstructed well by the scattering powers derived from
these five decompositions. For further analysis, we compare
the scattering powers in three selected regions in Figure 1.
Those regions are Region 1, Region 2, and Region 3, respec-
tively.The sizes of these regions are 60× 100, 70× 70, and 60×

100 in proper order.The types of ground truth are ocean areas,
city blocks, and forests.Themean values of surface scattering
power mean 𝑚𝑠, double-bounce scattering power mean 𝑚𝑑,
and volume scattering power mean 𝑚V in the three regions
are listed in Tables 1, 2, and 3.Themean scattering powers are
all normalized by the total scattering powers (i.e., 𝑚𝑠 + 𝑚𝑑 +

𝑚V). In Region 1, it can be seen that mean 𝑚𝑠 given by the
proposed decomposition is 0.9634, which is about 4.8%, 1.7%,
3.1%, and 3.1% higher than the other four decompositions,
respectively. The efficacy of all the five decompositions on
Region 1 (sea) provides the excellent performance. In Region
2, the average double-bounce scattering power mean 𝑚𝑑

of the proposed decomposition also outperforms the other
methods. It is about 3.9%, 2.8%, 3.0%, and 0.6% larger than
these four decompositions in proper sequence. But, in Region
3,mean 𝑚V given by HFED 1 is the best.

Table 2: Means of dominated scattering powers in Region 2.

mean 𝑚𝑠 mean 𝑚𝑑 mean 𝑚V

FDD 1 0.1082 0.4307 0.4611
FDD 2 0.1676 0.5017 0.3307
HFED 1 0.1686 0.5008 0.3306
HFED 2 0.3245 0.5137 0.1618
Proposed method 0.2404 0.5158 0.2438

Table 3: Means of dominated scattering powers in Region 3.

mean 𝑚𝑠 mean 𝑚𝑑 mean 𝑚V

FDD 1 0.0314 0.1535 0.8151
FDD 2 0.0247 0.1555 0.8198
HFED 1 0.0673 0.1098 0.9228
HFED 2 0.0996 0.1097 0.7904
Proposed method 0.2380 0.0754 0.6865

Table 4: Classification results (%).

Region 1 Region 2 Region 3
FDD 1 100 36.49 95.97
FDD 2 100 84.65 99.32
HFED 1 100 84.82 99.47
HFED 2 100 86.63 95.50
Proposed method 100 95.92 98.05

We classified the selected regions into three classes. The
rule is simple; that is, the max scattering power determines
the label of the pixel. If the surface scattering power is the
biggest in the three scattering powers, the pixel is labeled
“surface scattering class.” It can be seen that the true labels
in Region 1, Region 2, and Region 3 are surface scattering
class, double-bounce scattering class, and volume scattering
class, respectively. The accuracy of the selected zones is listed
in Table 4. It can be seen, in Region 1, that surface scattering
powers of these decompositions are all the biggest ones, and,
in Region 3, these classification accuracies are all higher than
95%. In contrast to the other decompositions, the average
scattering powers of the proposedmethod in Region 3 are not
very good, but the classification accuracy is higher than 98%.
Moreover, in Region 2, the proposed method obtains the best
results, as large as 95.92%, which are about 59.43%, 11.72%,
11.10%, and 9.29% higher than FDD 1, FDD 2, HEFD 1, and
HEFD 2, respectively.

5. Conclusions

In this paper, a novel version of hybrid Freeman/eigenvalue
decomposition for polarimetric SAR data is proposed. Three
conclusions can by drawn about the proposed method.
Firstly, the eigenvectors of the rotated coherency matrix with
reflection symmetry condition are used as surface scatter-
ing or double-bounce scattering models. Secondly, in con-
trast to conventional Freeman-Durden decompositions, the
derived scattering powers are all nonnegative values. Thirdly,
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(c) (d)
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Figure 2: Decompositions of AIRSAR data on San Francisco with 𝑚𝑠 for blue, 𝑚𝑑 for red, 𝑚V for green. (a) FDD 1, (b) FDD 2, (c) HFED 1,
(d) HFED 2, and (e) proposed decomposition.

the volume scattering model is determined by the entropy
and anisotropy of the coherencymatrix. Experimental results
have proved the efficacy of the proposed decomposition.
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