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We consider a problem of minimum cost (energy) data aggregation in wireless sensor networks computing certain functions of
sensed data. We use in-network aggregation such that data can be combined at the intermediate nodes en route to the sink. We
consider two types of functions: firstly the summation-typewhich includes sum,mean, andweighted sum, and secondly the extreme-
type which includes max and min. However for both types of functions the problem turns out to be NP-hard. We first show that,
for sum andmean, there exist algorithms which can approximate the optimal cost by a factor logarithmic in the number of sources.
For weighted sum we obtain a similar result for Gaussian sources. Next we reveal that the problem for extreme-type functions is
intrinsically different from that for summation-type functions. We then propose a novel algorithm based on the crucial tradeoff in
reducing costs between local aggregation of flows and finding a low cost path to the sink: the algorithm is shown to empirically find
the best tradeoff point. We argue that the algorithm is applicable to many other similar types of problems. Simulation results show
that significant cost savings can be achieved by the proposed algorithm.

1. Introduction

Motivation. In this paper we consider the problem of min-
imum cost (energy) data aggregation in wireless sensor
networks (WSN) where the aggregated data is to be reported
to a single sink. A common objective of WSN is to retrieve
certain summary of sensed data instead of the entire set of
data. The relevant summary is defined as a certain function
applied to a set of measured data [1]. Specifically we are
given a function 𝑔(⋅) such that, for a set of measurement data
𝑥
1
, . . . , 𝑥

𝑛
, the goal of the sink is to retrieve 𝑔(𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
).

Examples of 𝑔(⋅) are mean, max, min, and so forth. When
mean function is used, 𝑔(𝑥

1
, . . . , 𝑥

𝑛
) = ∑

𝑛

𝑖=1
𝑥
𝑖
/𝑛. For

applications such as “alarm” systems, one can use max as 𝑔(⋅),
for example, 𝑔(𝑥

1
, . . . , 𝑥

𝑛
) = max

𝑖=1,...,𝑛
[𝑥
𝑖
] where 𝑥

𝑖
can be

temperature values in forest-fire monitoring systems or the
structural stress values measured in a building. We will refer
to 𝑔(⋅) as a summary function throughout this paper. Certain
types of 𝑔(⋅) allow us to combine data at the intermediate

nodes en route to the sink. Such combining techniques
are commonly referred to as in-network aggregation [2–4].
By using in-network aggregation one can potentially save
communication costs by reducing the amount of traffic [5–7].
For instance, in the applications such as wireless multimedia
sensor networks (WMSN) where the transmittedmultimedia
data has a far greater volume than that in typical WSNs,
the in-network aggregation technique is crucial for the
purpose of saving energy and extending network lifetime
[8, 9]. While in-network aggregation offers many benefits, it
poses significant challenge for network design, for example,
designing routing algorithms so as to minimize costs such as
energy expenditure and delay. In particular, we show that it is
crucial to take into account how the summary function 𝑔(⋅)

affects the statistical properties of sensed data.

Objectives. In this paper we study the minimum cost aggre-
gation problem for several types of 𝑔(⋅). The performance
of in-network aggregation relies heavily on the properties of
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Figure 1: An example of computing and communicating a sum-
mary.

the function 𝑔(⋅). To be specific let us briefly look at the
problem formulation. Consider the single-sink aggregation
problem where we define the cost function as follows. Let
𝐸 denote the set of links in the network. We would like to
minimize

∑

𝑒∈𝐸

𝑤
𝑒
𝜙
𝑒
, (1)

where 𝑤
𝑒
represents the weight associated with link 𝑒 and

𝜙
𝑒
represents the average number of bits transmitted over

𝑒. Note that the objective similar to (1) has been considered
in [10–14] as well. The most relevant objective associated
with (1) is the energy consumption. To see this, let us define
weight 𝑤

𝑒
:= 𝑘

𝑒
𝑑
−𝛼

𝑒
where 𝑑

𝑒
is the distance between nodes

connected by Link 𝑒, 𝛼 is the path loss exponent, and 𝑘
𝑒
is

the related channel parameter. Hence (1) is proportional to
the total transmitted energy consumed throughout the data
aggregation. Note in [13, 14], the authors consider the same
energy cost function. We refer to 𝜙

𝑒
as the aggregation cost

function (we will use notation 𝜙 to denote the cost function
in general, whereas 𝜙

𝑒
is used to denote the cost function

specifically on Link 𝑒). Note that 𝜙
𝑒
depends on the source

measurements aggregated on 𝑒, and also on 𝑔(⋅) which is the
summary function applied to themeasurements.Thework in
[15] also studies an aggregation problem in sensor networks
computing summary functions, assuming that all the packets
generated in the network have the same size. However, the
amount of information generated at intermediate nodes may
vary, since a summary of data can be statistically different
from the original data, which is our key observation.

Let us take an example. Consider the network in Figure 1
where Nodes 1 and 2 are the source nodes, and the node in
shaded color represents the sink. The sink wants to receive
a summary of information from Nodes 1 and 2. The sensor
readings generated at Nodes 1 and 2 are represented by the
random variables (RV)𝑋

1
and𝑋

2
, respectively. Since Node 1

is a “leaf ” node, Node 1 will simply transmit the raw reading
𝑋
1
to Node 2. Node 2 will combine 𝑋

1
with its own data,

𝑋
2
, by computing the summary function 𝑔(𝑋

1
, 𝑋

2
) which

is then transmitted to the sink. We define the aggregation
cost function 𝜙 as follows. Suppose the sensor information to
be transmitted on Edge 𝑒 is random variable 𝑌. The average
number of bits to be transmitted on 𝑒, or 𝜙

𝑒
, is defined as

(We temporarily ignore communication overheads incurred
in addition to the sensor information, e.g., the packet header
size. We will however take such overheads into account later
when we formally define 𝜙.)

𝜙
𝑒
= 𝐻 (𝑌) , (2)

where 𝐻(⋅) denotes the entropy function. Note that the
entropy function has been also adopted as cost function in

[10, 12], and throughout this paper we will define 𝜙 in terms
of 𝐻(⋅). The average numbers of bits transmitted on Edges 1
and 2 are, respectively, given by

𝜙
1
= 𝐻 (𝑋

1
) , 𝜙

2
= 𝐻 (𝑔 (𝑋

1
, 𝑋

2
)) . (3)

Suppose 𝑔(⋅) is given by sum. Since 𝐻(𝑔(𝑋
1
, 𝑋

2
)) = 𝐻(𝑋

1
+

𝑋
2
) ̸= 𝐻(𝑋

1
), the costs incurred at Edges 1 and 2, that is,

𝜙
1
and 𝜙

2
, are different. If we had used other types of 𝑔(⋅),

such as max, we would have that 𝜙
2

= 𝐻(max(𝑋
1
, 𝑋

2
))

which would incur different cost from the case where 𝑔(⋅)

was sum. In many cases we will assume symmetric sources;
that is, 𝜙 depends only on the number of sensor readings
to which 𝑔(⋅) is applied. In those cases we will treat 𝜙 as a
function 𝜙 : Z

+
→ R

+
; that is, 𝜙(𝑚) = 𝐻(𝑔(𝑋

1
, . . . , 𝑋

𝑚
))

(we will also examine the cases of asymmetric sources as
well). We will show that 𝑔(⋅) determines the properties of
𝜙(⋅) such as convexity and monotonicity, and the structure
of the aggregation problem heavily depends on those prop-
erties. Hence the aggregation scheme must be designed to
capture key aspects of aggregation cost functions under the
given summary function. The abovementioned links among
summary functions, cost functions, and optimal aggregation
strategies have not been previously well studied, as we will see
in Section 2 through reviewing related works.

Contributions. In this paper we investigate the minimum
energy aggregation problem for several widely used sum-
mary functions. We consider two types of 𝑔(⋅). The first
type is called the summation type which involves sums of
measurements: specifically sum, mean, and weighted sum.
The second type is called the extreme type which is related
to the extreme statistics of the data: specifically max and
min. We will use the entropy function as the measure of
information rate. We show that, when 𝑔(⋅) is sum or mean,
and if the source data is i.i.d., 𝜙 is indeed concave and
increasing, irrespective of the distribution of the source data.
This implies that one can use well-known algorithms such as
the Hierarchical Matching (HM) algorithm [16] in order to
approximate the optimal cost. When 𝑔(⋅) is weighted sum
however, it is unclear how we make association between the
flow aggregation problem and the cost function. Nonetheless
we prove that, if the source data is independent Gaussian
random variables, there exists an efficient algorithm for the
problem of aggregating weighted sum of data with arbitrary
weights.

Next we consider extreme type summary functions such
as max. We will show that for certain distributions of source
data, 𝜙 can be convex and decreasing in the (nonzero)
number of aggregated measurements. Note that the single-
sink aggregation problems for concave/increasing [16–20] or
convex/increasing cost functions [21, 22] have been widely
studied, however convex and decreasing 𝜙 has not been well
studied yet. We propose a novel algorithm which effectively
captures such properties of 𝜙. We begin by observing that
there are two aspects in cost reduction as follows. Since
𝜙 is convex and decreasing, 𝜙 decreases faster when the
number of aggregated data is smaller. The intuition is that
it pays to locally aggregate data among nearby sources in
the early stages of aggregation, that is, when the number
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of measurements aggregated at sensors is small. This leads
us to find a low-cost local clustering of sources, which is a
“microscopic” aspect of cost reduction. Meanwhile we need
to simultaneously find a low-cost route to the sink, which
must take the global structure of the network into account
and thus is a “macroscopic” aspect of cost reduction. These
are conflicting aspects and a good tradeoff point between
them should be sought. To that end we propose Hierarchical
Cover and Steiner Tree (HCST) algorithm. The algorithm
consists of multiple stages and is designed to empirically
find the best tradeoff point over the stages. We show that,
by simulation, the algorithm can significantly reduce cost
compared to baseline schemes such as a greedy heuristic
using shortest path routing, or the HM algorithm.

Our results show that the summary function 𝑔(⋅) can
significantly impact the design of aggregation schemes. How-
ever there are many choices for 𝑔(⋅): suppose for example, we
would like to compute 𝐿

𝑝
norm of the vector ofmeasurement

data. Note sum and max functions which we study in this
paper are in fact related such that, if the measurement data
is always positive, then sum function is simply 𝐿

1
norm and

max is 𝐿
∞

norm of a data vector. One could ask: what are
good aggregation strategies if we take 𝑔(⋅) as a different 𝐿

𝑝

norm, say 𝐿
2
norm? We leave such questions as future work.

Paper Organization. We briefly review related work in
Section 2. Section 3 introduces the model and problem for-
mulation. Sections 4 and 5 discuss the optimal routing prob-
lem for summation and extreme type summary functions,
respectively. Simulation results are presented in Section 6.
Section 7 concludes the paper.

2. Related Work

In general the single-sink aggregation problem to minimize
(1) is NP-hard [23], and a substantial amount of research has
been devoted to designing approximated algorithms depend-
ing on certain properties of 𝜙. In our case it is important to
note that such properties of 𝜙 are determined by the choice
of 𝑔(⋅). Let us briefly review the related work on the single
sink aggregation problem for two types of 𝜙. Most research
on the single sink aggregation problem has focused on the
case where 𝜙 is concave and increasing. Due to the concavity
of 𝜙, the link costs associated with the amount of aggregated
data exhibit economies of scale, that is, the marginal cost of
adding a flow at a link is cheaper when the current number
of aggregated flows is greater at the link. Buy-at-bulk network
design [23, 24] is based on such property of 𝜙. A number of
approximation algorithms have been proposed, for example,
[17–19]. When 𝜙 is known in advance, a constant factor
approximation to the optimal cost is possible [20, 25]. Even
when 𝜙 is unknown but is concave and increasing, Goel
and Estrin [16] have proposed a simple and randomized
algorithm calledHierarchical Matching (HM).The algorithm
computes minimum weight matchings of the source nodes
hierarchically over stages, and outputs a tree for aggregation.
HM algorithm can approximate the optimal cost by a factor
logarithmic in the number of sources [16]. Nonuniform
variants of this problem such that 𝜙 differs among the

links are also studied [26, 27] in which a polylogarithmic
approximation to the optimal cost is shown to be achievable.

The case where 𝜙 is convex and increasing in the number
of aggregated measurements has been studied in [21, 22].
Here 𝜙 exhibits (dis)economies of scale, that is, the marginal
cost of routing a flow at a link is more expensive when a
greater number of flows are aggregated at the link. Such
phenomenon can be observed from many applications, such
as speed scaling of microprocessors modeled by 𝜙(𝑚) = 𝛽𝑚

𝑎

where𝑚 is the clock speed,𝛽 ≥ 0 and 𝑎 ≥ 1 are constants, and
𝜙(𝑚) is the energy consumption at the processor. Notably the
authors show that the problem can intrinsically differ from
that for a concave and increasing 𝜙. For example the authors
show that constant-factor approximation algorithms do not
exist for certain convex and increasing 𝜙 [21].They neverthe-
less proposed a constant factor approximation algorithm for
the case 𝜙(𝑚) = 𝛽𝑚

𝑎. These results show that the single-sink
aggregation problem crucially depends on certain properties
of 𝜙 such as convexity. However, none of the above works
deal with convex and decreasing 𝜙 which we will study in the
sequel.

There have been many studies regarding the intermediate
data combining in conjunction with routing in order for an
efficient retrieval of the complete sensor readings. Scaling
laws for achievable rates under joint source coding and
routing are studied in [28].The work [11] studies the problem
ofminimizing the flow costs under distributed source coding.
They show that when 𝜙(𝑚) is linear in 𝑚, firstly applying
Slepian-Wolf coding at the sources, and secondly routing
coded information via shortest path tree from the sources
to the sink is optimal. In [10] a single-input coding model
was adopted in which the coding of information among the
nodes can be done only in pairs, but joint coding of the source
data from more than two nodes is not allowed. Assuming
reduction in packet size is a linear function of correlation
coefficient between each pair of nodes, they proposed a
minimum-energy routing algorithm. The impact of spatial
correlation on routing has been explored in [12].They showed
that, assuming the correlation decays over distance, it pays
to form clusters of nearby nodes and aggregate data at
the clusterheads. The aggregated information is then routed
from clusterheads to the sink. The algorithm is shown to
perform well for various correlation models. The tradeoff
between integrity of aggregated information and energy
consumption has been studied in [29]. Further works on
in-network aggregation combined with routing include [30,
31] which propose efficient protocols for routing excessive
values among sensed data. A scheme using spatially adaptive
aggregation so as to mitigate traffic congestion was proposed
in [32].

The above works aim at retrieving the entire set of data,
instead of a summary, subject to certain degrees of data
integrity. In our case, we design energy efficient aggregation
schemes to compute the summary function 𝑔(⋅) of the sensor
readings. Also in the abovementioned works, the in-network
aggregation reduces cost mainly by removing correlation
among the data set. In our work, by contrast, we will focus
on losslessly retrieving a summary of statistically independent
sensor readings. We assume the independence of sensor
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readings because we would like to decouple the cost savings
from removing correlation, and the savings from applying the
summary function in association with aggregation strategies;
we focus on the latter. Moreover, the assumption of the
independence among the readings represents the “worst” case
in terms of cost savings, since one cannot reduce the energy
cost by removing correlations in sensor readings. In fact,
the independence assumption can be valid in certain cases.
For example, consider a large sensor network assuming that
the sensed data is spatially correlated and the correlation
decays quickly over distance. If the source nodes are sparsely
deployed and thus tend to be far apart from one another, the
correlation among their data can be very weak. Obviously
such sparse node placement is motivated by cost efficiency:
sparse placement of nodes enables us to reap as much
information given a fixednumber of sensor devices, assuming
that the network senses a homogeneous field and themeasure
of information is given by the joint entropy function.

3. Model

3.1. Preliminaries. We are given an undirected graph 𝐺 =

(𝑉, 𝐸) where 𝑉 = {1, 2, . . . , 𝑛} and 𝐸 ⊆ 𝑉 × 𝑉 denote the set
of vertices and edges, respectively. For 𝑢, V ∈ 𝑉, (𝑢, V) ∈ 𝐸

denotes the (undirected) edge connecting nodes 𝑢 and V.
For each edge in 𝐸 we associate a weight defined by 𝑤 :

𝐸 → R
+
. A weight captures the cost of transmitting unit

amount of data between two nodes, for example, expenditure
of transmission energy in order to compensate path loss.
The set 𝑆 ⊂ 𝑉 denotes the set of source nodes, that is,
the nodes which generate measurement data to be reported
to the sink. Also define 𝜂 := |𝑆| where | ⋅ | denotes the
cardinality of a set. For a source node 𝑢 ∈ 𝑆, its measured
data is modeled by an RV denoted by 𝑋

𝑢
. We assume that

𝑋
𝑢
’s are independent and identically distributed among the

sources. The measured data is to be aggregated at the sink
node denoted by 𝑡 ∈ 𝑉.The nodeswhich are not source nodes
act as relays in the aggregation process. For simplicity we will
assume that any node in the network transmits data at most
once during the aggregation process. Such an assumption has
been made in other works such as [15]. Thus the routes for
aggregation constitute a tree whose root is given by 𝑡.We refer
to such tree as an aggregation tree. The aggregation process
is performed as follows. The sources initiate transmissions.
An intermediate node waits for all the data from the sources
which are descendants of the node to arrive. Next the node
computes the summary function of the aggregated datawhich
is then relayed to the next hop.

In this paper a summary function is defined to be a
nonnegative function denoted by 𝑔(⋅) which is a divisible
function.Divisible functions are a class of summary functions
which can be computed in a divide-and-conquer manner [1].
Divisible functions are defined as follows: given 𝑛 data sam-
ples, consider a partition of the samples into sets of size 𝑘 and
𝑛 − 𝑘 denoted by {𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑘
} and {𝑥

𝑘+1
, . . . , 𝑥

𝑛
}, respec-

tively. If 𝑔(⋅) is divisible, 𝑔(𝑔(𝑥
1
, . . . , 𝑥

𝑘
), 𝑔(𝑥

𝑘+1
, . . . , 𝑥

𝑛
)) =

𝑔(𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
) holds for any 𝑛 and 𝑘. Examples of divisible

functions are sum, max and min. Particularly when 𝑔(⋅) is

divisible, the aggregation can be performed in a divide-and-
conquer manner as follows. Suppose a set of data samples are
aggregated at a node. If the node is a source, it applies 𝑔(⋅) to
the collected samples and its own data. If the node is simply a
relay, it applies 𝑔(⋅) to the aggregated data samples to obtain a
summary of the samples where the summary of its aggregated
data is transmitted to the next hop.

Abusing notation for the sake of simplicity, we let the
function 𝑔(⋅) take a set, a vector, or their combination as its
argument. For example if 𝑔(⋅) is sum, 𝑔(𝑥, 𝑦) = 𝑥 + 𝑦, and
𝑔({𝑥, 𝑦}) = 𝑥 + 𝑦, and also 𝑔({𝑥, 𝑦}, 𝑧) = 𝑥 + 𝑦 + 𝑧. For
some 𝑈 ⊆ 𝑉, we define 𝑋

𝑈
as the set of RVs representing

the measurements from the nodes in 𝑈; that is, 𝑋
𝑈

:= {𝑢 ∈

𝑈 | 𝑋
𝑢
}. Thus 𝑔(𝑋

𝑈
) is the aggregation function applied to

the set𝑋
𝑈
, for example, if 𝑔(⋅) is sum then

𝑔 (𝑋
𝑈
) = ∑

𝑢∈𝑈

𝑋
𝑢
. (4)

3.2. Problem Formulation. We will define the problem of
minimizing communication costs as follows. There exists a
sink to which the data is to be aggregated. Our goal is to find
a minimum-cost aggregation tree T = (𝑉


, 𝐸


) ⊆ 𝐺 rooted

at the sink. We would like to solve the following aggregation
problem:

(P) Minimize
T=(𝑉 ,𝐸)⊆𝐺

∑

𝑒∈𝐸


𝑤
𝑒
𝜙
𝑒
, (5)

where 𝜙
𝑒
represents the average number of bits communi-

cated over Edge 𝑒. Note that the objective of (5) has been
considered in the works [10, 12] as well. We call 𝜙

𝑒
as

aggregation cost function which we define as follows.
We will use the entropy function 𝐻(⋅) as our measure

of information rate similar to works [13, 14]. We assume
that the average number of bits to represent random sensor
measurement𝑋 is given by𝐻(𝑋). A precise definition of the
entropy function 𝐻(𝑋) depends on the nature of 𝑋: if 𝑋 is
a discrete RV, 𝐻(𝑋) denotes the usual Shannon entropy. If
𝑋 is a continuous RV,𝐻(𝑋) is implicitly defined to be 𝐻(𝑋)

where𝑋 is a discrete RV obtained by applying uniform scalar
quantization to𝑋with somequantization step size, say 2−𝑏 for
some integer 𝑏 > 0. If the quantization precision is sufficiently
high, it is known [33] that𝐻(𝑋) ≈ 𝑏+ℎ(𝑋)where ℎ(⋅) denotes
the differential entropy of continuous RVs. Note that a similar
approximation has been made in defining the information
rates for continuous RVs in [13, 14]. Hence in this paper, we
will assume that continuous RV𝑋 incurs the cost of 𝑏 + ℎ(𝑋)

bits where 𝑏 > 0 is a sufficiently large parameter, and we
denote such costs by𝐻(𝑋) := 𝑏 + ℎ(𝑋).

In addition, the measured data is transmitted as a packet
in the network. Hence for each packet transmission, there is
an overhead of metadata, for example, packet header. For any
measurement𝑌, nomatter how small𝐻(𝑌), there is always an
overhead of transmitting such metadata in practice. We will
assume the header length is fixed to 𝛼 > 0 bits throughout
this paper. Hence the average number of bits required to send
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measurement information 𝑌 per transmission over a link is
given by

𝛼 + 𝐻 (𝑌) . (6)

For a given aggregation tree T = (𝑉

, 𝐸


), let 𝑝(𝑠) ⊂ 𝐸



denote the path from a source 𝑠 ∈ 𝑆 to the sink. For a given
Edge 𝑒 ∈ 𝐸, let 𝑈(𝑒) ⊆ 𝑆 denote the set of source nodes
whose aggregated measurements are transmitted over 𝑒, that
is, 𝑈(𝑒) = {𝑠 ∈ 𝑆 | 𝑒 ∈ 𝑝(𝑠)}. The information to be
communicated over Edge 𝑒 is the function 𝑔(⋅) applied to the
set of measurement value from 𝑈(𝑒), that is, 𝑔(𝑋

𝑈(𝑒)
). Hence

we define the aggregation cost function as follows:

𝜙
𝑒
= {

0 𝑈 (𝑒) = 0

𝛼 + 𝐻 (𝑔 (𝑋
𝑈(𝑒)

)) otherwise.
(7)

We would like to solve (P) using the definition of 𝜙
𝑒
given

by (7). In the following sections we investigate several
widely used summary functions and the associated optimal
aggregation problems.

4. Aggregation Schemes for
Summation-Type Summary Functions

We consider the summary functions of sum, mean, and
weighted sum.

4.1.sum and mean. Wefirst discuss the casewhere𝑔(⋅) issum.
We have that

𝐻(𝑔 (𝑋
𝑈(𝑒)

)) = 𝐻( ∑

𝑢∈𝑈(𝑒)

𝑋
𝑢
) . (8)

Clearly sum is a divisible function. Thus the aggregation
process is as follows: a node simply applies sum function to
the aggregated data, and relays the aggregated information to
the next hop.

When the source data is i.i.d., we will show that there
exists a randomized algorithm which finds an aggregation
tree whose expected cost is within a factor of (log(𝜂) + 1) of
the optimal cost to (5).

Proposition 1. Suppose 𝑋
𝑖
’s are i.i.d. For any distribution of

𝑋
𝑖
, there exists an algorithm yielding the mean cost within a

factor of {log(𝜂) + 1} of the optimal cost of (P).
Goel and Estrin [16] studied a single-sink data aggregation

problem as follows. A source generates a unit flow which needs
to be routed to a sink where the flows are aggregated though a
tree. Their objective is to minimize the following cost function:

∑

𝑒∈𝐸

𝑤
𝑒
𝜓 (𝑚

𝑒
) , (9)

where 𝑤
𝑒
is the weight on Edge 𝑒,𝑚

𝑒
is the number of flows on

Edge 𝑒 and𝜓 : R
+
→ R

+
is a function that maps the total size

of flow to its cost. They proposed an algorithm to minimize (9)
when 𝜓 is a canonical aggregation function defined as follows.

Definition 2 (see [16]). The function 𝜓 : R
+

→ R
+
is called

a canonical aggregation function (CAF) if it has the following
property:

(1) 𝜓(0) = 0.
(2) 𝜓(⋅) is increasing.
(3) 𝜓(⋅) is concave.

Their algorithm, called Hierarchical Matching (HM) [16],
guarantees the mean cost to be within the factor of log(𝜂) + 1

of the optimal irrespective of 𝜓, provided that 𝜓 is a CAF. As
mentioned previously, since𝑋

𝑖
’s are i.i.d., 𝜙

𝑒
depends only on

𝑚
𝑒
:= |𝑈(𝑒)|. Specifically we will define 𝜙 as follows:

𝜙
𝑒
= 𝜙 (𝑚

𝑒
) =

{{

{{

{

𝛼 + 𝐻( ∑

𝑢∈𝑈(𝑒)

𝑋
𝑢
) , 𝑚

𝑒
> 0,

0, 𝑚
𝑒
= 0.

(10)

We will show that 𝜙(⋅) is a CAF by showing that 𝜙(⋅) satisfies
the three properties of Definition 2. Note this implies that
HM algorithm can be used to approximately solve (P), since
(9) and the objective of (P) are identical.

Proof of Proposition 1. For the first property, it trivially holds
that 𝜙(0) = 0. For the second property, for any two
independent RVs 𝑋

1
and 𝑋

2
, it is known that 𝐻(𝑋

1
+

𝑋
2
) ≥ 𝐻(𝑋

1
) implying that 𝜙(2) ≥ 𝜙(1), that is, the sum

of independent RVs always increases entropy [33], which
implies that 𝜙(𝑚) is increasing in 𝑚. For the third property,
consider the following. It is shown in [34] that the entropy
of the sum of independent RVs is a submodular set function.
That is, the following holds for independent RVs 𝑌

1
, 𝑌

2
and

𝑌
3
[34, Theorem I]:

𝐻(𝑌
1
+ 𝑌

3
) + 𝐻 (𝑌

2
+ 𝑌

3
) ≥ 𝐻 (𝑌

1
+ 𝑌

2
+ 𝑌

3
) + 𝐻 (𝑌

3
) .

(11)

Now consider𝑚+2 sensor measurements𝑋
1
, . . . , 𝑋

𝑚+2
, and

make substitutions 𝑌
1

:= 𝑋
𝑚+1

, 𝑌
2

:= 𝑋
𝑚+2

, and 𝑌
3

:=

∑
𝑚

𝑖=1
𝑋
𝑖
in (11). We have that

𝐻(𝑋
𝑚+1

+

𝑚

∑

𝑖=1

𝑋
𝑖
) +𝐻(𝑋

𝑚+2
+

𝑚

∑

𝑖=1

𝑋
𝑖
)

≥ 𝐻(

𝑚+2

∑

𝑖=1

𝑋
𝑖
) +𝐻(

𝑚

∑

𝑖=1

𝑋
𝑖
) .

(12)

If we apply the definition of 𝜙 given by (10) to (12), the
following holds due to symmetry:

𝜙 (𝑚 + 1) + 𝜙 (𝑚 + 1) ≥ 𝜙 (𝑚 + 2) + 𝜙 (𝑚) . (13)

Hence 𝜙(𝑚 + 2) − 𝜙(𝑚 + 1) ≤ 𝜙(𝑚 + 1) − 𝜙(𝑚) holds, or the
slope is decreasing in𝑚, which implies that 𝜙(⋅) is concave on
the domain of integers.Thus 𝜙(⋅) satisfies all the properties of
Definition 2, and is a CAF. This implies that, by using HM
algorithm, one can achieve the expected cost which is within
the factor of 1 + log(𝜂) of the optimal cost of (P).
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Next we consider mean as the summary function. Note
that mean, as well as weighted sum considered in the next
section, are not divisible functions in general. We will
nevertheless show that the problem for those summary
functions can be reduced to sum problem as follows. Suppose
every source node is aware of the total number of the
sources, that is, 𝜂. In our scheme every source simply
scales its measurement by 𝜂

−1 prior to transmission, that is,
Source 𝑖 transmits 𝜂−1𝑋

𝑖
, then such scaled measurements are

aggregated in a similar way as the sum problem. The average
number of bits transmitted over Edge 𝑒 can be written as
𝛼 + 𝐻{∑

𝑢∈𝑈(𝑒)
((1/𝜂)𝑋

𝑢
)}. Since ((1/𝜂)𝑋

𝑢
)’s are i.i.d., for the

minimum cost aggregation problem for mean we can use
the same algorithm as that used for sum, for example, HM
algorithm.

4.2. weighted sum. Next we consider the case where 𝑔(⋅)

is weighted sum as follows. We assign arbitrary weights 𝑎
𝑖
,

𝑖 ∈ 𝑆, to the source nodes. The goal of the sink is to compute
∑
𝑖∈𝑆

𝑎
𝑖
𝑋
𝑖
. Our method of aggregation is similar to that for

the case of mean, that is, Source 𝑖 scales its measurement by
𝑎
𝑖
, then transmits 𝑎

𝑖
𝑋
𝑖
where the aggregation process is the

same as that for sum. However the effective source data 𝑎
𝑖
𝑋
𝑖

seen by the network is no longer i.i.d., unless 𝑎
𝑖
’s are identical

for all 𝑖 ∈ 𝑆. The aggregation cost function is given by

𝜙
𝑒
= 𝛼 + 𝐻( ∑

𝑖∈𝑈(𝑒)

𝑎
𝑖
𝑋
𝑖
) . (14)

The difficulty lies in it is difficult to associate a “flow” with
the source data 𝑎

𝑖
𝑋
𝑖
due to asymmetry, that is, the problem is

no longer a flow optimization. Moreover, it is easily seen that
(14) is not a CAF in general. Thus we restrict our attention to
a specific distribution of𝑋

𝑖
. We will show that, if𝑋

𝑖
are inde-

pendent Gaussian RVs, the problem for weighted sum is
indeed a single-sink aggregation problemwith concave costs,
and there exist algorithms similar to HM algorithm which
have good approximation ratio. Specifically we prove that
our problem is equivalent to the single-sink aggregation/flow
optimization problem with nonuniform source demands.

Proposition 3. Suppose 𝑋
𝑖
∼ 𝑁(𝜇

𝑖
, 𝜎

2

𝑖
), and 𝑋

1
, . . . , 𝑋

𝜂
are

independent. Let 𝑔(⋅) be weighted sumwith arbitrary weights
𝑎
1
, . . . , 𝑎

𝜂
. For sufficiently large 𝑏, there exists an algorithm

yielding the mean cost within a factor of {log(𝜂) + 1} of the
optimal cost of (P).

Proof. Consider the information communicated over Edge 𝑒
denoted by 𝑌:

𝑌 = ∑

𝑖∈𝑈(𝑒)

𝑎
𝑖
𝑋
𝑖
. (15)

Since 𝑋
𝑖
’s are independent Gaussian RVs, 𝑌 is also Gaussian

with variance 𝜎
2

𝑒
where 𝜎

2

𝑒
:= ∑

𝑖∈𝑈(𝑒)
𝑎
2

𝑖
𝜎
2

𝑖
. Thus the

differential entropy of 𝑌 is given by

ℎ (𝑌) =
1

2
log(2𝜋𝑒 ∑

𝑖∈𝑈(𝑒)

𝑎
2

𝑖
𝜎
2

𝑖
) . (16)

We observe that, from (16), we can treat 𝑎2
𝑖
𝜎
2

𝑖
as the “flow”

generated by Source 𝑖, and the sum of flows at Edge 𝑒 incurs
the entropy cost as in (16). Specifically we will make the
following definitions:

𝑓
𝑖
:= 𝑎

2

𝑖
𝜎
2

𝑖
, 𝑖 ∈ 𝑆, (17)

𝑓
∗
:= min

𝑖∈𝑆

𝑓
𝑖
, (18)

𝜓 (𝑥) := 𝛼 + 𝑏 +
1

2
log (2𝜋𝑒𝑥) , 𝑥 ≥ 0, (19)

𝜙 (𝑥) :=

{{

{{

{

𝜓 (𝑥) , 𝑥 ≥ 𝑓
∗
,

𝜓 (𝑓
∗
)

𝑓∗
𝑥, 0 ≤ 𝑥 < 𝑓

∗
.

(20)

Here 𝑓
𝑖
represents the (unsplittable) flow demand generated

by Source 𝑖, and 𝑓
∗ denotes the minimum demand. Hence

under a flow routing scheme, the total amount of flow at Link
𝑒 is given by ∑

𝑖∈𝑈(𝑒)
𝑓
𝑖
. Then from (16), the associated com-

munication cost incurred at Link 𝑒 is given by 𝜓(∑
𝑖∈𝑈(𝑒)

𝑓
𝑖
)

bits, that is, 𝜓(⋅) represents the information rate of a flow
aggregated at Link 𝑒. Unlike the previously defined cost
functions, 𝜓 is no longer a function of the number of sources
on a link, but instead the function of the amount of flow on
that link. Finally we define the aggregation cost function 𝜙 in
terms of 𝜓 as in (20) in order to meet the concavity condition
for 𝜙 as follows: 𝜙 is essentially identical to 𝜓, and if

𝑏 ≥
1

2
log( 1

2𝜋𝑒𝑓∗
) , (21)

one can show that𝜙(𝑥) is concave and increasing for all 𝑥 ≥ 0.
Hence under the condition (21), 𝜙 is an increasing concave
function of the total flow aggregated on a link. In that case we
can use the algorithm proposed byMeyerson et al. [19] which
essentially extends the HM algorithm to the problems with
nonuniform source flow demands, and can approximate the
optimal cost by a factor of log(𝜂) + 1 on average.

In summary, the key question was whether (P) can be
cast as a flow aggregation problem, if 𝑔(⋅) is weighted sum.
In general, it is difficult to make such association due to
asymmetry; however, we revealed that such formulation is
possible for independent Gaussian sources.

4.3. Discussions. Note that some properties regarding 𝑋
𝑖
’s

such as the submodularity relation in (11), used to show that 𝜙
is a CAF rely heavily on the independence of𝑋

𝑖
’s. When𝑋

𝑖
’s

are correlated, we can find examples of 𝜙 which are not CAF
for the summary function of sum as follows. Let 𝑋

1
and 𝑋

2

be jointly Gaussian with the same marginal given by 𝑁(0, 1)

with E[𝑋
1
𝑋
2
] = 𝜌. Then 𝑋

1
+ 𝑋

2
is distributed according to

𝑁(0, 2(1 + 𝜌)), thus we have that, if 𝜌 < −0.5, then

ℎ (𝑋
1
+ 𝑋

2
) =

1

2
log (2𝜋𝑒 ⋅ 2 (1 + 𝜌))

<
1

2
log (2𝜋𝑒) = ℎ (𝑋

1
) .

(22)
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Thus the entropy function does not satisfy the second
condition of Definition 2, that is, the increasing property, as a
CAF.Hence for arbitrarily correlated sources, presumably few
meaningful arguments can be made on optimal aggregation
problems, even for simple summary functions such as sum.

The discussion so far enables us to deal withmore general
objective functions extended from (P). Consider a function
𝛾 : R

+
→ R

+
which is concave and increasing. We now

define communication overhead on an edge as the function
𝛾 of the average number of bits transmitted over the edge.
Namely, we consider the following extension of (P):

(P


) Minimize
T=(𝑉 ,𝐸)⊆𝐺

∑

𝑒∈𝐸


𝑤
𝑒
𝛾 (𝜙

𝑒
) . (23)

Consider (P


) for the summary function sum for i.i.d. sources
and weighted sum for independent Gaussian sources. Note
that the composition of two concave and increasing functions
is also concave and increasing [35]. Thus 𝛾(𝜙

𝑒
) is a concave

and increasing function of the amount of flows at an edge,
and thus is a CAF. Hence HM algorithm can be used to
approximate (P



).

5. Aggregation Schemes for
Extreme-Type Summary Functions

5.1. Case Study. In this section we consider summary func-
tions regarding the extreme statistics of measurements, that
is, max or min. We will first investigate the entropy of the
extreme statistics of a set of RVs. Consider 𝑚 measurements
denoted by 𝑋

𝑖
, 𝑖 = 1, . . . , 𝑚. Since (max

1≤𝑖≤𝑚
𝑋
𝑖
) =

−{min
1≤𝑖≤𝑚

(−𝑋
𝑖
)}, we will focus only on max without loss

of generality. It is easily seen that max function is divisible,
thus the aggregation process is similar to that for sum: a
node simply applies max function to the aggregated data. For
example, suppose a node receives data given by 𝑋

1
, . . . , 𝑋

𝑚
.

The node simply computes (max
𝑖=1,...,𝑚

𝑋
𝑖
) and forwards it to

the next hop.
For extreme-type summary functions, we will show that

𝜙 is in general not a CAF. In particular we consider several
cases of practical importance.

Case 1 (Gaussian RVs). We consider the problem of retriev-
ing the maximum of i.i.d. Gaussian RVs. We assume that
𝑋
𝑖
∼ 𝑁(0, 1) for 𝑖 ∈ 𝑆 where we again assume that 𝜙(𝑚) =

𝛼 + 𝑏 + ℎ(max
𝑖=1,...,𝑚

[𝑋
𝑖
]) for𝑚 ≥ 1 and some constant 𝑏. We

provide a numerical evaluation of ℎ(max
𝑖=1,...,𝑚

[𝑋
𝑖
]) on the

left of Figure 2. We observe that 𝜙(𝑚) is strictly convex and
decreasing in𝑚 for𝑚 ≥ 1, thus 𝜙 is not a CAF.

Case 2 (Extreme data retrieval problem). We consider the
problem of extreme data retrieval defined as follows. Assume
that a source node 𝑖 ∈ 𝑆 measures some physical quantity
which is distributed according to a continuous RV 𝑌

𝑖
. We

assume 𝑌
𝑖
’s are independent but not necessarily identically

distributed. Suppose with some probability 𝑌
𝑖
is equal to

a large number, which indicates an “abnormal” event. An
important application of sensor networks is to detect the

maximum abnormality among themeasurements.The abnor-
mality is defined as how far a sensor’s measurement has
deviated from its usual statistics as follows. Let us denote
the cumulative distribution function (CDF) of 𝑌

𝑖
by 𝐹

𝑖
(⋅) or

P(𝑌
𝑖
≤ 𝑦) = 𝐹

𝑖
(𝑦), 𝑖 ∈ 𝑆. Consider realizations of 𝑌

1
, . . . , 𝑌

𝜂

given by 𝑦
1
, . . . , 𝑦

𝜂
. We will quantify the abnormality at

Source 𝑖 in terms of how unlikely the measurement 𝑦
𝑖
is:

specifically the goal of the sink is to retrieve min
𝑖∈𝑆

[P(𝑌
𝑖
>

𝑦
𝑖
)], or alternatively,

max
𝑖∈𝑆

[𝐹
𝑖
(𝑦
𝑖
)] , (24)

thus the abnormality of𝑦
𝑖
is defined by𝐹

𝑖
(𝑦
𝑖
). Let𝑋

𝑖
= 𝐹

𝑖
(𝑌
𝑖
).

We will assume that the nodes transmit and aggregate 𝑋
𝑖

instead of𝑌
𝑖
, and the goal of the sink is to retrievemax

𝑖∈𝑆
{𝑋

𝑖
}.

Note since 𝑋
𝑖
= 𝐹

𝑖
(𝑌
𝑖
) is the RV evaluated at its distribution

function, one can show that 𝑋
𝑖
’s are i.i.d. RVs uniformly

distributed on [0, 1]. Thus the problem reduces to an optimal
aggregation problem retrieving max of i.i.d. uniform RVs.

We will show that 𝜙 associated with the extreme data
retrieval problem is convex and decreasing function when
the number of aggregated measurements is greater than or
equal to 2. Suppose the data aggregated at a node is given by
𝑋
1
, . . . , 𝑋

𝑚
and define 𝑍

𝑚
:= max

𝑖=1,...,𝑚
[𝑋

𝑖
]. As previously

we assume that the node requires on average 𝜙(𝑚) = 𝛼 + 𝑏 +

ℎ(𝑍
𝑚
) bits to transmit 𝑍

𝑚
.

Proposition 4. Consider the extreme data retrieval problem.
The aggregation cost function 𝜙(𝑚) is convex and decreasing
for𝑚 ≥ 2.

Proof. Since𝑍
𝑚
is the maximum of𝑚 i.i.d. uniform RV’s, the

CDF of 𝑍
𝑚
denoted by 𝐹

𝑍
𝑚

(⋅) is given by

𝐹
𝑍
𝑚

(𝑧) = 𝑧
𝑚
. (25)

Thus the probability density function (pdf) of𝑍
𝑚
denoted by

𝑓
𝑍
𝑚

is given by𝑚𝑧
𝑚−1. If we compute ℎ(𝑍

𝑚
),

ℎ (𝑍
𝑚
) = −∫

1

0

𝑓
𝑍
𝑚

(𝑧) log {𝑓
𝑍
𝑚

(𝑧)} 𝑑𝑧

= −∫

1

0

𝑚𝑧
𝑚−1 log (𝑚𝑧

𝑚−1
) 𝑑𝑧 = − log (𝑚) +

𝑚 − 1

𝑚
.

(26)

Thus

𝜙 (𝑚) = {
𝛼 + 𝑏 − log (𝑚) + 1 − 𝑚

−1
, 𝑚 ≥ 1,

0, 𝑚 = 0.
(27)

By regarding𝑚 as a continuous variable, we have that, for𝑚 ≥

1,

𝑑𝜙

𝑑𝑚
= −

1

𝑚
+

1

𝑚2
,

𝑑
2
𝜙

𝑑𝑚2
=

1

𝑚2
−

2

𝑚3
=

1

𝑚2
(1 −

2

𝑚
) .

(28)

Clearly 𝜙(𝑚) is decreasing for 𝑚 ≥ 1, and since its second
order derivative is nonnegative for𝑚 ≥ 2, 𝜙(𝑚) is convex for
𝑚 ≥ 2.
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Figure 2: The differential entropy of the maximum of a set of i.i.d. RVs distributed according to an RV 𝑋. On the left, 𝑋 ∼ 𝑁(0, 1), and on
the right,𝑋 is uniform on [0, 1].

On the right of Figure 2 the plot of ℎ(𝑍
𝑚
) is shown. Note

ℎ(𝑍
𝑚
) is strictly convex for 𝑚 ≥ 2, but overall appears to be

approximately convex. Note that ℎ(𝑍
𝑚
) is nonpositive, thus

one could select a sufficiently large 𝑏 such that 𝜙(𝜂) = 𝛼 + 𝑏 +

ℎ(𝑍
𝜂
) ≥ 0, so that 𝜙(𝑚) ≥ 0 for all 1 ≤ 𝑚 ≤ 𝜂.
In general, for a convex and decreasing 𝜙, (P) is clearly

NP-hard since the problem contains the Steiner tree problem
as a special case. In the following section we present a
novel algorithm which captures key properties of convex and
decreasing 𝜙. Later we show by simulation the algorithm
effectively achieves low cost.

5.2. Algorithm for Convex and Decreasing
Aggregation Cost Functions

5.2.1. Motivation. Before we describe our algorithm we
present the motivation behind the algorithm. An important
observation for the data aggregation problems was made in
[25] for concave and increasing 𝜙.They proposed a “hub-and-
spoke” model for so-called facility location problem. The idea
is that when 𝜙 is concave and increasing, one should first
aggregate flows to some “hubs,” then route the aggregated
flow from the hubs to the sink at the minimum cost; this
is done by building an approximately optimal Steiner tree
where the hubs (facility locations) are the Steiner nodes.
The rationale is that, once multiple flows are aggregated at
hubs, the cost of routing them collectively to the sink is
cheaper than routing the sources’ flows separately, due to the
concavity of 𝜙. We observe two aspects in such hub-and-
spoke schemes. Firstly by local aggregation of flows at hubs
we aim at greedily reducing costs based on local information,
which we view as the microscopic approach to reduce cost.
Secondly by building an approximately optimal Steiner tree
with respect to the hubs and the sink, we take the global
network structure into account, which can thus be seen as

the macroscopic aspect for cost reduction. Hence there exists
a tradeoff between microscopic and macroscopic aspects of
the cost reduction. A similar observation on such tradeoff
was made in [12]. However our key question is that, how do
we achieve an optimal tradeoff between those aspects for a
convex and decreasing 𝜙?

Consider the three examples of aggregation cost func-
tions denoted by 𝜙

1
, 𝜙

2
, and 𝜙

3
which are decreasing and

convex for 𝑚 ≥ 1 as shown in Figure 3. In case of 𝜙
1
, we

see that 𝜙
1
is flat for 𝑚 ≥ 1, that is, the average number

of bits communicated over a link is constant irrespective of
the number of flows passed through it. Thus, the minimum
cost routing problem reduces to a Steiner tree problem, in
which case a completely “macroscopic” solution is optimal.
In case of 𝜙

2
, we see that 𝜙

2
decreases slowly in 𝑚. Thus,

the more number of flows merges at a link, it takes the less
number of bits to transmit the merged information. Suppose
weuse the hub-and-spoke scheme to aggregate flows in a local
manner.The amount of aggregated flows at a hub is at least 2:
note that however, 𝜙

2
is approximately “flat” for 𝑚 ≥ 2. This

implies that, once more than two flows are aggregated, the
benefits from further local flow aggregationwill be negligible.
Hence the optimal routing problem from the hubs to the
sink approximately reduces to the Steiner tree problem!
Thus one could expect that local aggregation (microscopic
approach) followed by an optimal Steiner tree construction
(macroscopic approach) would yield a good solution. Now
let us consider 𝜙

3
. The overall rate of decrease of 𝜙

3
is higher

than that of𝜙
2
. It appears that when the number of aggregated

flows is significantly high, for example,𝑚 is greater than 6, 𝜙
3

becomes effectively “flat.”This suggests that, one should keep
aggregating flows until sufficient amount of flows, say 6, is
aggregated, that is, the microscopic cost reduction should be
applied formultiple times in a hierarchical manner, then build
an optimal Steiner tree with respect to the aggregated sources,
that is, applying macroscopic reduction.
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m
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Figure 3: Aggregation cost functions which are convex and decreasing for𝑚 ≥ 1.

The example provides uswith some insights. Since𝜙(𝑚) is
convex decreasing, the marginal benefit of local aggregation
is large for small 𝑚 but decreases with increasing 𝑚. In
other words, when 𝑚 is small, that is, in the early stages
of the overall aggregation process, one should focus on
low-cost local aggregation in order to benefit from high
rate of decrease of 𝜙(𝑚) for small 𝑚. Meanwhile, once a
large number of flows are aggregated, it pays to perform
macroscopic cost reduction from there on by building the
optimal Steiner trees since 𝜙 becomes more “flat” with
increasing 𝑚. This suggests that there exists a tradeoff point
at which such microscopic and macroscopic reduction are
optimally balanced. Unfortunately it is difficult to know such
a tradeoff point in advance. The proposed algorithm not
only exploits both the microscopic and macroscopic aspects
of cost reduction for a convex and decreasing 𝜙, but also
empirically searches for the optimal tradeoffpoint. Details are
presented in the following section.

5.2.2. Outline. An outline of the proposed algorithm is pre-
sented as follows. The algorithm consists of multiple stages.
A hub-and-spoke problem (or facility location problem) is
approximately solved at each stage. The flows from source
nodes are merged at the hubs. The hubs at the present stage
become the source nodes in the next stage, that is, the
flows are merged hierarchically. Instead of solving complex
facility location problem, we find a minimum weight edge
cover (MWEC) on the source nodes at each stage as a simple
approximation. The rationale is that we would like to cluster
sources for local aggregation at low costs, and by definition
the MWEC incurs low cost in doing that. MWEC consists of
multiple connected components, each of which is a tree. For
each connected component we select a source as a hub and
call it a center node (details on the selection of center nodes
are provided later).The flows in that component is aggregated
at the center node.

At each stage, once the center nodes are determined, we
build an approximately optimal Steiner tree with respect to
the center nodes and the sink.Weuse algorithm in [36] for the
Steiner tree construction. Their algorithm provides the best

known 𝜌
𝑆
-approximation for Steiner tree problemwhere 𝜌

𝑆
≈

1.39.
Each stage outputs an aggregation tree. The output tree

at Stage 𝑖 is the union of the paths from all the hierarchical
aggregations found up to Stage 𝑖 and the Steiner tree built at
Stage 𝑖. Namely, the output tree at Stage 𝑖 is a combination
of 𝑖 consecutive hierarchical aggregations (microscopic cost
reduction) and a Steiner tree with respect to the sink and
Stage 𝑖 hubs (macroscopic cost reduction).

Hence, over the stages, the algorithm progressively
changes the balance between microscopic and macroscopic
aspects of cost reduction in the output trees. Roughly speak-
ing, the output trees from later stages aremore biased towards
the microscopic aspect. After the stages are over, we pick the
tree with the minimum cost among the output trees. As a
result the algorithm empirically searches for the point of the
“best” balance between the two aspects of cost reduction over
the stages. Hence one could expect that our algorithm will
work well for any convex and decreasing 𝜙.

5.2.3. AlgorithmDescription. Wepresent a formal description
of the proposed algorithm followed by an explanation of
further details. For given aggregation tree T ⊆ 𝐺, let 𝑐(T)

denote the total energy cost associated with T, as in the
objective of (P).

Hierarchical Cover and Steiner Tree (HCST) Algorithm

Begin Algorithm

(1) (Metric completion of 𝐺) If 𝐺 is not a complete
graph, perform a metric completion of 𝐺 to yield
a complete graph. Namely, if there exist any pair of
vertices without an edge, create an edge between the
pair and assign the edge a weight which is the distance
between the pair.The distance ismeasured in terms of
the sum of the weights on the shortest path between
the pair.

(2) (Initialization) 𝑖 ← 0, 𝑆
0
← 𝑆.

(3) (Initialize flows at sources) 𝑓
𝑢
← 1, for all 𝑢 ∈ 𝑆.
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(4) (Initial output is a Steiner tree) Jump to Step 7.
(5) (Minimum weight edge cover) Let us denote the sub-

graph of 𝐺 induced by 𝑆
𝑖−1

by 𝐺
𝑠
. Find a minimum-

weight edge cover𝑀
𝑖
in 𝐺

𝑠
. Let 𝐶

𝑖
= (𝑆

𝑖−1
,𝑀

𝑖
) be the

subgraph of 𝐺 induced by the cover.
(6) (Node selection) Suppose 𝐶

𝑖
has ] connected compo-

nents, and denote the 𝑗th connected component of𝐶
𝑖

by 𝐾
𝑗
= (𝑉

𝑗
, 𝐸

𝑗
) for 1 ≤ 𝑗 ≤ ]. For each 𝐾

𝑗
, select

a node with the maximum degree (ties are arbitrarily
broken), say 𝑢

𝑗
, which is called a center node. 𝐾

𝑗
is a

tree, and 𝑢
𝑗
becomes the root of 𝐾

𝑗
. All the flows in

𝐾
𝑗
are aggregated at 𝑢

𝑗
such that every node transmits

data to its parent node after the data from its child
nodes has been aggregated at the node.The total flow
at 𝑢

𝑗
is updated as follows:

𝑓
𝑢
𝑗

← ∑

𝑢∈𝑉
𝑗

𝑓
𝑢
. (29)

Remove all the noncenter nodes from 𝑆
𝑖−1

, and let 𝑆
𝑖

be the resulting set of source nodes.
(7) (Steiner tree construction) Build 𝜌

𝑆
-optimal Steiner

tree 𝑇𝑠
𝑖
with respect to the source nodes in 𝑆

𝑖
and the

sink, using the algorithm in [36].
(8) (Merging trees) If 𝑖 > 0, merge all the MWECs found

up to the present stage and the Steiner tree found in
Step 7; that is, let

𝑇
𝑖
← 𝑇

𝑠

𝑖
∪ (

𝑖

⋃

𝑗=1

𝐶
𝑗
) . (30)

If 𝑖 = 0, 𝑇
0
← 𝑇

𝑠

0
. We call 𝑇

𝑖
the output tree of Stage 𝑖.

(9) (Loop) If |𝑆
𝑖
| > 1, 𝑖 ← 𝑖 + 1 and go back to Step 5. If

|𝑆
𝑖
| = 1, continue to Step 10.

(10) (Tree selection) The final output is the tree 𝑇
𝑗
∗ such

that

𝑗
∗
= argmin

𝑗=0,...,𝑖

[𝑐 (𝑇
𝑗
)] , (31)

that is, theminimum cost tree among the output trees
from all the stages.

End Algorithm

5.2.4. Comments. Weexplain the details of several steps in the
algorithm. In Step 3 the flow variables denoted by 𝑓

𝑢
, 𝑢 ∈ 𝑆,

associated with the source nodes are initialized where we will
track the amount of flows throughout the algorithm. In Step 6
it is natural to select a node with the maximum degree as the
center node, since such node is literally a “hub.”When solving
the hub-and-spoke problem at each stage, we choose to
solve the MWEC problem whereas in [25] the load-balanced
facility location problem is solved. An advantage of solving
MWEC problem is that it is considerably simpler than load-
balanced facility location problems since anMWEC problem

can be reduced to a minimum weight perfect matching
problem [37]. Note that the algorithm in [25] solves the hub-
and-spoke problem only once, that is, its output is analogous
to the output tree from Stage 1 of our algorithm. Meanwhile
HM algorithm solves minimum weight perfect matching at
each stage in order to locally aggregate flows with low costs.
HM algorithm solves the matching problem hierarchically
until all the flows are aggregated to a single source, and
the final output is the union of those matchings. Thus its
final output is analogous to that from the final stage of our
algorithm. In otherwords, the outputs of the abovementioned
algorithms correspond to those from intermediate stages in
our algorithm. The HIERARCHY algorithm proposed in
[20] hierarchically constructs Steiner trees and solves load-
balanced facility location problems, however in a way which
heavily relies on the concave and increasing property of
𝜙. Thus the algorithm may not be suitable for convex and
decreasing 𝜙.

5.3. Performance Analysis. In this section we analyze the
performance ofHCST algorithm. For setE ofweighted edges,
let ‖E‖ denote the sum of its edge weights, that is, ∑

𝑒∈E 𝑤
𝑒
.

For given source set Σ, let 𝑇
𝑆
(Σ) denote the edge set of the

optimal Steiner tree associated with Σ.

Proposition 5. For given network graph 𝐺 = (𝑉, 𝐸), the
cost achieved by HCST algorithm is higher than the optimal
algorithm by a factor of at most 𝐵 defined as

𝐵 :=
1

𝜙 (𝑍)
⋅ min
𝑖=0,...,I

[𝜙 (2
𝑖
) 𝜌

𝑆
+

𝑖

∑

𝑘=1

𝜙 (2
𝑘−1

) 𝜌
𝑘
] , (32)

where I (I ≤ log
2
𝜂) denotes the stage at which HCST

algorithm terminates. 𝜌
𝑆

≈ 1.39 denotes the approximation
ratio for Steiner tree problem, and 𝜌

𝑖
∈ [0, 1] is the ratio of the

sums of edge weights between MWEC 𝑀
𝑖
at Stage 𝑖 of HCST

algorithm and the Steiner tree associated with source set 𝑆, that
is,

𝜌
𝑖
=

𝑀𝑖


𝑇𝑆 (𝑆)



. (33)

Also 𝑍 is defined as

𝑍 :=
∑
⌊𝜂/2⌋

𝑖=1
𝑖𝑤

[𝑖]
+ 𝜂∑

𝑛−⌊𝜂/2⌋−1

𝑖=0
𝑤
[|𝐸|−𝑖]

∑
⌊𝜂/2⌋

𝑖=1
𝑤
[𝑖]

+ ∑
𝑛−⌊𝜂/2⌋−1

𝑖=0
𝑤
[|𝐸|−𝑖]

, (34)

where 𝑛 := |𝑉|, and 𝑤
[𝑖]

denotes the 𝑖th smallest value of the
edge weights of𝐺. Note that the second summation term of (32)
is defined to be 0 if 𝑖 = 0.

Proof. Denote the optimal cost by OPT. We first find a lower
bound for OPT. Let 𝑇∗ denote the set of edges of the optimal
aggregation tree. Let us sort the amount of edge flows of 𝑇∗
in increasing order, and denote them by 𝑑

𝑖
, that is, 0 < 𝑑

1
≤

𝑑
2
≤ ⋅ ⋅ ⋅ ≤ 𝑑

𝑙
where𝑇∗ has 𝑙 edges.There are at least 𝜂nonzero

flows since there are 𝜂 sources, hence 𝑑
𝜂
> 0 and 𝑙 ≥ 𝜂 hold.

In addition 𝑙 is at most 𝑛, since𝑇∗ is a tree. Also it is clear that
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𝑑
𝑖
≤ 𝑖, for 𝑖 = 1, . . . , 𝜂, and 𝑑

𝑖
is at most 𝜂 for 𝜂 < 𝑖 ≤ 𝑙. This

implies that, since 𝜙 is decreasing, 𝜙(𝑑
𝑖
) ≥ 𝜙(𝑖), 𝑖 = 1, . . . , 𝜂.

Let us denote the weight of the edge that carries flow 𝑑
𝑖
by V

𝑖
.

For real numbers 𝑎 and 𝑏, let 𝑎 ∧ 𝑏 := min(𝑎, 𝑏). We have that

OPT =

𝑙

∑

𝑖=1

V
𝑖
𝜙 (𝑑

𝑖
) ≥

𝑙

∑

𝑖=1

V
𝑖
𝜙 (𝑖 ∧ 𝜂) (35)

≥ (

𝑙

∑

𝑖=1

V
𝑖
)𝜙(

∑
𝑙

𝑖=1
(𝑖 ∧ 𝜂) V

𝑖

∑
𝑙

𝑖=1
V
𝑖

) (36)

≥
𝑇𝑆 (𝑆)

 𝜙(
∑
𝑙

𝑖=1
(𝑖 ∧ 𝜂) V

𝑖

∑
𝑙

𝑖=1
V
𝑖

) , (37)

where (36) is by Jensen’s inequality due to the convexity of 𝜙,
and (37) is from the definition of Steiner trees. Considering
that 𝜙 is decreasing, we would like to make the argument of 𝜙
in (37) as large as possible in order to find a lower bound for
OPT. Hence we would like to maximize 𝜆(V

1
, . . . , V

𝑙
) defined

as

𝜆 (V
1
, . . . , V

𝑙
) :=

∑
𝑙

𝑖=1
(𝑖 ∧ 𝜂) V

𝑖

∑
𝑙

𝑖=1
V
𝑖

, (38)

where V
𝑖
, 𝑖 = 1, . . . , 𝑙 are chosen from the edge weights of

𝐺. For the purpose of maximizing (38), we will assume V
1
≤

V
2
≤ ⋅ ⋅ ⋅ ≤ V

𝑙
WLOG, because over all possible permutations

𝜋(1), 𝜋(2), . . . , 𝜋(𝑙) of {1, 2, . . . , 𝑙}, ∑
𝑖
(𝑖 ∧ 𝜂)V

𝜋(𝑖)
is maximized

when V
𝜋(1)

≤ V
𝜋(2)

≤ ⋅ ⋅ ⋅ ≤ V
𝜋(𝑙)

.
We first observe that 𝜆(⋅) is decreasing in V

1
, . . . , V

⌊𝜂/2⌋
,

since if 𝑘 ≤ ⌊𝜂/2⌋, we have that

𝜕𝜆

𝜕V
𝑘

=
𝑘∑

𝑖
V
𝑖
− ∑

𝑖
(𝑖 ∧ 𝜂) V

𝑖

(∑
𝑖
V
𝑖
)
2

=

∑
𝑘−1

𝑗=1
(𝑘 − 𝑗) (V

𝑗
− V

2𝑘−𝑗
) + ∑

𝑙

𝑗=2𝑘
(𝑘 − (𝑗 ∧ 𝜂)) V

𝑗

(∑
𝑖
V
𝑖
)
2

≤ 0.

(39)

Hence 𝜆(⋅) can be maximized over V
1
, . . . , V

⌊𝜂/2⌋
by choosing

⌊𝜂/2⌋ smallest weights from the edge weights of 𝐺, that is, by
letting V

𝑖
= 𝑤

[𝑖]
for 𝑖 = 1, . . . , ⌊𝜂/2⌋.

Next we would like to derive an upper bound for
𝜆(𝑤

[1]
, . . . , 𝑤

[⌊𝜂/2⌋]
, V
⌊𝜂/2⌋+1

, . . . , V
𝑙
) as follows:

𝜆 (𝑤
[1]
, . . . , 𝑤

[⌊𝜂/2⌋]
, V
⌊𝜂/2⌋+1

, . . . , V
𝑙
)

=

∑
⌊𝜂/2⌋

𝑖=1
𝑖𝑤

[𝑖]
+ ∑

𝑙

𝑖=⌊𝜂/2⌋+1
(𝑖 ∧ 𝜂) V

𝑖

∑
⌊𝜂/2⌋

𝑖=1
𝑤
[𝑖]

+ ∑
𝑙

𝑖=⌊𝜂/2⌋+1
V
𝑖

(40)

≤

∑
⌊𝜂/2⌋

𝑖=1
𝑖𝑤

[𝑖]
+ 𝜂∑

𝑙

𝑖=⌊𝜂/2⌋+1
V
𝑖

∑
⌊𝜂/2⌋

𝑖=1
𝑤
[𝑖]

+ ∑
𝑙

𝑖=⌊𝜂/2⌋+1
V
𝑖

(41)

≤
∑
⌊𝜂/2⌋

𝑖=1
𝑖𝑤

[𝑖]
+ 𝜂∑

𝑛−⌊𝜂/2⌋−1

𝑖=0
𝑤
[|𝐸|−𝑖]

∑
⌊𝜂/2⌋

𝑖=1
𝑤
[𝑖]

+ ∑
𝑛−⌊𝜂/2⌋−1

𝑖=0
𝑤
[|𝐸|−𝑖]

. (42)

For inequality (42), we used the fact that (41) is increasing in
∑
𝑙

𝑖=⌊𝜂/2⌋+1
V
𝑖
, hence we chose 𝑙 = 𝑛 and the largest possible

weights 𝑤
[|𝐸|]

, 𝑤
[|𝐸|−1]

, . . . for V
⌊𝜂/2⌋+1

, V
⌊𝜂/2⌋+2

, . . ., in order to
maximize ∑

𝑙

𝑖=⌊𝜂/2⌋+1
V
𝑖
. From (42), we obtain 𝜆(V

1
, . . . , V

𝑙
) ≤

𝑍. Hence from (37), we obtain

OPT ≥
𝑇𝑆 (𝑆)

 𝜙 (𝑍) . (43)

Now let us consider the cost of output tree at Stage 𝑖 of
HCST algorithm, or 𝑐(𝑇

𝑖
). Recall that in HCST algorithm, 𝑆

𝑖

denotes the source set at Stage 𝑖, and𝑇
𝑖
denotes the output tree

at Stage 𝑖. The cost of 𝑇
𝑖
is divided into (i) the cost incurred

by hierarchical MWECs 𝑀
1
, . . . ,𝑀

𝑖
, and (ii) the cost of 𝜌

𝑆
-

approximate Steiner tree 𝑇𝑠
𝑖
associated with 𝑆

𝑖
. Hence

𝑐 (𝑇
𝑖
) =

𝑖

∑

𝑘=1

∑

𝑒∈𝑀
𝑘

𝑤
𝑒
𝜙 (𝑑 (𝑒)) + ∑

𝑒∈𝑇
𝑠

𝑖

𝑤
𝑒
𝜙 (𝑑 (𝑒)) , (44)

where 𝑑(𝑒) denote the amount of flow at Edge 𝑒 under HCST
algorithm. Note that, the amount of flow in the network
at Stage 𝑖 is at least 2𝑖−1, since the flows are agglomerated
through MWECs at every stage. Since 𝜙(⋅) is decreasing, the
first summation of (44) is at most

𝑖

∑

𝑘=1

𝜙 (2
𝑘−1

) ∑

𝑒∈𝑀
𝑘

𝑤
𝑒
=

𝑖

∑

𝑘=1

𝜙 (2
𝑘−1

)
𝑀𝑘

 . (45)

Note that the first summation of (44) is 0 for Stage 0. As for
the second summation of (44),

∑

𝑒∈𝑇
𝑠

𝑖

𝑤
𝑒
𝜙 (𝑑 (𝑒)) ≤ 𝜙 (2

𝑖
)
𝑇

𝑠

𝑖

 (46)

≤ 𝜌
𝑆
𝜙 (2

𝑖
)
𝑇𝑆 (𝑆𝑖)

 (47)

≤ 𝜌
𝑆
𝜙 (2

𝑖
)
𝑇𝑆 (𝑆)

 . (48)

Inequality (48) is due to 𝑆
𝑖
⊆ 𝑆; specifically, the Steiner tree

for 𝑆 is a tree that spans 𝑆
𝑖
, hence by definition, the sum of

edge weights of 𝑇
𝑆
(𝑆
𝑖
) is no more than that of the Steiner tree

associated with 𝑆.
In conclusion, we have that, from (43), (45) and (48),

𝑐 (𝑇
𝑖
) ≤ 𝜌

𝑆
𝜙 (2

𝑖
)
𝑇𝑆 (𝑆)

 +

𝑖−1

∑

𝑘=1

𝜙 (2
𝑘−1

)
𝑀𝑘



≤
OPT
𝜙 (𝑍)

[𝜌
𝑆
𝜙 (2

𝑖
) +

𝑖

∑

𝑘=1

𝜙 (2
𝑘−1

)

𝑀𝑘


𝑇𝑆 (𝑆)



] .

(49)

Since the cost of HCST algorithm is min
𝑖=0,...,I𝑐(𝑇𝑖), the

proposition is proved.

An interpretation for ratio 𝐵 in (32) is as follows: the
first term in the bracket of 𝐵 represents a bound on the
macroscopic cost associated with the Steiner tree approx-
imation. The second term in the bracket of 𝐵 is a bound
on the cost associated with the hierarchical aggregation of
flows, that is, the microscopic cost reduction. Clearly we have
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that ‖𝑀
1
‖ ≥ ‖𝑀

2
‖ ≥ ⋅ ⋅ ⋅ , due to 𝑆

1
⊇ 𝑆

2
⊇ ⋅ ⋅ ⋅ , thus

𝜌
1
, 𝜌
2
, . . ., is a decreasing sequence where 0 ≤ 𝜌

𝑖
≤ 1,

for all 𝑖. The progressive cost reduction due to hierarchical
flow aggregation is reflected in 𝜌

1
, 𝜌
2
, . . .. As in (32), 𝐵 is

the minimum of I + 1 numbers, each of which contains
a weighted sum of 𝜙(⋅) in different combination of weights
𝜌
𝑖
. Hence 𝐵 represents the empirical minimum of different

degrees of tradeoff between microscopic and macroscopic
cost reduction.

Next we discuss constant 𝑍 in (34). Firstly observe that
𝑍 ≤ 𝜂; the first summation of the numerator of (34) is at
most 𝜂∑⌊𝜂/2⌋

𝑖=1
V
𝑖
, in which case the first term of (34) is at most

𝜂. Note that a naive upper bound for 𝜆(V
1
, . . . , V

𝑛
) is simply

𝜂, yielding a lower bound OPT ≥ ‖𝑇
𝑆
(𝑆)‖𝜙(𝜂); however we

observe that our bound (43) improves such a bound since
𝜙(𝑍) ≥ 𝜙(𝜂).

𝐵 can be numerically computed for a given graph, and in
the next section we provide numerical examples of 𝐵. We also
apply HCST algorithm to a specific graph as an example.

5.4. Illustrating Examples. In this section we consider a
simple convex and decreasing 𝜙. As previously the packet
header length is 𝛼 bits, and we assume that the maximum
packet size is 10 times the header length, that is, 10𝛼. We will
accordingly consider 𝜙(𝑚) which is convex and decreasing
for𝑚 ≥ 1 of the following form:

𝜙 (𝑚) = {
9𝛼𝑚

−1
+ 𝛼, 𝑚 ≥ 1,

0, 𝑚 = 0.
(50)

Clearly 𝛼 < 𝜙(𝑚) ≤ 10𝛼 holds for𝑚 ≥ 1.
Figures 4 and 5 show the numerical examples of the

performance bound 𝐵. 𝐵 is computed and averaged over
randomly generated graphs of uniformly distributed nodes in
a square area. In Figure 4, network size 𝑛 is fixed to 200, and𝐵
is plotted against the number of source nodes 𝜂. We consider
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Figure 5: Performance bounds under varying network sizes.

two types of cost functions: the curve labelled “harmonic”
represents the cost function (50) in which 𝜙(⋅) decreases as a
harmonic sequence. The curve labelled “exp” corresponds to
the case where the term𝑚

−1 in (50) is replaced by exp(−𝛿(𝑚−

1)) where the parameter 𝛿 > 0 controls the decay rates of the
cost function. We set 𝛿 = 0.2 in this example. In addition, we
compare 𝐵 with a simple analytical bound; suppose we build
a 𝜌

𝑆
-approximate Steiner tree based on 𝑆. The cost under that

tree is at most 𝜌
𝑆
‖𝑇

𝑆
(𝑆)‖𝜙(1). By combining that cost with

(43), we obtain a simple approximation ratio of 𝜌
𝑆
𝜙(1)/𝜙(𝑍)

for the approximately optimal Steiner tree. In Figure 4, the
plots of such bounds based on 𝜌

𝑆
-approximate Steiner tree are

added for both harmonic and exponential cost functions, and
are labelled as “Steiner(har)” and “Steiner(exp),” respectively.
We observe that 𝐵 provides improved bounds as compared
to those based on 𝜌-approximate Steiner tree. In Figure 5,
𝐵 is plotted against varying 𝑛 under the aforementioned
harmonic and exponential cost function where we fixed 𝛿 to
10. In Figures 4 and 5, we observe that 𝐵 eventually becomes
nearly constant, or increases very slowly at most, even if
the system size grows. Hence we conclude that 𝐵 provides
an approximation ratio which remains effectively constant
irrespective of the system size.

Next we present an example of the application of the
HCST algorithm to a specific graph. An example of 𝐺 is
given in Figure 6(a). 𝐺 consists of 𝑛 = 10 nodes where
Node 1 is the sink, that is, 𝑡 = 1. There are four source
nodes: 𝑆 = {2, 3, 4, 5} where the sources are depicted in a
shaded color. Each source generates 1 unit of data. We will
again consider convex and decreasing 𝜙(⋅) given by (50), and
assume 𝛼 = 1. Figure 6(b) shows the output of Stage 0 or
𝑇
0
which is an approximately optimal Steiner tree. Figure 7

shows the MWECs over the stages. Figure 7(a) shows the
metric completion of the subgraph induced by 𝑆. Figure 7(b)
shows the MWEC at Stage 1. Node 4 and 5 became the center
nodes as emphasized in the figure. Figure 7(c) shows the
MWEC and the center node at Stage 2.
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Figure 6: (a) 𝐺 in the example. (b) The output 𝑇
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Figure 7: (a) A complete graph of the sources. (b) MWEC from
Stage 1. (c) MWEC from Stage 2.

Figure 8(a) shows the full paths of the MWEC at Stage 1,
that is, that in Figure 7(b), in𝐺. By building an approximately
optimal Steiner tree𝑇𝑠

1
associated with {1, 4, 5} and taking the

union of 𝑇𝑠
1
and 𝐶

1
as in Step 8, we get 𝑇

1
as in Figure 8(b).

Similarly Figure 9 demonstrates Stage 2 of the algorithm.The
full paths for the MWEC from Figure 7(c) in 𝐺 are shown in
Figure 9(a). Note that Node 4 is selected as the center node,
and the output from Stage 2 or 𝑇

2
is shown in Figure 9(b).

Let us compare the energy costs from all the stages. For 𝑇
0
, a

total of three flows pass through the link between Node 1 and
3, while the flow on the other links is simply 1. Thus, the cost
of 𝑇

0
from Stage 0 is given by

𝑐 (𝑇
0
) = 8 × 𝜙 (3) + (8 + 6 + 5 + 10) × 𝜙 (1)

= 8 × 10 + 29 × 4 = 322.

(51)

Similarly, we have that

𝑐 (𝑇
1
) = 314.8, 𝑐 (𝑇

2
) = 275.5. (52)

Thus the final output of HCST is 𝑇
2
with the final cost of

275.5. Note that in this example, the Shortest Path Tree (SPT)
heuristic incurs the energy cost of 374.

Next consider 𝜙(𝑚) such that

𝜙 (𝑚) = {
1, 𝑚 ≥ 1,

0, 𝑚 = 0.
(53)

Assume that the algorithm has yielded the same 𝑇
0
, 𝑇

1
and

𝑇
2
as the previous case. Since 𝜙 is constant for 𝑚 ≥ 1, the

problem reduces to the Steiner tree problem, thus one would
expect that 𝑇

0
would perform the best since 𝑇

0
is intended

to be an approximately optimal Steiner tree.The energy costs
are given by

𝑐 (𝑇
0
) = 37, 𝑐 (𝑇

1
) = 44, 𝑐 (𝑇

2
) = 43; (54)

thus indeed the HCST algorithm will output 𝑇
0
as the best

solution with cost 37, whereas the SPT heuristic will yield the
energy cost of 41. This demonstrates that our algorithm can
effectively deal with various types of convex and decreasing
aggregation cost functions. In the following section we
will evaluate the performance of the HCST algorithm by
simulation.

6. Simulation

In our simulation we randomly generate 𝐺 as follows. The
node locations are generated independently and uniformly
on a unit square. We define 𝐺 as the Delaunay graph
induced by the node locations. An example of 𝐺 is depicted
in Figure 10 for 𝑛 = 20. As previously it is assumed
that the average number of bits required to transmit the
aggregated information 𝑔(𝑋

1
, . . . , 𝑋

𝑚
) is approximately 𝛼 +

𝑏 + ℎ(𝑔(𝑋
1
, . . . , 𝑋

𝑚
)) where we set header length 𝑎 to 1 and

the number of quantization bits 𝑏 to 3. The edge weights
are randomly selected from {1, . . . , 10} which represents the
energy consumption per transmitted bit. In our simulation
two types of sources are considered. The first type, called
uniform type, is associated with the extreme data retrieval
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Figure 9: (a) MWEC in 𝐺 from Stage 2. (b) The output 𝑇
2
from Stage 2.

problem, that is, 𝑋
𝑖
are i.i.d. uniformly on [0, 1]. The second

type, called Gaussian type, is associated with retrieving the
maximum of Gaussian source data where 𝑋

𝑖
∼ 𝑁(0, 1). The

summary function 𝑔(⋅) is given by max function.
Wewill compare the performance of the HCST algorithm

with HM algorithm [16] and SPT heuristic. Figure 11 shows
the average energy consumption of the algorithms when we
fix the number of sources to 8 with varying 𝑛. The energy
cost shown on the left (resp. right) of Figure 11 is associated
with the sources of uniform (resp.Gaussian) type.Weobserve
that the HCST algorithm achieves lower energy costs than
the SPT heuristic in both types of the sources. The gain in
the energy savings by the HCST algorithm ranges 35–38% for
uniform type sources and 24-25% for Gaussian type sources.
Compared to HM algorithm, our algorithm reduces the
energy consumption by 20-21% and 14-15% for uniform and

Gaussian type sources, respectively.HMalgorithm focuses on
microscopic cost reduction, which may be effective for con-
cave and increasing cost functions, however not for convex
and decreasing cost functions. Comparing SPT heuristic and
HCST algorithm, we observe that the difference in the mean
energy consumption of the algorithms slightly increases with
𝑛. This can be interpreted as follows: for larger networks,
there is further room for improvement byHCST, for example,
there are more choices for Steiner nodes and more ways to
merge sources at low costs by MWEC.Thus the performance
gain from the HCST algorithm relative to the SPT heuristic is
expected to grow with 𝑛 as shown in the simulation.

Figure 12 shows the mean energy costs with varying 𝑛

where we scale the number of the sources proportional to 𝑛.
Specifically in the simulationwe let 𝜂 = 𝑛/5, that is, one out of
five nodes is a source node. In the figure we see that theHCST
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algorithm again outperforms the SPT heuristic. The relative
savings in energy by HCST algorithm ranges 19–41% for
uniform type sources and 14–27% for Gaussian type sources.
Relative to HM algorithm, HCST algorithm saves energy
costs by 20–23% and 14–17% for uniform and Gaussian
type sources, respectively. The difference in the energy cost
of the algorithms increases with 𝑛 similar to the case of
fixed number of sources, however, such a rate of increase is
higher in the case of varying number of sources. This can
be explained as follows. When we increase the network size,
the number of sources also increases proportionally. When
the network size grows, from the previous argument such
that there is further room for improvement by HCST, its
relative gainwill increasewith the network size. In addition to

that, since the number of sources grows, the total number of
stages at the end of the HCST algorithm will also increase.
Since HCST chooses the best tree from the intermediate
output trees collected over stages, a large number of stages
implies that we can choose the final output tree from a large
pool of trees having various degrees of tradeoff between
microscopic and macroscopic aspects of the cost reduction.
Thus the abundance of source nodes enables us to choose an
aggregation tree with a “refined” tradeoff, which is crucial
for a convex and decreasing 𝜙. This explains the enhanced
performance of HCST with increasing number of sources.
Hence we conclude from the simulation that the HCST
algorithm can improve performance for various proportions
of source nodes among the network.
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7. Conclusion

In this paper we have studied a single-sink aggregation
problem for wireless sensor networks computing several
widely used summary functions. It is observed that the
problem is characterized by the aggregation cost function
𝜙 which maps the amount of aggregated measurements to
transmission costs at a link. We show that the properties of 𝜙
depend heavily on the chosen summary function 𝑔(⋅). When
𝑔(⋅) is given by sum or mean, we showed that 𝜙 is concave and
increasing, implying that there exist algorithms such as the
HM algorithmwhich can approximate the optimal algorithm
by a factor logarithmic in the number of sources. A similar
argument was made when 𝑔(⋅) is weighted sum for i.i.d.
Gaussian sources. When 𝑔(⋅) is given by max, however, we
have shown that 𝜙 is convex and decreasing for certain types
of sources. For such 𝜙 we identify that there exists a tradeoff
between the following two aspects of cost reduction: firstly
local clustering of sources which is the microscopic aspect,
and secondly a low-cost routing from the clustered sources
to the sink which is the macroscopic aspect. We proposed
the Hierarchical Cover and Steiner Tree algorithm which
empirically finds the best tradeoff point between the aspects.
Numerical examples and simulation results were presented
to demonstrate that the HCST algorithm is versatile and
improves performance for various types of convex and
decreasing 𝜙. A future direction would be investigating the
optimal aggregation problems for a wider range of summary
functions. In addition, the evaluation of the HCST algorithm
in a real-world testbed environment is also part of our future
work.
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