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A comparative analysis between several methods to describe outdoor panoramic images is presented. The main objective consists in
studying the performance of these methods in the localization process of a mobile robot (vehicle) in an outdoor environment, when
a visual map that contains images acquired from different positions of the environment is available. With this aim, we make use
of the database provided by Google Street View, which contains spherical panoramic images captured in urban environments and
their GPS position. The main benefit of using these images resides in the fact that it permits testing any novel localization algorithm
in countless outdoor environments anywhere in the world and under realistic capture conditions. The main contribution of this
work consists in performing a comparative evaluation of different methods to describe images to solve the localization problem
in an outdoor dense map using only visual information. We have tested our algorithms using several sets of panoramic images
captured in different outdoor environments. The results obtained in the work can be useful to select an appropriate description
method for visual navigation tasks in outdoor environments using the Google Street View database and taking into consideration

both the accuracy in localization and the computational efficiency of the algorithm.

1. Introduction

Designing vehicles capable of navigating autonomously, in
a previously unknown environment and with no human
intervention, is a fundamental objective in mobile robotics.
To achieve this objective, the vehicle must be able to build
a model (or map) of the environment and to estimate its
position within this model. A great variety of localization
approaches can be found in the literature. In general, the
position and orientation of the robot can be obtained from
proprioceptive (odometer) or exteroceptive (laser, camera, or
sonar) sensors, as presented in the works of Thrun et al. [1]
and Gil et al. [2].

With the exteroceptive approach, the use of computer
vision to create a representation of the environment is very
extended due to the good relationship quantity of infor-
mation/cost that the cameras offer. The research developed
during the last years in the topic of map creation using
visual information is enormous, and new algorithms are
presented continuously. Usually, one of the key points of these

algorithms is the description of the visual information to
extract relevant information which is useful for the robot to
estimate its position and orientation. In general, the problem
can be approached from two points of view: local features
extraction and global-appearance approaches. In the first one,
a number of landmarks (distinctive points or regions) are
extracted from each scene and each landmark is described to
obtain a descriptor which is invariant against changes in the
robot position and orientation. Murillo et al. [3] presented
an algorithm that made use of the SURF (Speeded Up Robust
Features) description method [4] to improve the performance
of appearance-based localization methods using omnidirec-
tional images in large data sets. On the other hand, global-
appearance approaches consist in representing each scene
by a single descriptor which is computed working with the
scene as a whole, with no local feature extraction. This
approach has recently become popular and some examples
can be found. Rossi et al. [5] present a metric to compute
the image similarity using the Fourier Transform of spherical
omnidirectional images in order to carry out the localization



of a mobile robot. Paya et al. [6] present a framework to
carry out multirobot route following using an appearance-
based approach with omnidirectional images to represent
the environment and a probabilistic method to estimate the
localization of the robot. Finally, Ferndndez et al. [7] deal with
the problem of robot localization using the visual information
provided by a single omnidirectional camera mounted on the
robot, using techniques based on the global appearance of
panoramic images and a Monte Carlo Localization (MCL)
algorithm [8].

The availability of spherical images that represent outdoor
environments is nowadays almost unlimited, thanks to the
services of Google Street View. Furthermore, these images
provide a complete 360-degree view of the scenery in the
ground plane and 180-degree view vertically. Thanks to this
great amount of information, these images can be used to
carry out autonomous navigation tasks robustly. Using a set
of these previously available spherical images as a dense
visual map of an environment, it is possible to develop an
autonomous localization and navigation system employing
the images captured by a mobile robot or vehicle and
comparing them with the map information in order to resolve
the localization problem. This way, in this paper, we consider
the use of the images provided by Google Street View as
a visual map of the environment in which a mobile robot
must be localized using the image acquired from an unknown
position.

The literature regarding the navigation problem using
Google Street View information is somewhat sparse but
growing in recent years. For example, Gamallo et al. [9] pro-
posed the combination of a low cost GPS with a particle filter
to implement a vision based localization system that com-
pares traversable regions detected by a camera with regions
previously labeled in a map (composed of Google Maps
images). The main contribution of this work is that a synthetic
image of what the robot should see from the predicted
position is generated and compared with the real observation
to calculate the weight of each particle. Torii et al. [10] tried to
predict the GPS location of a query image given the Google
Street View database. This work presents a design of a match-
ing procedure that considers linear combinations of bag-of-
feature vectors of database images. With respect to indoor
pose estimation, Aly and Bouguet [11] present an algorithm
that takes as input spherical Google Street View images and as
output their relative pose up to a global scale. Finally, Taneja
et al. [12] proposed a method to refine the calibration of the
Google Street View images leveraging cadastral 3D informa-
tion.

The localization of the vehicle/robot can be formulated
as the problem of matching the currently captured image
with the images previously stored in the dense map (images
in the database). Nowadays, a great variety of detection and
description methods have been proposed in the context of
visual navigation but, in our opinion, there exists no consen-
sus on this matter when we use outdoor images.

Amors et al. [13] carried out a review and comparison
of different global-appearance methods to create descriptors
of panoramic scenes in order to extract the most relevant
information. The authors of this work developed a set of
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experiments with panoramic images captured in indoor envi-
ronments to demonstrate the applicability of some appear-
ance descriptors to robotic navigation tasks and to measure
their quality in position and orientation estimation. However,
as far as outdoor scenarios are concerned, there is no revision
of methods that offer good results. This situation, combined
with the fact that using Google Street View images has barely
been tested in autonomous navigation systems, has motivated
the work presented here. Following this philosophy, we made
a comparison between different descriptors of panoramic
images but, in this case, we used Google Street View images
captured in outdoor environments. This is a more challenging
problem due to several features: the openness of the images
(i.e., the degree of dominance of some structures such as
the sky and the road which do not add distinctiveness to
the image), their changing lighting conditions, and the large
geometrical distance between the points where the images
were captured.

Taking these features into account, we consider that it is
worth carrying out a comparative evaluation of the perfor-
mance of different image descriptors under real conditions of
autonomous outdoor localization, since it would be a nec-
essary step prior to the implementation of a visual nav-
igation framework. In this paper, we evaluate two differ-
ent approaches: approaches based on local features and
approaches based on global appearance. In both cases we test
the performance of the descriptor depending on the main
parameters that configure it and we make a graphical repre-
sentation of the precision of each method versus the recall [14].

When a robot has to navigate autonomously outdoors,
very often a rough estimation of the area where the robot
moves is available, and the robot must be able to estimate its
position in this wide zone. This work focus on this task; we
assume the zone where the robot navigates is approximately
known and it must estimate its position more accurately in
this area. With this aim, two different wide areas have been
chosen to evaluate the performance of the localization algo-
rithms, and a set of images per area has been obtained from
the Google Street View database.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present the description methods evaluated in this
work. In Section 3, the experimental setup and the databases
we have used are described. Section 4 describes the method
we have followed to evaluate the descriptors in a localization
process. Section 5 presents the experimental results. Finally,
in Section 6, we outline the conclusions and the future works.

2. Image Descriptors

In this section, we present five different image descriptors that
are suitable to build a compact description of the appearance
of each scene [13-15]. One of the methods, previously denoted
as a feature-based approach, consists in representing the
image as a set of landmarks extracted from the scene along
with the description of such landmarks. The method selected
for this landmarks description is SURF (Speeded Up Robust
Features). The other methods chosen to carry out the compar-
ative analysis are the following appearance-based methods:
the two-dimensional Discrete Fourier Transform (DFT), the
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Fourier Signature (FS), gist, and the Histogram of Oriented
Gradients (HOG). Each method uses a different mechanism
to express the global information of the scene. First, DFT
and FS are based on the analysis in the frequency domain
in two dimensions and one dimension, respectively. Second,
the approach of gist we use is built from edges information,
obtained through Gabor filtering and analyzed in several
scales. Finally, HOG gathers systematic information from the
orientation of the gradient in local areas of the image. The
choice of these description methods will permit analyzing
the influence of each kind of information in the localization
process.

The initial objective of this study was to compare some
global-appearance methods. However, we have decided to
include in this comparative evaluation a local features descri-
ption method to make a more complete study. With this aim,
we have chosen SURF due to its relatively low computa-
tional cost comparing with other classical feature-based
approaches.

The next subsections present briefly the description
methods included in the comparative evaluation.

2.1. SURF and Harris Corner Detector. The Speeded Up
Robust Features (SURF) were introduced by Bay et al. [4].
This study showed that SURF outperform existing methods
with respect to repeatability, robustness, and distinctiveness
of the descriptors. The detection method uses integral images
to reduce the computational time and is based on the Hessian
matrix. On the other hand, the descriptor represents a
distribution of Haar-wavelet responses within the interest
point neighborhood and makes an efficient use of integral
images. In this work we only include the standard SURF
descriptor, which has a dimension of 64 components per
landmark, but there are two more versions: the extended
version (E-SURF) with 128 elements and the upright version
(U-SUREF), that is not invariant to rotation and has a length
of 64 elements. On the other hand, we perform the detection
of the features using the Harris corner detector (based on the
eigenvalues of the second moment matrix [16]) because our
experiments showed that this method extracted most robust
points in outdoor images comparing to the SURF extraction
method.

This way the method we use in this work is a combination
of these two algorithms. More specifically, the Harris corner
detector is used to extract the features from the image, and the
standard SURF descriptor is used to characterize and describe
each one of the landmarks previously detected.

2.2. Two-Dimensional Discrete Fourier Transform. From an
image f(x, y) with N, rows and N, columns, the 2D Discrete
Fourier Transform (DFT) can be defined as follows:
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where (u, v) are the frequency variables and the transformed
function F(u, v) is a complex function which can be decom-
posed into a magnitudes matrix and an arguments matrix.
This transformation presents some interesting properties
which are helpful in robot localization tasks. First, the most
relevant information in the Fourier domain concentrates in
the low frequency components, so it is possible to reduce
the amount of memory and to optimize the computational
cost by retaining only the first k, rows and k,, columns in
the transform. Second, when f(x, y) is a panoramic scene, a
translation in the rows and/or columns of the original image
produces a change only in the arguments matrix [15]. This
way, the magnitudes matrix contains information which is
invariant to rotations of the robot in the ground plane, and the
arguments matrix contains information that can be useful to
estimate the orientation of the robot in this plane with respect
to a reference image (using the DFT shift theorem).

Taking these facts into account, the global description of
the image f(x, y) consists of the magnitudes matrix A(u, v)
and the arguments matrix ®(u,v) of its two-dimensional
DFT. The dimensions of both matrices are k, < N, rows
and ky <N y columns. On the one hand, A(u, v) is useful to
estimate the robot position and, on the other hand, the infor-
mation in ®(u, v) can be used to estimate the robot orienta-
tion.

2.3. Fourier Signature. The third image description method
used in this comparative analysis is the Fourier Signature
(FS), described initially by Menegatti et al. [17]. From an
image f(x, y) with N, rows and N, columns, the FS consists
in obtaining the one-dimensional DFT of each row. This
method presents some advantages, such as its simplicity, its
low computational cost, and the fact that it exploits better the
invariance against rotations of the robot in the ground plane
when we work with panoramic views.

More specifically, the process to compute the FS consists
in transforming each row x of the original panoramic image

{fe = {fx,O’fx,l"">fx,Ny—l}’ x = 0,...,N, — 1, into the

sequence of complex numbers {F, } = {F, , F

%005 x, 100000 Fx,Nyfl}’

x=0,...,N, — 1, according to the ID-DFT expression:

N,—-

1
—j(2m/N,)k
Fe= ) fan e 0700,
n=0 (2)

k=0,..,N,-1, x=0,...,N, - 1.

The result is a complex matrix F(x,v), where v is a fre-
quency variable, which can be decomposed into a magnitudes
matrix and an arguments matrix.

Thanks to the 1ID-DFT properties it is possible to repre-
sent each row of F(x, v) with the first coefficients since the
most relevant information is concentrated in the low fre-
quency components of each row in the descriptor, so it is
possible to reduce the amount of memory by retaining only
k, first columns in signature F(x, v). Also, when f(x, y) is
a panoramic scene, the modules matrix is invariant against
robot rotations in the ground plane and the magnitudes
matrix permits estimating the change in the robot orientation
using the DFT shift theorem [15, 17, 18].



Taking these facts into account, the global description of
the image f(x, y) consists of the magnitudes matrix A(x, v)
and the arguments matrix ®(x, v) of the Fourier Signature.
The dimensions of both matrices are N, rows and k,, < N,
columns. First, the position of the robot can be estimated
using the information in A(x,v), since it is invariant to
changes in robot orientation and second ®(x, v) can be used
to estimate the robot orientation.

2.4. Gist. 'The concept of the gist of an image can be defined as
an abstract representation that activates the memory of scene
categories [19]. The gist-based descriptors try to represent the
image by obtaining its essential information simulating the
human perception system and its ability to recognize a scene
through the identification of color saliency or remarkable
structures. Torralba [20] presents a model to obtain global
scene features, working in several spatial frequencies and
using different scales based on Gabor filtering. They use these
features in a scene recognition and classification task. In
previous works [13] we employed a gist-Gabor descriptor in
order to obtain frequency and orientation information. Due
to the good results obtained in indoor environments when
the mobile robot presents 3 DOF (degrees of freedom) move-
ments on the ground plane, the fourth method employed in
the comparative analysis presented in this paper is the gist
descriptor of panoramic images.

The method starts with two versions of the initial
panoramic image f(x, y): the original one, with N, rows and
N, columns, and a new version after applying a Gaussian
low-pass filter and subsampling to a new size equal to 0.5 -
N, x0.5-N,,. After that, both images are filtered with a bank
of ny Gabor filters whose orientations are evenly distributed
to cover the whole circle. Then, to reduce the amount of
information, the pixels into both images are grouped into k;
horizontal blocks per image, whose width is equal to N, in the
firstimage and 0.5-N,, in the second one. The average value of
the pixels in each group is calculated and all this information
is arranged into a final descriptor, which is a column vector
g with 2 - k; - ny components. This descriptor is invariant
against rotations of the vehicle on the ground plane. More
information about the method can be found in [13].

2.5. Histogram of Oriented Gradients. The Histogram of
Oriented Gradients (HOG) descriptors are based on the
orientation of the gradient in local areas of an image. It was
described initially by Dalal and Triggs [21]. More concisely,
it consists first in obtaining the magnitude and orientation
of the gradient of each pixel of the original image. This
image is divided then into a set of cells and a histogram of
gradient orientation is compiled for each cell, aggregating the
information of the gradient orientation of each pixel within
the cell, weighting with the magnitude of the pixel.

The omnidirectional images captured from a specific
position of the ground plane contain the same pixels in a row,
independently on the orientation of the robot in this plane,
but in a different order. Taking this fact into account, if we
calculate the histogram of cells that have the same width of
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the original image, we obtain a descriptor which is invariant
against rotations of the robot.

The method we use is described in depth in [22] and
can be summarized as follows. The initial panoramic image
f(x,y) with N, rows and N,, columns is first filtered to
obtain two images with the information of the horizontal and
vertical edges, f,(x, y) and f,(x, y). From these two images,
the magnitude of the gradient and its orientation is obtained,
pixel by pixel, and the results are stored in matrices M (x, y)
and O(x, y), respectively. Matrix O(x, y) is then divided into
k, horizontal cells, whose width is equal to N . For each cell,
an orientation histogram with b bins is compifed. During this
process, each pixel in @(x, y) is weighted with the magnitude
of the corresponding pixel in M(x, y). At the end of the
process, the set of histograms constitutes the final descriptor

h which is a column vector with k, - b components.

3. Experiments Setup

The main objective of this work consists in carrying out an
exhaustive evaluation of the performance of the description
methods presented in the previous section. All these methods
will be included in a localization algorithm and their per-
formance will be evaluated and compared both in terms of
computational cost and localization accuracy. The results of
this comparative evaluation will give us an idea of which is
the description method that offers the best results in outdoor
environments when using Google Street View images.

With this aim, two different regions in the city of Elche
(Spain) have been selected and the Google Maps images of
these two areas have been obtained and stored in two data
sets. Each one of these data sets will constitute a map and
will be used subsequently to estimate the position of the
vehicle within the map by comparing the image captured
by the vehicle from the unknown position with the images
previously stored in each map.

The main features of the two sets of images are as follows.

Set1. Set1consists of 177 full spherical panorama images with
resolution generally up to 3328 x 1664 pixels. Each image
covers a fleld of view of 360 degrees in the ground plane and
180 degrees vertically. Figure 1 shows the GPS position where
each image was captured (blue dots) and two examples of
the panoramic images after a preprocessing process. This set
corresponds with a mesh topography database that contains
images of various streets and open areas. The images cover an
area of approximately 700 m x 300 m.

Set 2. Set 2 consists of 144 full spherical panorama images.
The images have been captured along the same street with a
linear topology covering approximately 1700 m. The appear-
ance of these images is more urban. Figure 2 shows the GPS
position where each image was captured (blue dots) and
three examples of the panoramic images after a preprocessing
process.

3.1. Image Preprocessing and Map Creation. Due to the wide
vertical field of view of the acquisition system, the sky is
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FIGURE I: Bird eye’s view of the region chosen as map 1 prior to the localization experiment. The blue dots represent the coordinates where
the images of the Set 1 were captured. Two examples of Google Street View images after a preprocessing step are also shown.

FIGURE 2: Bird eye’s view of the region chosen as map 2 prior to the localization experiment. The blue dots represent the coordinates where
the images of Set 2 were captured. Three examples of Google Street View images after a preprocessing step are also shown.

often a big portion of the Google Street View images. The
appearance of this area will be very prone to changes when
the localization process is carried out in a different time of day
with respect to the time of day when the map was captured.
Taking this fact into account, a preprocessing step has been
carried out to remove part of the sky in the scenes.

Once part of the sky has been removed from all the scenes,
the images are converted into grayscale and their resolution
is reduced to 512 x 128 pixels, to ensure the computational
viability of the algorithms.

After that, each image will be described using the five
description methods presented in Section 2. At the end,
one map will be available per image set and per description

method. Each map will be composed of the set of descriptors
of each panoramic scene.

3.2. Localization Process. Once the maps are available, in
order to evaluate the different visual descriptors introduced
in Section 2 to solve the localization problem, we also make
use of Google Street View images.

To carry out the localization process, first we choose one
of the images of the database (named as test image). In this
moment, this image is removed from the map. Second, we
compute the descriptor of the test image (using one of the
methods presented in Section 2) and obtain the distance
between this descriptor and the descriptors of the rest of



the images stored in the corresponding map. As a result,
the images of the map are arranged from the nearest to the
farthest using the image distance as arranging criterion.

The result of the localization algorithm is considered
correct if the first image it returns was captured on the map
point which is geometrically the closest to the test image
capture point (the GPS coordinates are used with this aim).
We will refer to this case as a correct localization in zone 1.
However, since this is a quite challenging and restrictive prob-
lem, it is also interesting to know if the first image that the
algorithm returns was captured on one of the two geometri-
cally closest points to the test image capture point (zone 2) or
even on one of the three geometrically closest points (zone 3).
The first case is the ideal one, but we are also interested in the
other cases as they will indicate if the algorithm is returning
an image in the surroundings of the actual position of the test
image (i.e., the localization algorithm detects that the robot is
in a zone close around its actual position).

This process is repeated for each description method,
using all the images of Sets 1 and 2 as test images. In brief,
the procedure to test the localization methods previously
explained consists in the following steps, for each image and
description method:

(1) Extracting one image of the set (denoted as test
image); then, this test image is eliminated from the
map

(2) Calculating the descriptor of the test image

(3) Calculating the distance between this descriptor and
all the map descriptors, which we named image
distance

(4) Retaining the most similar descriptor and studying if
it corresponds to one image that has been captured in
the surroundings of the test image capture point (zone
1, 2, or 3)

Asaresult, the next data are retained for an individual test
image: the image distance between the test image descriptor
and the most similar map descriptor, D', and the localization
results in zone I (correct or wrong match), m’, in zone 2,
mj, and in zone 3, m}. After repeating this process with all
the test images, the results will consist of four vectors, whose
dimension is equal to the number of test images. The first
vector, D, contains the distances, D', and the other three, /71,
1h,, and 7715, contain, respectively, the information of correct
or incorrect matches in zones 1, 2, and 3.

4. Evaluation Methods

In this work, the localization results are expressed by means
of recall and precision curves [14]. To build them, the com-
ponents of the vectors D, 771, 771,, and 71, are equally sorted in
ascending order of the distances that appear in the first vector.
The resulting sorted vectors of correct and wrong matches are
then used to calculate the values of recall and precision. Let
us focus on the sorted vector of matches in zone 1, 7i1; . First,
for each component in this vector, the recall is calculated as
the number of correct matches obtained so far with respect to
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FIGURE 3: Two sample recall-precision graphs obtained after carrying
out the localization experiments with two different description
methods.

the total number of test images. Second, for each component
in the same vector, the precision is obtained as the number of
correct matches obtained so far with respect to the number
of test images considered so far. Then, with the information
contained in these vectors, a precision versus recall curve is
built, corresponding to the localization in zone I. This is
repeated with the sorted vectors 77, and #; to obtain the
localization results in zone 2 and zone 3.

In our experiments, the most important piece of infor-
mation of this type of graphs is the final point because it
shows the global result of the experiment (final precision after
considering all the test images). However, additional relevant
information can be extracted from them, because the graph
also shows the ability of the localization algorithm to find
the correct match while considering a specific image distance
threshold. As explained in the previous paragraph, the results
have been arranged considering the ascending value of dis-
tances. Taking it into account, as the recall increases, the
threshold also does. For this reason, the evolution of the
recall-precision curves contains information about the robust-
ness of the algorithm with respect to a specific image distance
threshold. If the precision values stay high, independently
of the recall, this shows the presence of a lower number of
wrong results under this distance threshold. Figure 3 shows
two sample recall-precision curves obtained after running the
localization algorithm with all the test images and two dif-
ferent description methods, considering zone 1. Both curves
show a similar final precision value, between 0.6 and 0.65.
However, the evolutions present a different behavior. As an
example, if we consider as threshold the distance associated
to recall = 0.25, according to the graph, the precision of
descriptor 1 is 100%, but the precision of descriptor 2 is
90%. This means that, considering the selected image distance
threshold, 25% of correct localizations are achieved with
100% of probability using descriptor 1 and with a 90% of
probability using descriptor 2. This study can be carried out
considering any value for the image distance threshold.
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Before running the algorithm, it is necessary to define
the image distance. We use two different distance measures
depending on the kind of descriptor used.

First, in the case of the feature-based method (SURF-
Harris), it is necessary to extract the interest points prior to
describing the appearance of the image. We propose using
the Harris corner detector [16] to extract visual landmarks
from the panoramic images. After that, each interest point is
described using standard SURE To compare the test image
with the map images, first we extract and describe the interest
points from all the images. After that, a matching process is
carried out with these points. The points detected in the test
image, captured with a particular position and orientation of
the vehicle, are searched in the map images. The performance
of the matching method is not the scope of this paper; we
only employ it as a tool. Once the matching process has been
carried out, we evaluate the performance of the descriptor
taking into account the number of matched points, so that
we will consider as closest image the one that presents more
matching points with the test image. More concisely, we
compute the distance between the test image ¢ and any other
image of the map j as

; NMY
bgo_
D] =1-| ——— |,
max; (NMt>

where NMY is the number of matches between the images ¢

—_—
and j, NM' = [NM",..., NM™==] is a vector that contains
the number of matches between the image t and every image
of the map, and n,,,,, is the number of images in the map.

Second, in the case of appearance-based methods (2D
DFT, FS, gist, and HOG), no local information needs to be
extracted from the images. Instead, the appearance of the
whole images is compared. This way, the global descriptor of
the test image is calculated and the distances between it and
the descriptors of the map images are obtained. The Euclidean
distance is used in this case, defined as

(3)

D= (@ -, @

m=1

where d, is the descriptor of the test image t, le is the
descriptor of the map image j, and M is the size of the
descriptors. This distance is normalized to obtain the final
distance between the images ¢ and j, according to the next
expression:

, DY
tj E
Dapp - >t 1\’ (5)
max; (DE)

where Dg is the Euclidean distance between the descriptor of

U
the test image ¢ and the map image j, Dy = [Dy, ... ,D;"““P]

is a vector that contains the Euclidean distance between the
descriptor of the image ¢ and all the images in the map, and

Mimap 18 the number of images in the map.

It is important to note that the algorithm must be able
to estimate the position of the robot with accuracy, but it is
also important that the computational cost is adequate, to
know whether it would be feasible to solve the problem in real
time. To estimate the computational cost, we have computed,
considering both maps in the experiments, the necessary time
to calculate the descriptor of each test image, to compute the
distance to the map descriptors and to detect the most similar
descriptor. We must take into account that the descriptors of
all the map images can be computed prior to the localization,
in an off-line process. Apart from the time, we have also
estimated the amount of memory needed to store each image
descriptor.

To finish, we also propose to study the relationship dis-
tance between two image descriptors versus geometric distance
between the capture points of these two images. Ideally, the dis-
tance between the descriptors must increase as the geometric
distance between capture points does (i.e., it must not present
any local minima). This information is very interesting in
applications such as map building, where the robot must
be able to build a map using as input information only the
distance between image descriptors. It is also important when
itis necessary to estimate the position of the vehicle at halfway
points within the grid map. Additionally, it may help to detect
if the problem of visual aliasing is present in the environment
(i.e., two zones which are geometrically far may present a
similar visual appearance, which might lead to errors in the
mapping and localization process).

5. Experimental Results

As stated in the previous section, with the purpose of estab-
lishing the capacity of each descriptor to correctly localize
the robot (or vehicle), we have built recall-precision curves
to reflect the results of each experiment. Figure 4 shows this
graphical representation using (a) the first and (b) the second
set of images (denoted as Sets 1 and 2 in previous sections). To
build this figure, we consider the localization results in zone 1.
This way, the figure shows the ability of the localization algo-
rithm to correctly detect which image of the map was cap-
tured closer to the test image. This is the most restrictive case.

Apart from it, the performance of the localization algo-
rithm in zones 2 and 3 has also been studied. This way,
Figure 5 shows the results of the localization process in zone
2 using (a) Set 1 and (b) Set 2. Finally, Figure 6 shows the
localization results in zone 3 using (a) Set 1 and (b) Set 2. This
is the least restrictive case among the three studied.

In all cases, the results show that the SURF-Harris des-
criptor presents a relatively better performance comparing to
the other descriptors, in terms of accuracy and using both
image sets. As far as the methods based on global appearance
are concerned, the good behavior of HOG can be highlighted.
In the case of the localization in zone 2 it reaches 60% and 50%
of precision in Sets 1 and 2, respectively. These results can be
considered relatively good, taking into account the fact that
the localization process is solved in an absolute way (i.e., we
consider that no information about the previous position of
the robot is available and the test image is compared with all
the images stored in the data sets). In a real application, it
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FIGURE 4: Results of the localization algorithm considering the correct matches in zone I using (a) Set 1 and (b) Set 2. The results of each

description method are shown as different recall-precision curves.
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FIGURE 5: Results of the localization algorithm considering the correct matches in zone 2 using (a) Set 1 and (b) Set 2. The results of each

description method are shown as different recall-precision curves.

is usual to make use of any kind of probabilistic algorithm
to estimate the position of the robot taking into account its
previous estimated position. This is expected to provide a
higher accuracy. We expect to develop this type of algorithms
and tests in a future work.

Some additional conclusions can be reached by compar-
ing the performance of the methods in open areas (Set 1) and
urban areas (Set 2). In open areas, the performance of SURF-
Harris, HOG, and gist is quite similar and relatively good
in all cases, and the methods based on the Discrete Fourier
Transform tend to present worse results. However, in the case

of urban areas, SURF-Harris outperforms the other methods,
and gist is the one that presents the worst results.

Apart from the localization accuracy, it is also important
to study the computational cost of the process, since in a real
application it would have to run in real time, as the robot
is navigating through the environment. This way, we have
obtained in all cases the necessary time to calculate the
descriptor of the test image on the one hand and to compare it
with the descriptors stored in the map, to detect the most sim-
ilar descriptor and to analyze the results on the other hand.
The average computational time of the localization process
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FIGURE 6: Results of the localization algorithm considering the correct matches in zone 3 using (a) Set 1 and (b) Set 2. The results of each

description method are shown as different recall-precision curves.

TABLE 1: Average computational cost of the description algorithms studied, per test image. For each description method and data set, the table
shows first the necessary time to obtain the test image descriptor and second the time to compare it with the descriptors of the map and to

obtain the final localization result.

2D Fourier Fourier Signature Gist HOG SURF-Harris
Data Set 1 Descriptor 0.0087 s 0.0080s 0.4886's 0.0608 s 0.5542's
Data Set 1 Match 0.0015s 0.0058s 0.0006s 0.0008 s 25.8085s
Data Set 2 Descriptor 0.0085s 0.0079 s 0.4828s 0.0621s 0.5389s
Data Set 2 Match 0.0012 s 0.0047 s 0.0005 s 0.0006s 19.3931's

after considering all the test images is shown in Table 1. To
obtain the results of this table, the algorithms have been
implemented using Matlab.

With respect to the computational cost, the methods
based on the Fourier Transform are significantly faster than
the rest, while SURF-Harris presents a considerably high
computational cost. About the necessary time to compare two
descriptors, gist and HOG are the fastest methods. In the case
of SURF-Harris, the brute force match method implemented
results in a relatively high computational cost. This method
has been chosen to make a homogeneous comparison with
the other global-appearance methods. However, in a real
implementation, a bag-of-words based approach [23] would
improve the computational efficiency of the algorithm.

Atlast, we have obtained the average memory size needed
to store each descriptor. The results are shown in Table 2. Gist
is the most compact descriptor (it is able to compress the
information in each scene significantly) while SURF-Harris
needs more memory size.

Considering these results jointly with the precision in
localization, we could say that the SURF-Harris descriptor
shows very good results in location accuracy but its compu-
tational cost makes it unfeasible to solve a real application.
HOG, which is the second in terms of accuracy, also has a
very good computational cost, so we consider it interesting to

study more thoroughly this descriptor as future work and to
implement more advanced versions of this method to try to
optimize the accuracy. Likewise, other types of distances to
compare images could also be studied, apart from the Euc-
lidean distance. For the same reasons, we also consider it
appropriate to examine more thoroughly the gist descriptors,
as well as using other methods to extract the gist of a scene
apart from the orientation information (e.g., from the color
information).

As a final experiment, we have studied the relationship
distance between two image descriptors versus geometric dista-
nce between the capture points of these two images. As stated
at the beginning of the section, this information is very inter-
esting in some applications such as the construction of maps
from the images, with geometric precision, or the localization
of the vehicle at halfway points of the grid of the map. It is
important that the distance between descriptors grows as the
geometric distance does. Figure 7 shows the results obtained
using (a) Set 1 and (b) Set 2. To obtain these figures, an image
has been set as a reference image, and the distance between
the reference image descriptor and the other descriptors has
been calculated. The figure shows this distance versus the geo-
metric distance between the capture points of each image and
the capture point of the reference image. In both cases, this
relationship is monotonically increasing up to a geometric
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TABLE 2: Necessary memory to store each descriptor.
2D Fourier Fourier Signature Gist HOG SURE-Harris
Descriptor 16384 bytes 32768 bytes 4096 bytes 8192 bytes 110400 bytes
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FIGURE 7: Relationship distance between two image descriptors versus geometric distance between the capture points of these two images using

(a) Set 1and (b) Set 2.

distance of approximately 100 meters. From this point it tends
to stabilize with a relatively high variance. The exception
is the local features descriptor, which stabilizes at the final
value from a very small geometric distance. However, the
appearance-based descriptors exhibit a more linear behavior
around each image.

6. Conclusions and Future Works

In this paper, we have carried out a comparative evaluation
of several description methods of scenes, considering the
performance of these methods to accurately solve an absolute
localization problem in a large real outdoor environment. We
evaluated two different approaches of visual descriptors, local
features descriptors (SURF-Harris), and global-appearance
descriptors (2D Discrete Fourier Transform, Fourier Signa-
ture, HOG, and gist).

All the tests have been carried out with images of
Google Street View, captured under realistic conditions. Two
different areas of a city have been considered, an open area
and a purely urban area with narrower streets. The capture
points of each area present different topography. The first one
is a grid map that covers several streets and avenues and the
second one a linear map (i.e., the images were captured when
the mobile traversed a linear path on a narrow street).

Some different studies have been performed. First, we
have evaluated the accuracy of the localization process. To

do this, recall and precision curves have been computed to
compare the performance of each description method. We
plot the recall and precision curves for both areas, taking
into account different levels of accuracy to consider that
the localization result is correct. In these experiments, the
computational cost of the localization process has also been
analyzed.

We have also studied each descriptor in terms of behavior
of the descriptor distance comparing to geometrical distance
between image capture points. To do this, we plot a curve
that represents the descriptor distance versus the geometrical
distance between capture points. This measure is very useful
for performing navigation tasks, since thanks to it we can
estimate the range of use of the descriptor.

It is noticeable that the SURF-Harris descriptor is the
most suitable descriptor in terms of precision in localization,
but it presents a smaller zone of work in terms of Euclidean
distance between descriptors. The HOG descriptor has shown
a relatively good performance to solve the localization prob-
lem and presents a good response of the descriptors distance
versus geometrical distance between capture points. If we
analyze jointly the results of both experiments and take into
account the computational cost (Tables 1 and 2) we conclude
that, although the SURF-Harris descriptor presents the best
results in terms of recall and precision curves, it does not
allow us to work in real time. Therefore, taking into account
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that HOG is the descriptor that presents the second best
results in terms of recall and precision curves and allows us to
work in real time, we can conclude that the HOG is the most
suitable descriptor.

We plan to extend this work to (a) capture a real out-
door trajectory traveling along several streets and capturing
omnidirectional images using a catadioptric vision system,
(b) combine the information provided by this vision system
and the images of the Google Street View, and (c) evaluate
the performance of the best descriptors in a probabilistic
localization process.
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