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We segment buildings and trees from aerial photographs by using superpixels, and we estimate the tree’s parameters by using a cost
function proposed in this paper. A method based on image complexity is proposed to refine superpixels boundaries. In order to
classify buildings from ground and classify trees from grass, the salient feature vectors that include colors, Features fromAccelerated
Segment Test (FAST) corners, and Gabor edges are extracted from refined superpixels. The vectors are used to train the classifier
based on Naive Bayes classifier. The trained classifier is used to classify refined superpixels as object or nonobject. The properties
of a tree, including its locations and radius, are estimated by minimizing the cost function. The shadow is used to calculate the
tree height using sun angle and the time when the image was taken. Our segmentation algorithm is compared with other two
state-of-the-art segmentation algorithms, and the tree parameters obtained in this paper are compared to the ground truth data.
Experiments show that the proposed method can segment trees and buildings appropriately, yielding higher precision and better
recall rates, and the tree parameters are in good agreement with the ground truth data.

1. Introduction

With the fast pace of industrialization and urbanization, 3D
models are more and more necessary for urban planning,
flight simulator, andmilitary training. It is important to iden-
tify buildings and trees in high-resolution aerial photographs
for displacement maps in real-time, which is a key procedure
for building 3D models, because buildings and trees not
only are significant features for city modeling, but also often
occlude other elements in 3D urban models. Therefore, the
first step of displacement maps is to detect buildings and
trees from aerial photographs. Automatic detection of trees
and buildings is a challenging work because, first of all, the
input data sets of aerial photographs are huge; second, the
features of buildings and trees are various, and it is hard to
find salient ones for training purposes; third, it is difficult to
classify building from ground and classify tree from grass in
desert climate regions like Arizona State in USA.

Recently, many methods have been proposed for aerial
images objects detection. In this section, we will provide a
description of prior art of building and tree detection from

three aspects: (1) buildings and trees segmentation; (2) super-
pixel refinement; (3) salient region feature.

(A) Building and Tree Segmentation. Building and tree seg-
mentation from aerial image is used in different applica-
tions and analysis, for example, mapping, video games, 3D
modeling, environmental management and monitoring, and
disaster management. Huertas and Nevatia [1] used a generic
model of shapes of structures which were rectangular or were
combined by rectangular components to detect the buildings.
However, they assumed the visible building surfaces con-
sisted of smooth regions and that building sides consisted
mostly of vertical structures, which makes it difficult to
detect complex buildings. Liow and Pavlidis [2] proposed two
methods integrating region-growing and edge detection to
extract buildings. However, some small buildings were not
detected. Then, Rottensteiner and Briese [3] used a hierar-
chic application of robust interpolation using a skew error
distribution function to extract the building points from the
LiDAR data. However, this method needed much time to
calculate the digital terrain model (DTM). Rottensteiner
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et al. [4] proposed a hierarchic approach to extract the
buildings from the LiDAR data and multispectral images by
using a classification. This method extracted large and small
buildings. However, they put more emphasis on detecting all
buildings in the test data set than on reducing false alarm
rate. Cheng and his colleagues [5] proposed an algorithm of
integration of LiDAR data and optical images for building
roofs segmentation. However, point normal estimation needs
to be used for initial segmentation, whichmade the algorithm
complicated. In order to achieve roof segmentation from
aerial images, El Merabet et al. [6] proposed a line and
region-based watershed method based on the cooperation
of edge- and region-based segmentation methods. However,
this method is not robust to the aerial image resolution,
contrast, noise, and so forth.

There are many methods for tree segmentation from
aerial urban images. Iovan et al. [7] proposed a supervised
classification system based on Support Vector Machines
(SVM) to detect trees in high density urban areas using
high-resolution color infrared images. Unlike our proposed
method, this algorithm only uses textures to segment trees
from buildings, which reduces the segmentation accuracy.
Another pixel-level classifier based on Adaboost was imple-
mented to segment trees from the aerial urban images [8].
However, this method cannot segment the neighbor trees.
Chen and Zakhor [9] proposed a random forest classifier for
the tree segmentation without using color information. In
this method, the edges of buildings and trees were not dis-
criminated because of lacking some other features. In order
to accurately segment the trees, Brook and Ben-Dor [10]
proposed an approach based on a sequence merge including
different classifiers. However, this classifier was a complex
classifier that was difficult to be implemented. Risojević et
al. [11] presented an evaluated classifier based on SVM using
only Gabor features. However, because of lacking colorful
information, the objects with smooth structures cannot be
correctly segmented. Swetnam and Falk [12] proposed a
method for tree canopy segmentation and estimating tree’s
parameters by using LiDAR data. In order to calculate the
forest structural parameters, Huang et al. [13] proposed a
method for calculating the tree height and crown width
by using high-resolution aerial imagery with a low density
LiDAR system.

(B) FAST Superpixel Refinement. In order to overcome the
undersegmentation, the number and boundaries of super-
pixels should be appropriately determined. A superpixel is a
patch whose boundary matches the edge of an object. Super-
pixels represent a restricted form of region segmentation,
balancing the conflicting goals of reducing image complexity
through pixel grouping while avoiding undersegmentation.
They have been adopted primarily by those attempting to
segment, classify, or label images from labeled training data.
Superpixels are segments in an imagewhich can serve as basic
units in the further image processing. Their purpose is to
reduce the redundancy in the image and increase efficiency
from the point of view of the next processing task. Many
methods for the computation of superpixels were already
presented.

Levinshtein et al. [14] presented a method to produce
smooth segment boundaries. Turbopixels algorithm was a
geometric-flow based algorithm for computing a dense over-
segmentation of an image, often referred to as superpixels.
It produced segments that on one hand respect local image
boundaries, while on the other hand limiting undersegmen-
tation through a compactness constraint. It was very fast, with
complexity that was approximately linear in image size, and
can be applied tomegapixel sized imageswith high superpixel
densities in a matter of minutes. However, it produced a
fixed number of superpixels. Engel et al. [15] used the medial
features to detect the undersegmentation region, and Sobel
operator was used to detect the edges of undersegmenta-
tion regions. However, the computational burden of this
method was high because of implementing iterations, which
increased the run-time. Kluckner and Bischof [16] proposed
an automatic building extraction method based on superpix-
els, which is similar to our method. However, they applied
a conditional Markov random field (CRF) to refinement on
superpixels twice, which was a computationally expensive
process. Therefore, we proposed a fast and simple method
based on image complexity to determine the number of
superpixels and refine boundaries of superpixels.

Therefore, we can find that a drawback of most of these
methods is their high computational complexity and hence
high computational time consumption. Second, a sophisti-
cated method for marker image calculation which respects
both the remaining natural edges in the image and the reg-
ularity of marker placement in still regions of the image still
has to be developed.

(C) Salient Region Feature. Salient region, which was intro-
duced by Itti et al. [17], attracts much more attention by
human brain and visual system than other regions in the
image. It is inspired by the Human Vision System (HVS), and
therefore the features extracted from salient regions are
invariant to viewpoint change, insensitivity to image per-
turbations, and repeatability under intraclass variation [18].
These features are key properties for image classification.
Therefore, salient region is introduced for the image classi-
fication. Hahn et al. [19] presented a representation for 3D
salient region features, and these features were used to be
implemented for medical image registration. The authors
used a region-growing based approach for extracting 3D
salient region features. In order to extract cartographic fea-
tures from aerial and spatial images, Kicherer et al. [20] pro-
posed an interactive method based on image texture and
gray-level information for image region segmentation. Bi et
al. [21] proposed a method for saliency tiles detection from
the entire image using low-level features. However, because
of selecting tiles whose edges were regular, some edges of
an object were missed and much computation was needed.
Therefore, we extract the salient features from superpixels,
and these features are used for the aerial image classification.

(D) Research Objective. To automatically generate a realistic
3D urban model just depending on a single 2D large high-
resolution urban image, we should segment and detect all the
objects in the 2D image, such as trees, buildings, and streets.
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Figure 1: The overview area of Phoenix, USA.

However, in this work we limit our focus to buildings and
trees. Our aim is to produce a label for each pixel in an aerial
photograph indicating whether building or tree is present at
its location. We are given a high-resolution aerial or satellite
photograph from a nadir viewpoint that includes visible color
(𝑅𝐺𝐵 or 𝐻𝑆𝑉) which is an important feature for building
and tree segmentation. We do not consider additional raster
data that may be available, such as LiDAR data, infrared,
hyperspectral data, stereo data, or digital surface models,
because they can be more difficult to obtain. Therefore, we
claim the following specific contributions:

(1) Proposing a method to automatically estimate the
superpixels number for an aerial photo based onmea-
surement of image complexity and detect boundaries
of the undersegmentation region. The new method
makes our approach robust against missing or erro-
neous metadata about image resolution.

(2) Proposing a salient feature vector for training the
classifier, which is simple and efficient and easy to be
implemented.

(3) Proposing an approach for estimating the location
and radius of a tree crown and the tree height without
additional information, which is simple and efficient
and easy to be implemented.

2. Materials

2.1. StudyArea. Thestudy area is located at Phoenix, Arizona,
United States, and its location is (33∘27󸀠N, 112∘4󸀠W), which
is shown in Figure 1. The area of the study region is
about 291.7264 km2. Arizona has an abundance of mountains
and plateaus in addition to its desert climate. Despite the
state’s aridity, 27% of Arizona is forest. The largest stand of
Ponderosa pine trees in the world is contained in Arizona.
Therefore, the geography of Arizona makes it more difficult
to segment the buildings and trees from images than from
other areas.

2.2. Aerial Imagery. The test images are from urban or sub-
urban regions of Arizona, USA. These aerial images were

Table 1: Main EXIF information of experimental images.

Tag Value
Manufacturer Leica
Model ADS40
DateandTime 2008:12:11 3:45:32
ExposureTime 1/659 seconds
ComponentsConfiguration 4.01
MaxApertureValue 2.0
FocalLength 20.1mm
ColorSpace sRGB
PixelXDimension 6250
PixelYDimension 6250

Figure 2: The original image with its zoom-in area.

collected at August, 2008, using the ADS40 airborne digital
sensor. The height taken in the images is 600 meters. This
sensor incorporates a line-array of charge-coupled devices
(CCDs) and is capable of acquiring visible to near-infrared
stereo data at ground resolutions of 0.5m/pixel. The detail
of this sensor can be found in [22]. The resolution of each
aerial image shown in Figure 2 is 8540 × 8540 in this
paper. The main EXIF information of experimental images
is shown in Table 1. Moreover, in order to train the classifier,
50 images which are labeled trees, building, and others are
used and the examples of the original labeled images are
shown in Figure 3 whose resolution is 2048 × 1642 pixels.
Furthermore, 500 images are used to evaluate the proposed
algorithm.

3. Proposed Algorithm

In this paper, we propose a building and tree segmentation
method using superpixels from a single large high-resolution
urban image. The procedure of this algorithm is shown in
Figure 4.

3.1. Presegmentation Based on Refined Simple Superpixel. In
this paper, an improved method is proposed to presegment
the large scale image with a high accuracy. This method
is based on Turbopixels whose number of superpixels was
given by users. However, different from the Turbopixels, our
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(a) (b) (c)

Figure 3: Three examples of the original labeled images for classifier training.
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Figure 4: The flow chart of our algorithm.

method used two formulas to overcome the undersegmenta-
tion caused by Turbopixels.

In order to use superpixels [14, 23] to presegment images
to reduce computation while preserving exact pixel bound-
aries, different types of images should need different numbers
of superpixels. Therefore, it is required to automatically cal-
culate the number of superpixels according to the processed
images. Moreover, it is necessary to overcome the under-
segmentation by refining results given by Turbopixels.There-
fore, we use 𝑁superpixel that is defined in Section 3.1.1 to cal-
culate the number of superpixels automatically according to
the image complexity and 𝑅edge is used to refine the pre-
segmentation.This superpixel is called Refined Simple Super-
pixel.

3.1.1. Simple Superpixel Segmentation. The aim of superpixels
is to reduce the problem by replacing pixels with regularly
spaced, similarly sized image patches whose boundaries lie
on edges between objects in the image, so a pixel-exact
object segmentation can be accomplished by classifying
superpixel patches rather than individual pixels. However, the
boundaries of the superpixels will not match with the edges
of the objects as well if the number of superpixels generated
is too small, and the computation will be expensive when the
number is too large.

In this paper, we use the image complexity to calculate
the number of superpixels. Image complexity is defined as a
measure of the inherent difficulty of finding a true target in a
given image. The image complexity metric is determined by
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the gray-level feature or the edge-level feature [24]. According
to Rigau et al. [25], image complexity depended on the
entropy of the image intensity histogram. Therefore, we use
the entropy to measure the image complexity. The following
formula is used to calculate 𝜖:

𝜖 = −∑𝑝
𝑖
log
2

𝑝
𝑖
, (1)

where 𝑝
𝑖
is the probability value of 𝑖th gray. This metric was

originally developed for automatic target recognition. How-
ever, according to lots of experiments, we suggest another
novel use of this metric to choose the number of superpixels
using the following formula:

𝑁superpixel =
𝜖 ×𝑀

𝜙 × 100
, (2)

where 𝑀 is the image size and 𝜙 is a weighted value.
According to (2), we can find that the number of superpixels
is dependent on the image complexity and the image size.The
bigger 𝜖 is, the more useful information is included in the
aerial image. Moreover, the bigger𝑀 is, the more objects are
contained in the aerial image. Therefore, 𝑁superpixel must be
bigger, whichmeans thatmore superpixels whose boundaries
lie on edges between objects in the image are needed to
segment the images. However, in order to obtain a balance
between the segmentation accuracy and computation, a
penalty weight 𝜙 is introduced in (2).

Testing different types of images which were collected
by our lab, we suggest that the internal of 𝜙 is 6∼13 and
in our experiment 𝜙 is 8.1. In order to balance under- and
oversegmentation, several parameters were introduced in (2).
According to our research, oversegmentation or underseg-
mentation is caused by inappropriate numbers of superpixels.
Furthermore,more details are included in the complex image.
Therefore, the entropy 𝜖 in (2) was introduced to calculate
the image complexity. Besides, a larger image includes more
details than smaller one, which means that more superpixels
are required for image segmentation. Therefore, the image
size 𝑀 was introduced in (2). Finally, the parameter 𝜙 was
introduced to suppress the oversegmentation. As shown in
Figure 2, we can find that the trees, buildings, and other
objects are covered by different superpixel patches; even
the trees are adjacent, which makes it easy to segment
buildings and trees. From Figure 2, we can also find that
most of the superpixels cover the pixels which belonged to the
same objects. However, some boundaries of the superpixels
are missed. Therefore, 𝑅edge is implemented to detect these
missing boundaries in Section 3.1.2.

3.1.2. Refined Superpixel. In this paper, we use a method
based on Canny detector to overcome the undersegmenta-
tion. Canny [26] suggested that, in an image, edges were
usually defined as sets of points with a strong gradient
magnitude. An edge can be of almost arbitrary shape and
may include junctions. Therefore, if the variance of pixels in
the same superpixel is bigger than the threshold, the Canny
detector should be used to refine this superpixel. Then the
new boundary of the superpixel could be found; otherwise,
this superpixel does not need to be refined.

In this paper, we propose a function 𝑅edge to determine
which superpixels need to be refined. The function is shown
as follows:

𝜎
𝑖
> thr Detection,

𝜎
𝑖
≤ thr No Detection,

(3)

where 𝜎
𝑖
is the standard deviation of the 𝑖th superpixel and

thr is the threshold which is obtained by the experiment. In
this paper, we suggest that thr is the threshold whose interval
is [9, 19] that is calculated based on [27].

Simply defining thr to be the three-dimensional feature in
color space will cause inconsistencies in clustering behavior
for different superpixel sizes. This produces compact super-
pixels that adhere well to image boundaries. For smaller
superpixels, the converse is true.

3.2. Salient Features Extraction from Refined Superpixels. A
superpixel-based classifier is proposed for segmenting build-
ings and trees from a presegmentation image. In order to
train the classifier, we assign {building, tree, others} label to
each superpixel to create the training data, and then a salient
feature vector is derived from an entire superpixel. In this
paper, we extract the color feature, corners, and texture
feature for training the classifier.

3.2.1. Color Features. In our method, 𝑅𝐺𝐵 and 𝐻𝑆𝑉 (hue,
saturation, and value) are extracted to be as color features.The
input 𝑅𝐺𝐵 indices fill a color-cube which the 𝐻𝑆𝑉 hexcone
was designed to perfectly fit [28]. 𝑅𝐺𝐵 is a basic color space,
and it can be transformed to any color space including𝐻𝑆𝑉,
𝑌𝑈𝑉. At the same time, 𝐻𝑆𝑉 is a more reasonable color
space and it has a relationship with theHumanVision System
(HVS). Therefore, they were both important for training a
classifier.The following features calculated based on𝑅𝐺𝐵 and
𝐻𝑆𝑉 are extracted from each superpixel:

𝑅mean, 𝐺mean, 𝐵mean, 𝐻mean, 𝑆mean, and 𝑉mean: the
means of each channel of 𝑅𝐺𝐵 and𝐻𝑆𝑉.
𝑅std, 𝐺std, 𝐵std, 𝐻std, 𝑆std, and 𝑉std: the standard
deviation of each channel of 𝑅𝐺𝐵 and𝐻𝑆𝑉.
𝑅max, 𝐺max, 𝐵max, 𝐻max, 𝑆max, and 𝑉max: the value of
the pixel with the greatest intensity in the superpixel.
𝑅min, 𝐺min, 𝐵min, 𝐻min, 𝑆min, and 𝑉min: the value of a
pixel with the lowest intensity in the superpixel.

3.2.2. Robust FAST Corners Extraction. Corner refers to a
small point of interest with variation in two dimensions.
There are many corner detectors which can be classified into
two categories. (1) Corner detector based on edges: an edge
in an image corresponds to the boundary between two areas
and this boundary changes direction at corners. Many early
algorithms detected corners based on the intensity changes.
(2) Corner detector based on chained edge: lots of methods
have been developed which involved detecting and chaining
edges with a view to analyzing the properties of the edge.
Rosten et al. proposed a high-speed corner detectionmethod
based on FAST (Feature from Accelerated Segment Test) and
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machine learning [29], which is shownby (4).However, FAST
corner is not robust because the threshold in (4) is a constant.
Therefore, a novel function which is used to calculate the
threshold is proposed in this paper, which is shown by (5):

𝑆
𝑙

=

{{{

{{{

{

𝑑, 𝐼
𝑙
≤ 𝐼
𝑐𝑝
− 𝑇FAST-corner (darker)

𝑠, 𝐼
𝑐𝑝
− 𝑇FAST-corner ≤ 𝐼𝑙 ≤ 𝐼𝑐𝑝 + 𝑇FAST-corner (similar)

𝑙, 𝐼
𝑙
≥ 𝐼
𝑐𝑝
− 𝑇FAST-corner (lighter) ,

(4)

where 𝐼
𝑙
is the gray values of candidate corners in a superpixel,

𝐼
𝑐𝑝
is the gray values of neighbors around 𝐼

𝑙
, and𝑇FAST-corner is

the FAST corner number which is calculated by the following
equation:

𝑇FAST-corner =
𝑓
2

(𝑥
𝑖
, 𝑦
𝑖
)

(1/ (𝑀 × 𝑁))∑
𝑀×𝑁

𝑖=0

𝑓 (𝑥
𝑖
, 𝑦
𝑖
)

+ 𝜎, (5)

where𝜎 is the variance of an aerial image𝑓(𝑥, 𝑦) and𝑓(𝑥
𝑖
, 𝑦
𝑖
)

is the value of the 𝑖th pixel in the image 𝑓(𝑥, 𝑦). According to
(4), we can find that the bigger𝜎 is, themore FAST corners are
extracted from the superpixels, because more salient corners
are in an image whose variance is bigger.

3.2.3. Gabor Textures. In our method, we use the Gabor filter
to extract structure features of buildings and trees. Structure
is an important feature to segment buildings from street and
ground, and it is also useful to segment trees from grass.
Furthermore, frequency and orientation representations of
Gabor filters are similar to those of the Human Visual
System (HVS), and they have been found to be particularly
appropriate for texture representation and discrimination.
Among various approaches for extracting texture features,
Gabor filter has emerged as one of the most popular ones
[30]. A Gabor descriptor of an image is computed by passing
the image through a filter bank of Gabor filter. In the spatial
domain, a 2D Gabor filter is a Gaussian kernel function
modulated by a sinusoidal plane wave with a complex
sinusoid [31]. The function is shown as follows:

𝑔 (𝑥, 𝑦)

= (
1

2𝜋𝜎
𝑥
𝜎
𝑦

) exp[−1
2
(
𝑥
2

𝜎2
𝑥

+
𝑦
2

𝜎2
𝑦

) + 2𝜋𝑗Ω𝑥] ,

(6)

where Ω is the frequency of the Gabor function and 𝜎
𝑥
and

𝜎
𝑦
determine its bandwidth.
From the zoom-in region of Figure 2, we can find that

(1) buildings have similar color with the ground and streets
and (2) trees and grass have similar color. These two char-
acteristics make it difficult to segment buildings and trees
from aerial images. However, the textures of buildings and
trees are muchmore obvious than ground and grass. Besides,
in order to balance the conflicting goals of reducing compu-
tation while obtaining a satisfying accuracy, the number of
frequencies 𝜔 (𝜔

1
= √2𝜋/2, 𝜔

2
= √2𝜋/3, 𝜔

3
= √2𝜋/4, 𝜔

4
=

√2𝜋/5, and 𝜔
5
= √2𝜋/6) is 5 and number of orientations 𝜃

(𝜃
1
= 0, 𝜃

2
= 𝜋/8, 𝜃

3
= 𝜋/4, 𝜃

4
= 3𝜋/8, 𝜃

5
= 𝜋/2, 𝜃

6
= 5𝜋/8,

𝜃
7
= 3𝜋/4, and 𝜃

8
= 7𝜋/8) is 8.

Through concatenating the above features based on SVM,
a salient feature vector is generated for each superpixel. Then
we use this feature vector to train a classifier for building and
tree segmentation. Finally, Naive Bayes classifier is chosen to
be used for tree and building classification in our algorithm
because it is efficient and easy to be implemented [32].

3.3. Proposing a Cost Function for Tree Parameters Estimation.
After segmentation, a tree location (𝑥

𝑇
, 𝑦
𝑇
), a tree radius

𝑟
𝑇
, and a tree height ℎ

𝑇
are estimated by a cost function

integrating shadows.

3.3.1. The Proposed Cost Function. The tree model matching
is applied to 3 channels: 𝑌, 𝑈, and 𝑉 of the image 𝐼(𝑥, 𝑦).
The main advantage of the 𝑌𝑈𝑉model is that the luminance
and the color information are independent. Therefore, the
luminance component can be processed without affecting the
color contents [33]. In order to match trees in 𝐼(𝑥, 𝑦) with
the tree model𝑀(𝑥, 𝑦), we propose a cost function which is
shown as follows:

cost = arg min (𝑤
0
+ 𝑤
𝑌
𝐹
𝑌
+ 𝑤
𝑈
𝐹
𝑈
+ 𝑤
𝑉
𝐹
𝑉
+ 𝑤
𝑆
𝐹
𝑆
) , (7)

where 𝑤
0
, 𝑤
𝑌
, 𝑤
𝑈
, 𝑤
𝑉
, and 𝑤

𝑆
are the weights to control

the convergence speed of the cost function, 𝐹
𝑌
, 𝐹
𝑈
, and 𝐹

𝑉

are used to calculate the root of the square error (RSE) of
𝑌, 𝑈, and 𝑉 channel between 𝐼(𝑥, 𝑦) and𝑀(𝑥, 𝑦) within the
tree’s canopy, and 𝐹

𝑆
is used to calculate the RSE of shadows

in 𝐼(𝑥, 𝑦) and𝑀(𝑥, 𝑦) which is a circle. These functions are
shown as follows:

𝐹
𝑌
(𝐼,𝑀) = 𝛾√

∑

𝑥,𝑦∈𝐶(𝑀)

[𝐼
𝑌
(𝑥, 𝑦) −𝑀

𝑌
(𝑥, 𝑦)]

2

,

𝐹
𝑈
(𝐼,𝑀) = 𝛾√

∑

𝑥,𝑦∈𝐶(𝑀)

[𝐼
𝑈
(𝑥, 𝑦) −𝑀

𝑈
(𝑥, 𝑦)]

2

,

𝐹
𝑉
(𝐼,𝑀) = 𝛾√

∑

𝑥,𝑦∈𝐶(𝑀)

[𝐼
𝑉
(𝑥, 𝑦) −𝑀

𝑉
(𝑥, 𝑦)]

2

,

𝐹
𝑆
(𝐼,𝑀) = 𝜔√

∑

𝑥,𝑦∈𝐶𝑆(𝑀)

[𝐼
𝑆
(𝑥, 𝑦) −𝑀

𝑆
(𝑥, 𝑦)]

2

,

(8)

where 𝛾 = 1/𝑃, 𝑃 is a weight, and 𝑃 ∈ [0, 1],

𝐶 (𝑀) = {𝑥, 𝑦 | (𝑥 − 𝑥
0
)
2

+ (𝑦 − 𝑦
0
)
2

≤ 𝑟
2

0

} . (9)

𝐶(𝑀) is supposed to be circular in our algorithm. (𝑥
0
, 𝑦
0
)

is the initializing center of the model. 𝑟
0
is the initializing

radius and 𝜔 = 1/𝑄, 𝑄 is a weight, and 𝑄 ∈ [0, 1]:

𝐶
𝑆
(𝑀) = {𝑥, 𝑦 | (𝑥 − 𝑥

𝑆
)
2

+ (𝑦 − 𝑦
𝑆
)
2

≤ 𝑟
2

0

} . (10)

𝐶
𝑆
(𝑀) is also supposed to be a circle and its radius is

the same with the tree model. (𝑥
𝑆
, 𝑦
𝑆
) is dependent on the

centroid of the tree which is detected. In Section 1, we showed
that there was a relationship between tree and its shadow,



Journal of Sensors 7

Vertical

Horizontal

S

W

E

N Ground Tree shadow

h

Elev
ati

on

Azimuth (𝛼)

Figure 5: The relationship between tree and its shadow.

which is shown in Figure 5, and this relationship can be
calculated by using the following functions:

𝑥
𝑆
= 𝑥
0
− cos−1𝛼 cot−1𝛽ℎ

0
,

𝑦
𝑆
= 𝑦
0
− sin−1𝛼 cot−1𝛽ℎ

0
,

(11)

where 𝛼 is the sun azimuth angle, 𝛽 is the sun elevation angle,
and they could be calculated using the time when the image
was taken, ℎ

0
is the tree height, (𝑥

0
, 𝑦
0
) is the center of the

tree crown, and (𝑥
𝑆
, 𝑦
𝑆
) is the center of the shadow. Here, we

estimate the tree height ℎ using (11) and the cost function. It is
noted that all these parameters are initialization parameters,
and the unit of the tree parameters is pixel, because we
calculate them without additional information.

3.3.2. The Outline of Calculating Tree’s Parameters. In order
to calculate the tree’s parameter, the gradient descent method
is employed to achieve iterations. The convergence speed is
robust. This procedure is shown in the following steps.

Step 1. Calculate the gradient value 𝑔
0
by the initialization

parameter set int
0
= {(𝑥

0
, 𝑦
0
), 𝑟
0
, ℎ
0
}, where (𝑥

0
, 𝑦
0
) is the

centroid of a superpixel, 𝑟
0
= 2 × 𝑥

0
, and ℎ

0
= 0.

Step 2. Calculate the normvalue of𝑔
0
which can be expressed

as 𝑔𝑛
0
, where 𝑔

0
= 5.

Step 3. Update the int
0
using the formula int

1
= int

0
−

oldspeed × 𝑔
0
.

Step 4. Calculate the new gradient value 𝑔
1
using int

1
.

Step 5. Calculate the normvalue of𝑔
1
which can be expressed

as 𝑔𝑛
1
.

Step 6. Calculate the ratio of 𝑔
0
and 𝑔
1
; rate
𝑔
can be obtained.

Step 7. If rate
𝑔
> 𝑇, newspeed = (rate

𝑔
/𝐿) × oldspeed; else

newspeed = oldspeed, where 𝑇 is a threshold, 𝐿 is a constant,
and 𝐿 > 1 and in our experiment 𝐿 = 100. In ourmethod, the
initialization centroid (𝑥

0
, 𝑦
0
) is the centroid of a superpixel

that belonged to a tree. The number of iterations is 600.

This procedure is finished until getting the minimum
value of tree parameters (𝑥∗, 𝑦∗, 𝑟∗, ℎ∗).

Our method was implemented using Microsoft Visual
Studio 2010 and Matlab 2010a, and this method was coded
by integrating C# and Matlab. The proposed algorithm was
tested on many large high-resolution urban images taken
from Phoenix, Arizona, USA.

4. Results

In our experiment, the method is implemented by two
steps: (1) the first step is presegmentation, and the result is
compared with the result which is got by Turbopixel and
Entropy Rate Superpixel (ERS); (2) the second is to segment
buildings and trees, and the segmentation result is compared
to the result got by using Turbopixel and ERS [34]; (3) the
tree’s parameters estimation result is evaluated by the root
mean square error (RMSE).

4.1. Presegmentation Result. Figure 2 is an original image
which includes trees, grass, buildings, and other objects. The
zoom-in area of Figure 2 shows that the tree color is similar to
grass color; the textures of trees are coarse and salient, while
the textures of grass are smooth. Moreover, the shapes of build-
ings and trees are different. Figure 6 shows the presegmenta-
tion result. By comparing Figures 6(a), 6(b), and 6(c), we can
find that the superpixel in Figure 6(a) was refined by our
method. It is noted that the number of superpixels is 8200
before the aerial images are presegmented by using Turbo-
pixels.

Figure 6(a) shows the result which is obtained by (3).The
boundaries are marked by red, and the boundaries which are
got by (3) are marked by green.

4.2. Segmentation Result. Figure 7 shows four segmentation
results; the first one is based on our method; the second one
is based on the Turbopixels; the third one is obtained by using
ERS; and the last one is ground truth segmentation result. By
subjectively comparing these three results, we found that the
segmentation result got by our method is the best. Because of
training the features from the superpixels, computation of our
method is less than that of the method used by ERS. For the
superpixel-level segmentation, the computational complexity
is 𝑂(𝜖 × 𝑀/2

10

). However, the computational complexity of
pixel-level is 𝑂(𝑀). 𝜖 is the image complexity, and𝑀 is the
pixel number. Therefore, the running time of our method is
considerable, which is very important in large scale urban
aerial image processing. The average running time of our
method is 45% less than the average running time of ERS.

Furthermore, two standard metrics which were under-
segmentation error [35] and boundary recall [36] were used
for evaluating the quality of superpixels. Undersegmentation
error (UE)measures fraction of pixel leak across ground truth
boundaries, which is shown by (12). The comparison results
of UE were shown in Figure 8(a):

UET (𝑆) =
∑
𝑖

∑
𝑘:𝑆𝑘∩𝑇𝑖 ̸=⊘

󵄨󵄨󵄨󵄨𝑆𝑘 − 𝑇𝑖
󵄨󵄨󵄨󵄨

∑
𝑖

󵄨󵄨󵄨󵄨𝐺𝑖
󵄨󵄨󵄨󵄨

, (12)

where T = {𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑛
} represent ground truth seg-

mentation and 𝐺
𝑖
denotes the segment size and 𝑆

𝑘
is the 𝑘th
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(a) The result based on our
method

(b) The result based on Turbo-
pixels

(c) The result based on ERS

Figure 6: The comparative presegmentation result.

Original images Ground truthERSTurbopixelsProposed method

Figure 7: The comparative segmentation result.

superpixel. Boundary recall (BR) measures the percentage of
the natural boundaries recovered by the superpixel bound-
aries, which is represented by (13). The comparison results of
BR were shown in Figure 8(b):

BRT (𝑆) =
∑
𝑝∈𝛿T ∇ (min

𝑞∈𝛿𝑆

󵄩󵄩󵄩󵄩𝑝 − 𝑞
󵄩󵄩󵄩󵄩 < 𝜖)

|𝛿𝑇|
, (13)

where 𝛿T and 𝛿𝑆 denote the union sets of ground truth
boundaries and superpixel boundaries, respectively.The indi-
cator function ∇ checks if the nearest pixel is within distance.
In our experiments we set ∇ = 2. These performance metrics
are plotted against the number of superpixels in an image.

According to Figure 8, we can find that the proposed
algorithm in this paper performs significantly better than
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Figure 8: The comparison results of UE and BR. (a) Undersegmentation error curves; (b) undersegmentation error bar; (c) boundary recall
curves; (d) boundary recall error bar.

the state of the art in all the metrics when the number of
superpixels is calculated by the proposed function.

4.3. Building and Tree Classification Result. To justify the use
of Naive Bayes classifiers which is trained by the proposed
algorithm in our approach, we tried the popular intersection
kernel and Chi-square kernel on our feature vector including
color, FAST corner, and Gabor feature for comparison.
Figure 9 shows the building and tree classification results with
zoom-in regions.

4.4. Tree’s Parameters Estimation Result. In our method, we
calculated the tree parameters one by one. Each tree with
shadow was extracted from every segmentation image, such
as Figure 7, and then this tree is matched with treemodel that
is presented in this paper. The estimation result is shown in
the panel of the GUI when the tree is marked by using red
circular, which is shown in Figure 10. After calculating the
parameters, all of the trees are covered by a round model.

RMSE is introduced to evaluate the estimation results and the
function is shown as follows:

RMSE = √ 1

𝐿

𝐿

∑

𝑖=1

(

󵄨󵄨󵄨󵄨𝑝𝑖 − 𝑝true
󵄨󵄨󵄨󵄨

𝑝true
)

2

, (14)

where 𝐿 is the number of trees, 𝑝
𝑖
is the estimated parameter,

and 𝑝true is the ground truth of the parameters which are
manually measured. It is noted that 𝑝

𝑖
and 𝑝true are used to

describe the same tree in the image. The RMSE of 𝑥
𝑇
, 𝑦
𝑇
, 𝑟
𝑇
,

and ℎ
𝑇
is 1.142 pixels, 1.381 pixels, 1.993 pixels, and 5.992 pix-

els, respectively. At the same time, wemanually measured the
parameters for 270 trees which are chosen from Figure 9(a).
The height of the tree cannot be measured directly because
the image is 2D. However, we can measure the parameters of
the tree’s shadow by human, so the height can be calculated
by (11). Therefore, the tree’s height calculated by (11) could
be considered as ground truth. Then these ground truth



10 Journal of Sensors

Building
Tree
Others

(a)

Building
Tree
Others

(b)

Building
Tree
Others

(c)

Figure 9: The visual comparison of building and tree classification result. (a) Classification result by our proposed method; (b) the
classification based on intersection kernel; (c) the classification result based on Chi-square kernel.

Figure 10: The segmentation result which is shown by GUI.

parameters are compared with the parameters obtained by
using the proposed cost function (7). The result is shown in
Figure 11.

5. Discussion

In this paper, we proposed a novel method for building and
tree segmentation from large scale urban aerial images, and
we also proposed a new approach for estimating tree param-
eters. In Section 4.2, we compared our segmentation method
with the method proposed by Levinshtein et al. [14]. From
Figure 6, it is shown that our approach of superpixel can be
segmented alongwith the edge of objects, while themethodof
Levinshtein and his colleague segmented several objects into
one superpixel. We also compare our segmentation results
with the pixel-level segmentation approach using ERS. In
Figures 9(a) and 9(c), the results indicate that our method
can not only detect smaller building objects but also has
less false alarm detection of building objects on the street.
In our paper, the superpixel code is programmed by Matlab
code.Therefore, the time complexity is a little high. However,
we are doing the work of installing this algorithm by C#,
which is used to reduce the run-time and easy to be used in
commercial areas.

In Section 4.4, we presented a novel approach of calculat-
ing tree parameters, such as locations, radiuses, and heights,
depending on a single aerial image without additional infor-
mation. Our method needs less data than existing methods
[9, 37, 38] that used additional information from LiDAR
data and another database. Based on our novel segmentation
method and the high-resolution aerial photographs, our tree
parameters can be estimated with high accuracy since (a)
the edges of neighbor trees can be detected more precisely
because our segmentationmethod can separate adjacent trees
using different superpixels; (b) the edges of shadow of trees
are clearer and easier for segmentation in the high-resolution
aerial images; (c) the time information for calculating heights
by shadows of trees can be obtained from EXIF info in
aerial photographs. However, our approach is implemented
with two restrictions. The first restriction is that the color of
building roof cannot be the same as the color of ground. The
second restriction is that the distance between trees cannot
be too close or the nearby tree cannot be separated and will
be considered as the same one.

In Section 1(A), we showed many existing segmentation
algorithms in aerial urban image processing using the pixel-
level as the underlying representation. However, the pixel-
level representation is not a natural representation of visual
scenes. Each pixel cannot represent the geometric structure
property of an object, while the superpixel is perceptually
meaningful and each superpixel is a perceptually consistent
unit [23]. The comparison of Figures 9(a), 9(b), and 9(c)
shows that the pixel-level segmentation misses some edges of
the buildings, while the superpixel-level segmentation keeps
the edges. Furthermore, superpixel image has low compu-
tation cost and reduces the complexity of high-resolution
aerial images. Therefore, many researchers introduced the
superpixels for the image segmentation. For example, Saxena
et al. [39] used the superpixel to segment objects during
modeling 3D scene structure from a single stationary image.
Kluckner et al. [40] used the superpixels to segment the
large scale aerial images and the conditional random field
(CRF) was used to refine the result. The presented approach
of segmenting tree stems goes one step further than existing
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Figure 11: The comparing result. (a)The centers of trees in horizontal direction; (b) the centers of trees in vertical direction; (c) the radiuses;
(d) the height.

methods by using additional information between the super-
pixels. Most of missing edges of superpixels are detected.

Tree model is widely used to detect trees. Morsdorf et al.
[41] used the local maxima of canopy height model (CHM)
to calculate the tree height using airborne laser scanning raw
data. The method from Vastaranta et al. [42] used a raster
CHM which was created from normalized data to detect
the individual tree. Apparently, LiDAR data information is
needed for detecting trees. However, our proposed method
just detects the single tree from the aerial image without
any additional complex information. The experiments show
that the parameters of the trees can be calculated from a
single high-resolution aerial image. In order to calculate the
parameters of the trees, we use shadows, tree crowns, and the
time of taking aerial image as input data and estimate the
height of a tree based on (11).

Finally, the experiments show that the locations and radi-
uses of the trees estimated by our approach are approximate

to the manual-picking methods. However, there are some
heights of trees higher or lower than the ground truth ones
shown at Figure 11(d). It might be because the shapes of the
tree are irregular.This problem could be solved if we consider
a new tree model which is more complex than the model
proposed in this paper.

6. Conclusion

In this paper, we proposed a building and tree detection
algorithm by using improved superpixels from large high-
resolution urban images, and we also proposed a method to
calculate the tree parameters depending upon a cost function
and shadows. A function was proposed to automatically
calculate the number of superpixels, and a function is used
to refine the boundaries of superpixels. We provided a new
tree model with a cost function that can be minimized using
gradient decent in order to identify the optimal properties
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of individual tree. We evaluated our method by using many
aerial images and compared ourmethodwith other two state-
of-the-art methods. Experiments showed that our method
is fast and robust, while still being simple and efficient,
and they also indicate that the shadow is a good feature
to estimate the tree height. The results of our method can
be implemented for generating 3D urban models. The main
purpose of this paper is to design fast, accurate segmentation
and classification, characteristics not focused on the learning
process. However, we will examine the different supervised
learning algorithms in the future research work, improving
the effectiveness of the proposed algorithm. Future work will
focus on comparing our method with other supervised algo-
rithms including methods of integrating these data sources
into our solution.

Parameters used in the rule sets are sample values specif-
ically for the study area we chose and may vary for other
locations of interest, but the similar principles and procedures
can be applied to other areas. Using additional ancillary
data, such as 1-meter resolution LiDAR (Light Detection and
Ranging), may further help generate more accurate land-
cover maps, which is among our planned future work.
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aerial image classification,” in Adaptive and Natural Computing
Algorithms: 10th International Conference, ICANNGA 2011,
Ljubljana, Slovenia, April 14–16, 2011, Proceedings, Part II, vol.
6594 of Lecture Notes in Computer Science, pp. 51–60, Springer,
Berlin, Germany, 2011.

[12] T. L. Swetnam and D. A. Falk, “Application of metabolic scaling
theory to reduce error in local maxima tree segmentation from
aerial LiDAR,” Forest Ecology and Management, vol. 323, pp.
158–167, 2014.

[13] H.Huang, P. Gong, X. Cheng, N. Clinton, and Z. Li, “Improving
measurement of forest structural parameters by coregistering
of high resolution aerial imagery and low density lidar data,”
Sensors, vol. 9, no. 3, pp. 1541–1558, 2009.

[14] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dick-
inson, and K. Siddiqi, “TurboPixels: fast superpixels using geo-
metric flows,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 12, pp. 2290–2297, 2009.

[15] D. Engel, L. Spinello, R. Triebel, R. Siegwart, H. H. Bülthoff,
and C. Curio, “Medial features for superpixel segmentation,”
in Proceedings of the 11th IAPR Conference on Machine Vision
Applications (MVA ’09), pp. 248–252, Yokohama, Japan, May
2009.

[16] S. Kluckner and H. Bischof, “Image-based building classifica-
tion and 3d modeling with super-pixels,” in Proceedings of the
ISPRS Technical Commission 3rd Symposium on Photogramme-
try Computer Vision and Image Analysis, pp. 233–238, Paris,
France, September 2010.

[17] L. Itti, C. Koch, and E. Niebur, “Amodel of saliency-based visual
attention for rapid scene analysis,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254–1259,
1998.

[18] T. Kadir, A. Zisserman, and M. Brady, “An affine invariant
salient region detector,” in Computer Vision—ECCV 2004, vol.
3021 ofLectureNotes inComputer Science, pp. 228–241, Springer,
Berlin, Germany, 2004.

[19] D. A.Hahn, G.Wolz, Y. Sun et al., “A practical salient region fea-
ture based 3D multi-modality registration method for medical
images,” inProceedings of theMedical Imaging: Image Processing,
vol. 6144 of Proceedings of SPIE, p. 61442P, San Diego, Calif,
USA, March 2006.

[20] S. Kicherer, J. A. Malpica, andM. C. Alonso, “An interactive tech-
nique for cartographic feature extraction from aerial and satel-
lite image sensors,” Sensors, vol. 8, no. 8, pp. 4786–4799, 2008.



Journal of Sensors 13

[21] F. Bi, F. Liu, and L. Gao, “A hierarchical salient-region based
algorithm for ship detection in remote sensing images,” in
Advances in Neural Network Research and Applications, vol. 67
of Lecture Notes in Electrical Engineering, pp. 729–738, Springer,
Berlin, Germany, 2010.

[22] V. Casellaa,M. Franzinia, G. Banchinib, andG. Gentilib, “Initial
evaluation of the secondgeneration leica ADS40 camera,” inThe
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, pp. 527–532, Postgraduate
Medicine, Beijing, China, 2008.

[23] X. Ren and J. Malik, “The ecological statistics of good continua-
tion:multi-scalemarkovmodels for contours,” Journal of Vision,
vol. 2, no. 7, article 708, 2002.

[24] R. A. Peters and R. N. Strickland, “Image complexitymetrics for
automatic target recognizers,” in Proceedings of the Automatic
Target Recognizer System and Technology Conference, pp. 1–17,
1990.

[25] J. Rigau, M. Feixas, and M. Sbert, “An information-theoretic
framework for image complexity,” in Proceedings of the 1st
Eurographics Conference on Computational Aesthetics in Graph-
ics, Visualization and Imaging Computational Aesthetics, L.
Neumann, M. Sbert, B. Gooch, and W. Purgathofer, Eds., pp.
177–184, Eurographics Association Aire-la-Ville, 2005.

[26] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
8, no. 6, pp. 679–698, 1986.

[27] V. M. Nazareth, K. Amulya, and K. Manikantan, “Optimal mul-
tilevel thresholding for image segmentation using contrast-
limited adaptive histogram equalization and enhanced conver-
gence particle swarm optimization,” in Proceedings of the 3rd
National Conference on Computer Vision, Pattern Recognition,
Image Processing and Graphics (NCVPRIPG ’11), pp. 207–210,
Hubli, India, December 2011.

[28] J. C. Femiani and A. Razdan, “Interval HSV: extracting ink
annotations,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR ’09), pp. 2520–2527,
Miami, Fla, USA, June 2009.

[29] E. Rosten, R. Porter, and T. Drummond, “Faster and better: a
machine learning approach to corner detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 32, no. 1,
pp. 105–119, 2010.

[30] W. Li, K. Z. Mao, H. Zhang, and T. Chai, “Selection of gabor
filters for improved texture feature extraction,” in Proceedings
of the 17th IEEE International Conference on Image Processing
(ICIP ’10), pp. 361–364, IEEE, Hong Kong, September 2010.
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