Figure S1. The electronic absorption of aqueous solution of $\mathbf{1}$ upon addition of (a) Zn^{2+}, (b) Fe^{3+}, (c) Ni^{2+}, (d) Co^{2+}, (e) Na^{+}, and (f), K^{+}

Figure S2. The electronic absorption of aqueous solution of $\mathbf{1}\left(5.0 \times 10^{-6} \mathrm{M}\right)$ upon addition of (a) Hg^{2+} (0-10 equivalent), (b) Pb^{2+} ($0-10$ equivalent), (a) $\mathrm{Cd}^{2+}(0-10$ equivalent), and (a) Cu^{2+} ($0-10$ equivalent) ions

Figure S3. The electronic absorption spectra of aqueous solution of $\mathbf{1}\left(5.0 \times 10^{-6} \mathrm{M}\right)$ upon addition of increasing amount $\left[0.12,0.25,0.38,0.51,0.63,0.89\right.$, and $1.27\left(\times 10^{-6}\right.$ $\mathrm{M})]$ of $\mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Cd}^{2+}$, and Cu^{2+} ions. The inset displays a zoomed view of the visible portion of the spectra

Figure S4. The electronic absorption of aqueous solution of $\mathbf{1}\left(5.0 \times 10^{-6} \mathrm{M}\right)$ upon addition of increasing amount (a) $\left[0,0.5,1.25,2,2.5\right.$, and $\left.3.75\left(\times 10^{-6} \mathrm{M}\right)\right] \mathrm{Cu}^{2+}$ and Hg^{2+} (b) $\left[0,0.5,1.25,2.5,3.75\right.$, and $\left.5\left(\times 10^{-6} \mathrm{M}\right)\right] \mathrm{Cu}^{2+}$ and Pb^{2+} (c) $[0,0.5$, and 1.25 $\left.\left(\times 10^{-6} \mathrm{M}\right)\right] \mathrm{Cu}^{2+}$ and Cd^{2+} ions

Figure S5. The electronic absorption of aqueous solution of $\mathbf{1}\left(5.0 \times 10^{-6} \mathrm{M}\right)$ upon addition of Ca^{2+} ($0-16$ equivalent)

Figure S1. The electronic absorption of aqueous solution of $\mathbf{1}$ upon addition of (a)
Zn^{2+}, (b) Fe^{3+}, (c) Ni^{2+}, (d) Co^{2+}, (e) Na^{+}, and (f), K^{+}

Figure S2. The electronic absorption of aqueous solution of $\mathbf{1}\left(5.0 \times 10^{-6} \mathrm{M}\right)$ upon addition of (a) Hg^{2+} ($0-10$ equivalent), (b) Pb^{2+} ($0-10$ equivalent), (a) $\mathrm{Cd}^{2+}(0-10$ equivalent), and (a) Cu^{2+} ($0-10$ equivalent) ions

Figure S3. The electronic absorption spectra of aqueous solution of $\mathbf{1}\left(5.0 \times 10^{-6} \mathrm{M}\right)$ upon addition of increasing amount $[0.12,0.25,0.38,0.51,0.63,0.89$, and 1.27 (\times $\left.\left.10^{-6} \mathrm{M}\right)\right]$ of $\mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Cd}^{2+}$, and Cu^{2+} ions. The inset displays a zoomed view of the visible portion of the spectra

Figure S4. The electronic absorption of aqueous solution of $\mathbf{1}\left(5.0 \times 10^{-6} \mathrm{M}\right)$ upon addition of increasing amount (a) $\left[0,0.5,1.25,2,2.5\right.$, and $\left.3.75\left(\times 10^{-6} \mathrm{M}\right)\right] \mathrm{Cu}^{2+}$ and Hg^{2+} (b) $\left[0,0.5,1.25,2.5,3.75\right.$, and $\left.5\left(\times 10^{-6} \mathrm{M}\right)\right] \mathrm{Cu}^{2+}$ and Pb^{2+} (c) $[0,0.5$, and 1.25 $\left.\left(\times 10^{-6} \mathrm{M}\right)\right] \mathrm{Cu}^{2+}$ and Cd^{2+} ions

Figure S5. The electronic absorption of aqueous solution of $\mathbf{1}\left(5.0 \times 10^{-6} \mathrm{M}\right)$ upon addition of $\mathrm{Ca}^{2+}\left(0-16 \mu \mathrm{~L}\right.$ of $\left.1 \times 10^{-3} \mathrm{M}\right)$

