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Smartphone based indoor positioning has greatly helped people in finding their positions in complex and unfamiliar buildings.
One popular positioning method is by utilizing indoor magnetic field, because this feature is stable and infrastructure-free. In this
method, the magnetometer embedded on the smartphone measures indoor magnetic field and queries its position. However, the
environments of the magnetometer are rather harsh. This harshness mainly consists of coarse-grained hard/soft-iron calibrations
and sensor electronic noise.The two kinds of interferences decrease the position distinguishability of themagnetic field.Therefore, it
is important to extract location features frommagnetic fields to reduce these interferences.This paper analyzes themain interference
sources of the magnetometer embedded on the smartphone. In addition, we present a feature distinguishability measurement
technique to evaluate the performance of different feature extraction methods. Experiments revealed that selected fingerprints
will improve position distinguishability.

1. Introduction

Location-based services (LBS) in smartphones have attracted
tremendous attention in recent years, since convenient and
high precision localization services improve people’s daily life
significantly. These services include navigating a driver to a
destination in an unfamiliar area, searching a book inside a
large library, or finding a friend at a complex airport.

However, traditional localization techniques, GPS, for
example, are only available in outdoor scenarios. They
become invalid when it comes to indoor areas, because walls
and roofs dramatically attenuate signals from GPS satellites.

Therefore, many indoor localization techniques have
been presented by researchers.These techniques includeWiFi
[1–4], echo [5, 6], and FM [7–9] based approaches. However,
WiFi based localization methods are energy expensive for
smartphones. Echo approaches are too sensitive to loca-
tion change, which makes them improper for continuous
positioning in a large area. FM methods often become
invalid when radio frequency (RF) signals are attenuated by
obstacles.

With the development of sensing systems mounted on
smartphones, sensing based approaches to indoor localiza-
tion became available. That is, location-related signals are
sensed, and then the user’s location is estimated based on
these signals. Indoor magnetic field is one kind of location-
related signals, which can be sensed by magnetometers
embedded on smartphones.

Indoor magnetic field is a pervasive anomalies field
induced by geomagnetic field. Because of its location-
related, infrastructure-free, and energy efficient features,
many researchers have focused on utilizing indoor geomag-
netic field for indoor localization purposes. Some experts
[10] leverage indoor magnetic anomalies as landmarks, since
these anomalies generated by ferromagnetic objects, that
is, pillars and doors, are relatively stable. Other researchers
[11] construct an indoor magnetic magnitude model, using
probability method to estimate user location. In order to
improve localization feasibility, experts [10, 12] introduced
particle filter framework, which makes it possible to fuse
multipositioning methods, including WiFi, Bluetooth, and
pedestrian dead reckoning (PDR).
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The smartphone collects the indoor magnetic field signal
by the magnetometer; however, this process is interfered in
by hard/soft-iron effect, hand quivers, and electronic noise,
which are not location-related. These interferences decrease
the distinguishability of location fingerprints in magnetic
field based localization systems.

The main purpose of this paper is to extract location-
related only feature of indoormagnetic fields for indoor local-
ization. Although indoor magnetic field contains location
information, this information is interfered in by hard/soft-
iron effect, hand quiver, and electronic noise. Therefore,
rejecting interference signals and keeping location-related
signals are beneficial for improving indoor localization per-
formance.

There are two main challenges to magnetic field magni-
tude (MFM) based location feature extraction. The first one
is to ascertain interference sources of magnetometers embed-
ded on the smartphone. This paper first examines the model
of magnetometer measurement and then derives the inverse
model to estimate indoor magnetic field frommagnetometer
measurement. With this inverse model as well as related
experiments, it is found that the fundamental interference
sources of realMFMestimation are coarse-grained soft/hard-
iron calibration and sensor electronic noise.

Secondly, there are various magnetic field fingerprint
extraction methods; hence, it is necessary to select a high
discernible one among them.However, a few researchers have
studied this problem. Galván-Tejada et al. compared tem-
poral, spectral, and energy features of indoor magnetic field
[13]. But their work concentrates on room level classification.
Although localization accuracy can reflect fingerprint perfor-
mance in some degree, it is affected by the localization algo-
rithm. Therefore, to measure fingerprint distinguishability,
this paper presents a novel and lightweight distinguishability
measurement method (DAME). This method provides an
independent way to qualify fingerprint distinguishability, and
it has low overhead compared to previous works.

In conclusion, our contributions are threefold:

(i) We perform in-depth studies of indoormagnetic field
attributes andmagnetometer measurement.Then, we
present the notion that coarse-grained soft/hard-iron
calibration and sensor noise are the fundamental
reasons of device heterogeneity and user diversity.

(ii) We propose a novel fingerprint distinguishability
measurement method, DAME, which is especially
suitable for low discernibility MFM fingerprint.

(iii) With DAME, we perform a study on various finger-
print extraction methods and find that Butterworth
low pass filter (LPF) is a high discernible fingerprint
extraction method of our experiments.

This paper conducts extensive experiments on com-
mercially available smartphones to evaluate the research.
Experiment result shows that coarse-grained soft/hard-iron
calibration and sensor electronic noise were pervasive in var-
ious kinds of smartphones. Butterworth filter fingerprint is
a high discernible fingerprint extraction method. Confusion
matrixes and their localization errors are also computed to

show the localization accuracy improvement with the high
discernible fingerprint.

This paper is organized as follows. Section 2 describes
the related work. Section 3 reviews the background of
indoor magnetic field formation as well as its advantages
and challenges in indoor localization. Section 4 presents the
main interferences sources of embedded magnetometer on
the smartphone. Section 5 presents the DAME fingerprint
distinguishability measurement method and the study for
finding a high discernible fingerprint. Section 6 describes the
experiments. Finally, Section 7 concludes the paper with a
discussion.

2. Related Work

Localization technology is an enabling technology in per-
vasive computing area, which provides a foundation for the
context-aware service. Many efforts have been devoted to this
field, and there are already numerous commercially available
positioning technologies. In recent years, various indoor
MFM based localization methods have been presented; how-
ever, there are few researches related toMFM location feature
extraction.

Chavez-Romero et al. presented a robotic wheelchair
based indoor localization method using visual markers and
particle filter [14]. Their system is mounted on a wheelchair,
and the wheels can provide odometry data, which is not
available for the pedestrian user holding a smartphone.

Li et al. addressed reliable and accurate indoor localiza-
tion using inertial sensors commonly found on commodity
smartphones [15]. They utilized indoor magnetic field based
compass to provide orientation for their particle filter local-
ization system.

Shu et al. described a fusion indoor localization system
with pervasive magnetic field and opportunistic WiFi [16].
They noticed the phenomena where different devices and
different smartphone attitudes cause magnetic field measure-
ment offset. So, they remove the mean of MFM sequences
to overcome this offset. Besides, their system uses these
sequences to update particle weight at each step event.

Frassl et al. researched the magnetic maps of indoor
environments [17]. They studied the magnetic field intensity
and direction distribution features. Based on their analysis,
they implemented a high precision indoor localization system
using foot mounted inertial sensors as well as a magnetome-
ter.

Angermann et al. conducted in-depth studies on the
characterization of the indoor magnetic field [18]. They
utilized a well calibrated sensor package mounted on a
measuring device with code odometry to collect and evaluate
indoor magnetic field. In their work, they presented the
notion that the multiple measurements along a path showed
strong modulation.

Le et al. studied magnetic field mapping and fusion
method for indoor localization [11]. Their algorithm proves
that local magnetic disturbances carry enough information
to localize without the help from other sensors. They built
a magnetometer measurement probability model to update
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particle weight in their particle filter based positioning
algorithm.

Xie et al. built MaLoc, a magnetic fingerprint based
indoor localization system [12]. They presented the notion
that magnetometer’s sensitivity is different across different
smartphones. Hence, they used magnetic magnitude differ-
ence to compare real-time sampling data with trained data.

Galván-Tejada et al. presented an extension and improve-
ment of their previous indoor localization model [13]. The
model tests many magnetic field signal features, including
kurtosis, mean, and slope. However, their model is designed
for room level classification.

Although there are various magnetic field feature extrac-
tion methods utilized by different indoor localization sys-
tems, they mainly focus on localizing users through origi-
nal magnetic magnitude fingerprints. However, the original
fingerprints are interfered in by coarse-grained soft/hard
calibration and sensor electronic noise. Therefore, this paper
gives an in-depth study on how to reduce magnetometer
interferences and present the DAME algorithm to evaluate
the performance of different MFM feature extraction meth-
ods.

3. Insight into Indoor Magnetic Field

Modern buildings generally adopt steel reinforced concrete
in their structures. However, these ferromagnetic materials
distort the magnetic field in various manners in different
areas. Though this distortion is negative for orientation
estimation of pedestrian dead reckoning (PDR), it can be
used as indoor location feature.

Indoor magnetic field is distorted locally, because of pil-
lars, escalators, and large iron furniture.These ferromagnetic
objects change the spread of magnetic lines, so indoor MFM
reveals different intensities across different locations. Figure 1
illustrates this distortion: the magnitude changes in different
locations.

Indoor magnetic field’s distortion patterns are static,
because the geomagnetic field varies rather slowly. Moreover,
the indoor magnetic anomalies are mainly formed by build-
ing ferromagnetic structure. As a result, provided that the
structure remains unchanged, themagnetic anomalies will be
invariant. For instance, Figure 1 demonstrates this stability.
The MFM of one corridor was collected twice over 50 days.
Although there is a calibration offset between the two signals,
the anomalies of the two are similar.The calibration offset will
be explained in Section 5.2.

Magnetic field has low discernibility. Geomagnetic mag-
nitude at the earth’s surface ranges from 25 to 65 𝜇T [19].
Because indoormagnetic field is mainly formed by distortion
of the geomagnetic field, this narrow range is also the
approximate magnitude scope of indoor magnetic field. As a
result, the number of similar distortion patterns will increase
with the enlargement of the searching scope. Take the red
line in Figure 1 as an example; there is only one location’s
magnitude, which is equal to 50 when the search scope
is limited in the first one meter. But the location number
increases to 3 when the search scope increases to ten meters.
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Figure 1: Stable and local disturbance of indoor magnetic field.This
is the MFM of a 55-meter-long corridor collected in constant speed.
The offset between the two signals will be explained in Section 5.2.

Hence, it can be deduced that the longer the search scope is,
the more confusing locations there are.

As a brief summary, indoor magnetic field is locally
distorted and location stable, which are the advantages for
indoor localization, but the field’s low discernibility brings
about challenges to location feature comparison.

4. Indoor Magnetic Field Interferences

In this section, we discuss the process of magnetometer
measuring the geomagnetic field and magnetometer noise.
Furthermore, we analyze interference sources ofmagnetome-
ter measurement.

4.1. Characteristics of Magnetometers on Smartphones. The
complicated inner electromagnetic environment of smart-
phones and the diversity in user behavior make it difficult to
precisely measure environment magnetic field.

The magnetometer measures indoor magnetic field’s
value of a position relative to the orientation of the phone.
This value Phone𝐵measured is a triple with each element rep-
resenting the magnitude of the magnetic field along the
three dimensions of a phone’s frame. Moreover, given that
the expression of a vector 𝑉 in frame 𝐹 is 𝐹𝑉, then a
magnetometer measurement can be represented as follows
[20]:

𝑉add = 𝑉hard + 𝑉sensorOffset, (1)

𝑊multiply = 𝑊soft ⋅ 𝑊nonOrthog ⋅ 𝑊gain, (2)

Phone𝐵measured = 𝑊multiply ⋅
Phone
Earth𝑅 ⋅

Earth𝐵real + 𝑉add. (3)
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The smartphone magnetometer is interfered with by
additive interference and multiplicative interference when
measuring geomagnetic field.

Additive interference 𝑉add in magnetometer measure-
ment consists of two parts: hard-iron effect and sensor offset,
as (1) shows. In addition, hard-iron effect 𝑉hard is the fact
that permanently magnetized ferromagnetic components on
Printed Circuit Boards (PCBs) add an offset field when the
magnetometer is measuring geomagnetic field. Sensor offset
𝑉sensorOffset is the zero field offset in magnetometer’s factory
calibration.

Multiplicative interference 𝑊multiply in magnetometer
measurement consists of three parts: soft-iron effect, magne-
tometer nonorthogonality, and unequal gains, as (2) reveals.
First, soft-iron effect is the fact that outer fields, for example,
geomagnetic and speaker field, onto unmagnetized ferromag-
netic components on the PCB, induce interfering magnetic
field when the magnetometer is measuring geomagnetic
field. Second, magnetometer nonorthogonality is the lack of
perfect orthogonality between sensor axes and sensor relative
to the phone’s coordinate system. Finally, unequal gains are
the different gains in magnetometer in all three axes.

Equation (3) demonstrates the overall process of smart-
phone magnetometer measuring geomagnetic field. Firstly,
the real geomagnetic field is Earth𝐵real, which is expressed in
north, east, down (NED) frame. However, the magnetometer
measurement is in phone frame, so the geomagnetic field in
phone frame is Phone

Earth𝑅 ⋅
Earth𝐵real, with Phone

Earth𝑅 representing
transform matrix from earth frame to phone frame. More-
over, considering all possible phone frames, the universal set
of geomagnetic fields in phone frames can be illustrated as
the red sphere in Figure 2. Secondly, the magnetometer is
interfered with by multiplicative interference, which makes
the magnetic field gain different along different axes. As
a result, the universal set becomes an ellipsoid. Finally,
additive interference makes the universal set ellipsoid leave
the original phone frame, as the blue sphere shows. In other
words, one magnetometer measurement Phone𝐵measured is one
vector from original to a point of the blue ellipsoid.

Equation (3) reveals that magnetometer measurement
Phone𝐵measured is heavily interfered with, which cannot be used
for localization. However, one practical way is to estimate
Earth𝐵real from Phone𝐵measured. From (3), the estimated Earth𝐵real
can be easily derived:

Earth𝐵̃real =
Earth

Phone
𝑅̃ ⋅ 𝑊̃−1multiply ⋅ (

Phone𝐵measured − 𝑉̃add) . (4)

Furthermore, considering that Phone
Earth𝑅 is a unit frame

transform matrix, the magnitude of Earth𝐵̃real can be drawn
from (4):
󵄩󵄩󵄩󵄩󵄩
Earth𝐵̃real

󵄩󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩󵄩𝑊̃
−1

multiply ⋅ (
Phone𝐵measured − 𝑉̃add)

󵄩󵄩󵄩󵄩󵄩󵄩 . (5)

In (5), 𝑊̃−1mulitply and 𝑉̃add are estimatedmultiplicative and
additive interference parameter. Solving 𝑊̃−1multiply and 𝑉̃add is
actually to compute the blue ellipsoid center and its ellipsoid
parameters in Figure 2. To solve them, one general way for
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Figure 2: Soft- and hard-iron effect illustration.
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Figure 3: Parallel versus rotation data collection illustration.

commodity smartphones is to rotate the device in a figure of
8 in a small space. Consequently, the magnetometer collects
omnidirectional data. These data are distributed on the blue
ellipsoid in Figure 2. Hence, using Cholesky factorization
[21], the ellipsoid center and ellipsoid parameter can be
derived, that is, 𝑉̃add and 𝑊̃

−1

multiply. As a result, ‖
Earth𝐵̃real‖ is

computed.
As (5) shows, the precision of ‖Earth𝐵̃real‖ estimation de-

pends on the precision of estimated 𝑉̃add and 𝑊̃−1multiply.
Although the smartphone always runs background magne-
tometer calibration, it is a complicated problem. As a result,
only coarse calibration parameter can be computed. Hence,
the magnetic magnitude varies as the device rotates. Figure 3
clearly demonstrates these properties, where the magnetic
signals were collected within a small cube with 15 cm edges:
red dash line signal was collected with parallel movement.
Blue full-line signal was collected with omnidirectional
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Figure 4: Magnetic magnitude in different attitudes.

rotational movement. In the experiment result, parallel
signal fluctuation scope was 3.7 𝜇T, while rotational signal
fluctuation scope was 13.3 𝜇T. In contrast, the fluctuation
scope of a typical road is approximately 30 𝜇T, as Figure 1
depicted, comparable with that of omnidirectional rotation
case. Therefore, random omnidirectional device rotation is
interfering enough to pollute location feature, as Figure 4
shows: the magnetic signal is collected during walks along a
straight corridor with 4 different attitudes and the last one
was collected with rotating the device all the way. Obviously,
although different attitude magnitude signals have different
mean values, their alternating current (AC) component
signals are similar. But, for rotation magnitude signals, they
had become ambiguous.

Therefore, the coarse-grained additive and multiplica-
tive parameters in the smartphone can be characterized as
measured magnetic magnitude being sensitive to rotation
movement. In other words, magnetic magnitude is only
available when the device stays at a relatively stable situation.

4.2. Magnetometer Measurement. Smartphone magnetome-
ter suffers from random fluctuation signals, including excita-
tion current, feedback circuit and signal conditioning from
the sensor inside [22], and currents within coils outside
the sensor [23]. Consequently, these signals will make the
magnetometer output signal combined with noise.

Figure 5 reveals histogram statistical result of the noisy
MFM signal collected by a static smartphone. Obviously, the
signal obeyed normal distribution, with mean which equaled
54.16 𝜇T and standard deviation of 0.72 𝜇T. So, the indoor
magnetic fieldmeasure equation (3) should be updated to (6),
where Δ is Gaussian noise. Hence,

Phone𝐵measured = 𝑊multiply ⋅
Phone
Earth𝑅 ⋅

Earth𝐵real + 𝑉add

+ Δ.
(6)
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Figure 5: Staticmagneticmagnitude collection statistics.The phone
was put up on a tree in a park, sampling magnetic data for 55
seconds.

Therefore, the estimated geomagnetic magnitude is
updated to (7), where Δ󸀠 is Gaussian noise. Hence,

󵄩󵄩󵄩󵄩󵄩
Earth𝐵̃real

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩𝑊̃
−1

multiply ⋅ (
Phone𝐵measured − 𝑉̃add) + Δ

󸀠󵄩󵄩󵄩󵄩󵄩󵄩 .
(7)

In conclusion, this section analyzes interference sources
of the magnetometer, including hand movement and senor
noise, which are harmful to indoor localization.

5. Indoor Magnetic Fingerprint Extraction

This section presents several indoorMFMfingerprint extrac-
tion methods. In order to compare these methods, firstly, a
fingerprint distinguishability evaluation model is presented.
Secondly, a series of evaluationswere conducted to find a high
discernible extracted fingerprint.

5.1. Fingerprint Segment Distinguishability Evaluation Meth-
od. Indoor magnetic field is a location-related magnetic
field induced by geomagnetic field that is steadily distorted
by steel reinforced concrete building structures. Hence, it
can be utilized as indoor location feature, that is, location
fingerprint. A location fingerprint is a static map between
location space and feature space whereby one can deter-
mine a location from observed features. In other words,
an eligible fingerprint has two features: time stability and
spatial distinguishability. The time stability of indoor MFM
mainly depends on the stabilization of geomagnetic field and
building structures discussed in the last section. As to the
spatial distinguishability, experts have provided some insights
into it [17, 18]; however, as far as we know, there is no study on
quantifying distinguishability. In this section, the paper first
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that of 𝑓2 is magnetic localization model. The bold blue curves are fingerprint segments to be compared. The bold red curves are relative
similar segments in the localization model.

introduces the feature of MFM distinguishability and then its
calculation method.

Indoor magnetic field based positioning generally has
two phases: model training phase and fingerprint localization
phase. In the model training phase, trainers collect spatial
fingerprint signal, thenmark themwith location information,
and finally generate the localization model. In the fingerprint
localization phase, users collect real-time fingerprint signal
and then estimate users’ locations by comparing the real-time
fingerprint signals and the localization model. For example,
given a localization model (represented as 𝑓2 in Figure 6),
suppose a user has collected a target segment (represented as
𝑓1 in Figure 6). To localize the user is to find themost possible
position of the target segment in the localization model. This
process is usually implemented by comparing the similarity
between the target segment and all candidate segments in
the model with a sliding window technique. However, false
positions (𝑃1 and 𝑃2) sometimes are more similar than the
true position 𝑃0 due to the interferences analyzed in the last
section. This paper defines the ability of a target fingerprint
segment to be distinguished from the localization model as
fingerprint segment distinguishability.

Fingerprint segment distinguishability is proportional to
segment lengthwhile it is inversely proportional tomodel fin-
gerprint length. Figure 6 clearly demonstrates these relations:
(a) shows that, in the first 20 meters of the model fingerprint,
there are only two candidate segments, but the number rises
to 3 when model fingerprint extends to 55 meters. However,
when target segment length increases to 4 meters, candidate
segments number drops from 3 to 1.

The signal similarity between a target segment and a
candidate segment can be measured with mean Euclidean
distance between them. Moreover, the similarities between
the target segment and all possible candidate segments
in model fingerprint can be calculated through a sliding
window. For instance, the similarities between the target
segment and possible candidate segments in Figure 6 can be
illustrated as Figure 7, in which the red stars are the ground
truth location of target segment. In (a), the three highest
peaks represent the three most similar candidate segment
locations in fingerprint 2, and the same goes for (b).

In order to measure the distinguishability of MFM fin-
gerprint segment against a model fingerprint, the segment
distinguishability needs to be quantified. Although error
distance is one common way to measure the performance
of the localization algorithm, it is infeasible to assume
that error distance represents distinguishability, because of
MFM’s low discernibility. Therefore, the paper proposes a
distinguishability measurement method (DAME) based on
the number of similar segments and the signal similarity of
the Euclidean distance of AC signal component, which is
summarized in Algorithm 1.

Segment distinguishability increases as target fingerprint
compare length extends. Distinguishability range lies in
(0, 1]. When target segment distinguishability equals 1, it will
represent the notion that, with the corresponding compare
length, the segment can be localized within the given fin-
gerprint. Figure 8 reveals this relation of the fingerprints in
Figure 6: when target segment length increases by 2.6m, the
segment distinguishability rises to the maximum, and hence
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its location can be confirmed.Consequently, in order to locate
a fingerprint segment from the given localization model, the
compare length for this segment should be greater than the
value whose distinguishability first equals 1.

5.2. Location-Related Fingerprint Extraction. Indoor mag-
netic field signal is location-related; however, it is difficult
to precisely collect this signal by the magnetometer of the
smartphone, because of coarse-grained calibration parameter
and sensor electronic noise, as discussed in Section 4. Con-
sequently, these interferences decrease magnetic magnitude
distinguishability, causing localization accuracy to decay.

In order to improve localization performance, it is impor-
tant to filter the signals collected by the magnetometer and

extract location-related only fingerprints from these signals.
There are three main affecting factors in MFM collection:
temporal influence and device attitude, body tremble, and
sensor electronic noise. For temporal influence, users will
inevitably approach ferromagnetic materials, including iron
chairs and cars, with their smartphones in daily life. These
materials will change the interior magnetic environment
inside the devices. Although the calibration routine of the
smartphone will automatically calibrate this change, this
process is coarse-grained, which will cause calibrated signal
shift up or down. This shift will remain stable until another
calibration happens, as shown in Figure 1.The device attitude
has similar effects with temporal influence, as shown in
Figure 4. Therefore, it is necessary to remove the direct
current (DC) component of the magnetic signal. However,
the left AC component will still be interfered with by hand
tremble and sensor electronic noise.

The body tremble factor is the slight random quiver
when a user carrying a device moves around. Affected by
coarse-grained hard/soft-iron effect, this tremble will add
distortedmagnetometer output. Finally, the sensor electronic
noise factor is an additive noise to magnetometer output.
Because these factors have little relation with locations, it
is supposed that the removal of these signals components
improves localization performance.

Several fingerprint extraction methods are studied to
reject location-unrelated signal components: wavelet trans-
form, Savitzky–Golay filter, moving average filter, wavelet
denoising, and Butterworth filter. The wavelet transform
method computes a series of wavelets on different scales
with the given wavelet [24]. The wavelet transform of the
signal in Figure 1 is represented as Figure 9. In other words,
this method transforms time domain signal into frequency
domain signal, and it is expected that this transform might
reject location-unrelated signal components. In this transfor-
mation, different wavelet factor needs different spatial delay;
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(8) Select AC candidate segment 𝑆𝑐𝑝

𝑖
beginning with 𝑝𝑖

(9) 𝑑𝑐𝑝
𝑖
𝑡𝑝
𝑡
= mean(‖𝑆𝑐𝑝

𝑖
− 𝑆𝑡𝑝

𝑡
‖Euclidean)

(10) 𝑑inverse𝑐𝑝
𝑖
𝑡𝑝
𝑡

= 1/𝑑𝑐𝑝
𝑖
𝑡𝑝
𝑡

(11) end for
(12) Find all peaks in 𝑑inverse set with min peak distance 𝑑mp
(13) Set thrash distance 𝑑thrash = 𝑑𝑐𝑝

𝑡
𝑡𝑝
𝑡

(14) for each peak 𝑑inverse𝑐𝑝
𝑖
𝑡𝑝
𝑡

do
(15) if 𝑑inverse𝑐𝑝

𝑖
𝑡𝑝
𝑡

≥ 𝑑thrash then
(16) 𝑁confusion =𝑁confusion + 1
(17) end if
(18) end for
(19)𝐷 = 1/𝑁confusion

Algorithm 1: DAME.
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Figure 9: MFM wavelet transform.

therefore, 1 meter is chosen as max. tolerance delay, as the
blue line shows. Consequently, the fingerprint is shown in
Figure 10, and the vertical heads and tails are transition areas
that should be discarded.

The Savitzky–Golay filter method fits successive subsets
of adjacent data points with a low-degree polynomial by
the method of linear least squares, which is also known as
convolution [25]. This method is supposed to increase the
signal-to-noise ratio without greatly distorting the signal.
Consequently, the resulting fingerprint is shown in Figure 11.

The moving average filter method smooths data using
a moving average filter, that is, denoising MFM signal by
averaging adjacent measurements, with the sacrifice of some
adjacent discernibility.The resulting fingerprint is revealed as
Figure 12.

The wavelet denoising method performs denoising using
given wavelets [26]. Typically, there are three steps in the
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Figure 10: Haar wavelet transform fingerprint. The vertical heads
and tails are caused by Haar wavelet.

procedure: original signal decomposition to get detail coef-
ficients, detail coefficients modification based on threshold,
and signal reconstruction based on modified detail coeffi-
cients. The consequent fingerprint is shown in Figure 13.

The Butterworth filter is a maximally flat magnitude filter
that is designed to have as flat a frequency response as possible
in the pass band [27]. Considering the indoor MFM mainly
distorted by building structures which are much larger than
usermovement, lowpass filter (LPF) is suitable for fingerprint
extracting. The magnitude response of the LPF used in the
system is depicted in Figure 14, with a pass band from 0 to
0.9Hz. The resulting fingerprint is shown in Figure 15.

In order to compare the distinguishability of different
fingerprint extraction methods, the experiment gathered
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Figure 11: Savitzky–Golay filter fingerprint.
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Figure 12: Moving average filter fingerprint.
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Figure 13: Wavelet denoising fingerprint.
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Figure 14: Magnitude response.
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Figure 15: Butterworth filter fingerprint.

statistics of mean DAME distinguishability of each method
under different compare lengths, as shown in Figure 16.
Clearly, as far as the experiments reveal, except for wavelet
transform method, other fingerprint extraction methods
improved fingerprint distinguishability compared to that of
original fingerprint, especially when the compare lengths of
fingerprint segments are short. This improvement owes to
the denoising of the original signal. In addition, Butterworth
filter fingerprint has the highest distinguishability among all
these extracted fingerprints, since it rejects noise based on
the signal’s frequency rather than simple average adjacent
measurements.

In conclusion, this section proposes a fingerprint dis-
tinguishability measurement method, DAME; furthermore,
with this method, Butterworth LPF is found to be a high dis-
cernible fingerprint extraction method for indoor magnetic
field among the studies.
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Figure 16: Mean fingerprint distinguishability under different
compare lengths. Two thousand random segments calculate the
result for each kind of fingerprint.

Table 1: Experiment smartphones.

Manufacturer HTC Samsung Huawei
Phone series One X S4 Mate7
CPU 1.5G, 4 cores 1.6G, 4 cores 1.8 G, 4 cores
RAM 1GB 2GB 3GB
Sensor vendor Panasonic Asahi Kasei Asahi Kasei
Resolution 0.16667 𝜇T 0.06 𝜇T 0.0625 𝜇T
Max. range 300 𝜇T 2000 𝜇T 2000 𝜇T
Max. freq. 100Hz 100Hz 100Hz
Real max. freq. 50Hz 95Hz 103Hz

6. Experiments

This section first presents the experiment results of soft/hard-
iron calibration on different smartphones. Then, the paper
compares and evaluates the fingerprint extraction methods
of indoor MFM from various aspects.

6.1. Implementation

6.1.1. Devices. The devices used in our experiments were
three commercially available smartphones: HTC One X,
Samsung S4, and Huawei Mate7, with their main CPU and
sensor parameters specified in Table 1. The algorithm was
implemented in Matlab 2016a, running on a PC with Intel i5
dual core CPU, 16G RAM, and Win10 64-bit OS.

6.1.2. Testing Area. These experiments were conducted in a
large building, with a testing area of about 1500m2. This is a
typical office environment.

6.1.3. Fingerprint Collection. The road used in our experi-
ment was about 50meters long. Testers were required to walk
at a natural pace along the road, with the phone held in their
hand.

6.2. Interference Sources of Indoor Magnetic Field. This
part evaluates magnetometer interference sources from two
respects: magnetometer calibration error of hard/soft iron
and magnetometer electronic noise.

6.2.1. Ubiquitous Hard/Soft-Iron Calibration Error on Smart-
phones. Testers selected a small free space (0.001m3 approx-
imately) inside the lab. Then, for the three test devices,
testers successively picked up one of them conducting two
movements for one minute: first, testers randomly parallel-
moved the phone inside the small space keeping its atti-
tude static. Then, testers randomly rotated the phone with
omnidirectional movement. The space was so small that the
magnetic field inside this space can be seen as a constant
field. Consequently, the first parallel movement was a little
affected by hard/soft-iron effect; in contrast, the second
rotation movement collected MFM from multiple directions
of the smartphone, which exhibited the anisotropy of the
magnetometer, as Figure 17 reveals.

6.2.2. Relatively Stable Hard/Soft-Iron Calibration Offset on
the Same Smartphone. Testers randomly selected three small
spaces (0.001m3 approximately for each) inside the lab.Then,
testers conducted two movements as the last experiment did
in each space with one device. Clearly, the magnetic fields of
the three spaces were different. Figure 18 shows that despite
the fact that collecting spaces were different, causing different
magnitude mean value, the standard deviation differences
between parallel movement and rotation movement are
similar, which suggests relative stabilization of hard/soft-iron
calibration for the same device.

6.2.3. Pervasive Magnetometer Noise on Smartphones. In
order to measure magnetometer noise of different smart-
phones, testers successively put the three smartphones in the
same place and then collected MFM for one minute. As Fig-
ure 19 reveals, all the three clusters of sample data fit normal
distribution, which suggests a common Gaussian electronic
noise. Furthermore, both the mean and the standard devia-
tion ofMFMof the three smartphones are different: firstly, the
different means suggests different hard/soft-iron calibration
error of different smartphones, while the different standard
deviations reveal pervasive but different sensor noise level.

6.2.4. Relatively Stable Magnetometer Noise on the Same
Smartphone. In order to examine magnetometer noise level
of the same smartphone in different places, testers randomly
selected three places in the lab and then put the phone in
each place and kept the smartphone static sampling for one
minute. As Figure 20 reveals, the three distributions have
differentmeanmagnitude, but their standard deviations were
similar, which suggests relatively stable sensor noise on the
same device.
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Figure 17: MFM statistics of different devices in the same place. Mean statistics (a), standard deviation statistics (b).
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Figure 18: MFM statistics of different places by the same smartphone. Mean statistics (a), standard deviation statistics (b).

In conclusion, as far as the experiment is concerned, the
soft/hard calibration offsets and magnetometer noise levels
on different smartphones are different; however, these offsets
and noise levels are relatively stable on the same device.
These two factors are the main sources of magnetometer
interferences.

6.3. Fingerprint Extraction Evaluation. In this part, testers
first examine the distinguishability of MFM fingerprint
extracted by different methods. Then, they evaluate the
optimum fingerprint by confusion matrix.

To evaluate the distinguishability, testers calculate mean
DAME distinguishability with different extraction methods
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Figure 19: Static magnetometer measurement statistics of different
smartphones in the same place.
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Figure 20: Static magnetometer measurement distribution of dif-
ferent places by the same smartphone.

between the two fingerprints shown in Figure 1. Moreover,
distinguishability is affected by fingerprint compare length,
so testers need to evaluate distinguishability under different
compare lengths. Hence, the mean DAME distinguishability
sequence calculation for each extracted fingerprint contains
the following steps.

Step 1. Assign a compare length 𝑙compare and fingerprint
extraction method𝑚extraction.

Step 2. With𝑚extraction, extract two fingerprints 𝑓extracted1 and
𝑓extracted2 from the two original fingerprints in Figure 1.

Step 3. Randomly select a fingerprint segment 𝑠1 with com-
pare length 𝑙compare from fingerprint 𝑓extracted1 .

Step 4. Calculate the DAME distinguishability of this finger-
print segment 𝑠1 against fingerprint 𝑓extracted2 .
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Figure 21: Wavelet fingerprint extraction by different analyzing
wavelets.

Step 5. Repeat Steps 2–4 one hundred times to get 100DAME
distinguishability values and then calculate the mean DAME
distinguishability.

Step 6. Assign a new compare length and repeat Steps 1–
5 to get a DAME distinguishability sequence with different
compare length.

For each experiment, the two original fingerprints were
the reference group. Furthermore, to make the experiments
precise, the fingerprint segments selected in Step 3 for
different fingerprint extraction methods are the same.

6.3.1. Wavelet Fingerprints Extracted by Different Analyzing
Wavelets. Testers used different analyzing wavelets in finger-
print extraction to get different fingerprints and computed
their mean DAME distinguishability sequence. The statistic
result is shown in Figure 21: morl wavelet performs the
best, Haar wavelet has a little improvement, and the other
3 wavelets are even worse than the original fingerprint. This
result shows that the performance of wavelet fingerprint
extraction depends on wavelet selection.

6.3.2. Savitzky–Golay Fingerprints Extracted byDifferent Poly-
nomial Orders. Testers changed the polynomial order in
Savitzky–Golay filter fingerprint extraction to get different
fingerprints and computed their mean DAME distinguisha-
bility sequence. Figure 22 reveals that low order filters have
higher distinguishability.

6.3.3. Average Moving Fingerprints Extracted by Different
Average Lengths. Testers changed the smooth length in
average moving fingerprint extraction to get different finger-
prints and computed their mean DAME distinguishability
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Figure 22: Savitzky–Golay fingerprint extraction by different poly-
nomial orders.
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Figure 23: Average moving fingerprint extraction by different
average lengths.

sequence. Figure 23 reveals that moving average filter only
improves distinguishability when compare lengths are short.

6.3.4. Wavelet Denoising Fingerprints Extracted by Different
AnalyzingWavelets. Testers used different analyzingwavelets
in fingerprint extraction to get different fingerprints and
computed their mean DAME distinguishability sequence.
The statistic result is shown in Figure 24: all analyzing
wavelets have the ability to improve fingerprint distinguisha-
bility, especially rbio2.2.
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Figure 24: Wavelet denoising fingerprint extraction by different
analyzing wavelets.
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Figure 25: Butterworth LPF fingerprint extraction by different low
pass bands.

6.3.5. Butterworth LPF Fingerprints Extracted by Different
Low Pass Frequencies. In this experiment, testers changed
the low pass frequency in fingerprint extraction to get
different fingerprints and then computed their mean DAME
distinguishability sequence. The statistic result is shown in
Figure 25: low frequencies, for instance, 0.5Hz and 1.0Hz,
improve distinguishability than higher frequencies.

6.3.6. Diversity Fingerprint Extraction. In this experiment,
testers selected all the most discernible fingerprints in each
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Figure 26: Diversity fingerprints comparison.

previous experiment and compared their distinguishability
together. As Figure 26 shows, when compare length is
less than 7 meters, Butterworth filter has overall the best
distinguishability; however, when compare length is greater
than 7 meters, there is no big difference between different
fingerprint extraction methods.

6.3.7. Confusion Matrix of Butterworth LPF Fingerprint. In
order to intuitively illustrate the improvements between orig-
inal fingerprints and Butterworth LPF extracted fingerprints,
testers leveraged confusion matrix. Each element of the
matrix is the similarity between two locations of two finger-
prints. The similarity is the mean Euclidean distance of the
two fingerprint segments started from these locations. The
segments are 5m long. Testers calculated confusion matrices
for the original signal pairs, the Butterworth fingerprint pairs,
and the subtracted fingerprint pairs.The relations of the three
fingerprint pairs are as follows:

𝑓subtracted1 = 𝑓original1 − 𝑓Butterworth1 ,

𝑓subtracted2 = 𝑓original2 − 𝑓Butterworth2 .
(8)

The three confusionmatrices are shown in Figures 27, 28,
and 29. Clearly, as Figure 27 shows, although the segments
of the same location IDs are similar to each other (the
highlight main diagonal), there are many confusing points in
wrong locations (highlight points outside themain diagonal).
Figure 28 reveals that the similarity between the segments
of the same locations improved, while similarities between
segments of different locations were decreased. In Figure 29,
testers can see that there is no highlight main diagonal. This
means that one segment in subtracted fingerprint 1 is similar
to all segments in subtracted fingerprint 2. In other words, the
subtracted fingerprints have no location information.
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Figure 27: Confusion matrix of original MFM signal.
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Figure 28: Confusion matrix of Butterworth fingerprint.

If testers use most similar points as localization result,
then the third quartile of the localization errors for the
original fingerprint is 0.78m and for Butterworth fingerprint
is 0.47m, 40% improved.

Therefore, this experiment revealed that Butterworth
fingerprint improved fingerprint distinguishability, and the
subtracted signal is harmful for localization.

7. Conclusions

This paper firstly discusses the main interference sources for
the data collection of a smartphone; that is, due to coarse-
grained hard/soft-iron calibration, slight hand tremble brings
about interference in magnetometer measurement. Sensor
electronic noise is another source of magnetometer interfer-
ence.

Then, we present DAME, a distinguishability evaluation
model for MFM based fingerprint. With this model, the
distinguishability of one fingerprint segment against another
fingerprint can be represented. Moreover, given compare
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Figure 29: Confusion matrix of subtracted signal.

length, the distinguishability between two fingerprints can be
quantified by mean DAME distinguishability.

Finally, utilizing the DAME distinguishability, we com-
pare several extraction methods for MFM based fingerprint.
Consequently, we find that Butterworth filter fingerprint
is the most discernible one as far as our experiments are
concerned.

Moreover, the experiments confirm the effectiveness of
distinguishability measurement method, DAME, as well as
the superiority of Butterworth filter fingerprint.
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