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Faces are highly challenging and dynamic objects that are employed as biometrics evidence in identity verification. Recently,
biometrics systems have proven to be an essential security tools, in which bulk matching of enrolled people and watch lists is
performed every day. To facilitate this process, organizations with large computing facilities need to maintain these facilities. To
minimize the burden of maintaining these costly facilities for enrollment and recognition, multinational companies can transfer
this responsibility to third-party vendors who can maintain cloud computing infrastructures for recognition. In this paper, we
showcase cloud computing-enabled face recognition, which utilizes PCA-characterized face instances and reduces the number
of invariant SIFT points that are extracted from each face. To achieve high interclass and low intraclass variances, a set of six
PCA-characterized face instances is computed on columns of each face image by varying the number of principal components.
Extracted SIFT keypoints are fused using sum and max fusion rules. A novel cohort selection technique is applied to increase the
total performance. The proposed protomodel is tested on BioID and FEI face databases, and the efficacy of the system is proven
based on the obtained results. We also compare the proposed method with other well-known methods.

1. Introduction

Two-dimensional face recognition [1, 2] is considered an
unsolved problem in the achievement of robust performance
in the area of human identity. Face analysis with vari-
ous feature representation techniques has been explored in
many studies. Among various feature extraction approaches,
appearance-based, feature-based, and model-based tech-
niques are popular. Due to changes in illumination, clutter,
head poses, and facial expressions (happy, angry, sad, con-
fused, and surprised), major salient features and occlusion
can cause degradation in face recognition performance,
even after substantial matching is performed. A limited
number of studies address face recognition, which considers
noisy features and redundant outliers that are combined
with distinctive facial characteristics for matching. These
noisy and redundant features are frequently associated with
regular facial characteristics during template generation
and matching. Face recognition can negatively impact total

performance despite considerable efforts to denoise the effect
of redundant characteristics. To overcome this situation, sui-
table feature descriptors [3] and feature dimensionality
reduction techniques [4] can be employed to obtain com-
pact representations. The presence of facial expressions and
different lighting conditions can also increase the load in
the matching process and complicate face recognition. Face
recognition may effectively address these issues.

Due to an increase in subject enrollment and bulk
matching, a significant number of computing resources can
be housed within an organization’s computing facilities.
However, these types of facilities have some demerits. To
maintain computing resources with existing resources is
costly and requires a separate setup. We can overcome
these shortcomings by transferring the responsibility of
maintaining biometrics resources to a third-party service
provider who maintains cloud computing infrastructures,
which are housed with their own infrastructures. Integrating
cloud computing facilities with a face recognition system can
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facilitate the recognition of bulk faces from devices, such as
CCTV cameras, webcams, mobile phones, and tablet PCs.
This paradigm can be employed to handle a large number
of people at different times, whereas cloud-enabled services
enable enrollment and the matching process to be remotely
conducted.

1.1. Cloud Framework. With the advancement of cloud com-
puting [5, 6], many organizations are rapidly adopting IT-
enabled services that are hosted by cloud service providers.
Because these services are provided over a network, the
cost of hosting services is fixed and predictable. Because
cloud computing is very convenient and provides on-demand
access to a shared pool of configurable computing resources
(servers, networks, storage, applications, and services) over a
network, this on-demand service can be availed by organi-
zations who engage in minimal resource efforts and reliable
cloud service providers who host cloud infrastructures.Three
types of cloud computing models are available, namely,
Platform as a Service (PaaS), Software as a Service (SaaS),
and Infrastructure as a Service (IaaS). They are collectively
known as the SPI model. The SaaS model includes various
software and applications that are hosted and run by vendors
and service providers and made available to customers over
a network. The PaaS model includes delivering operating
systems and development tools to customers over a network
without the need to download and install them. The IaaS
model involves requesting on-demand services of servers,
storage, networking equipment, and various support tools
over a network.

Cloud-based biometric infrastructures [7, 8] can be
developed and hosted at a service provider’s location. The
on-demand services are available to businesses via net-
work connectivity. Three models (PaaS, SaaS, and IaaS) can
be subsequently employed for appropriate physiological or
behavioral biometrics applications. Servers and storage can
be employed for storing biometric templates, which can
be employed for verification or identification. Biometric
sensors can be installed on business premises with Internet
connectivity via various networks and can be connected to
cloud infrastructures to access stored templates for match-
ing and enrollment. In addition, the biometric sensors are
employed for enrollment and matching, and the process can
run with the help of user interfaces, applications, support
tools, networking equipment, storage, servers, and operating
systems at the service provider’s end, where the biometrics
cloud is hosted. Businesses and organizations who want to
avail a cloud-based facility for enrollment, authentication,
and identification purposes need to have biometrics sensors
and Internet connectivity. The SPI model can be employed
for preprocessing, feature extraction, template generation,
and face matching and decisions, which can be modeled as
software models and application programs to be hosted at a
service provider’s cloud facility.

A few biometrics authentication systems [7–9] have been
successfully employed in cloud computing infrastructures.
They have facilitated the use of biometrics cloud concepts

to minimize the efforts of resource utilization and bulk
matching.

1.2. Studies on Baseline Face Recognition. Because we intro-
duce a cloud-based biometric facility to be integrated with
a face recognition system, a brief review of baseline face
recognition algorithms would be advantageous to develop an
efficient cloud-enabled biometric system. Face recognition
[1, 2] is a long-standing computer vision problem that has
gained the attention of researchers, whereas appearance-
based techniques are employed to analyze the face and reduce
dimensionality. Projecting a face onto a sufficiently low-
dimensional feature space while retaining the distinctive
facial characteristics in a feature vector serves a crucial role
in recognizing typical faces. The application of appearance-
based approaches in face recognition is discussed in [10–15].
Principal component analysis (PCA), linear discriminant
analysis (LDA), kernel PCA, Fisher linear discriminant anal-
ysis (FLDA), canonical covariate, and the fusion of PCA and
LDA are popular approaches in face recognition.

Feature-based techniques [16–18] have been introduced
and successfully applied to represent facial characteristics and
encode them to invariant descriptors for face analysis and
recognition. Many models, such as EBGM [16], SIFT [17–
19], and SURF [20], have been employed in face recognition.
Local feature-based descriptors can also be employed for
object detection, object recognition, and image retrieval
problems.These descriptors are robust to lighting conditions,
image locations, and projective transformation and are insen-
sitive to noise and image correlations. Local descriptors are
localized and detected at local peaks in a scale-space search;
after a number of stage filtering approaches, interest points
that are stable over transformations are preserved. A focus on
two things must be established while local feature descriptors
are employed. First, the algorithm must have the ability
to create a distinctive feature description for differentiating
one interest point from other interest points; second, the
algorithm should be invariant to camera position, subject
position, and lighting conditions. A situation may arise when
a high-dimensional feature space is projected onto a low-
dimensional feature space and local descriptors vary from
one feature space to another feature space.Thus, the accuracy
may change over the same object while interest points
are detected in the scale-space over a number of encoun-
tered transformations. Due to scaling and low-dimensional
projected variables, a higher variance among the observed
variables should be retained in the high-dimensional data of a
pattern. A reduced number of projected variables retain their
characteristics even after they are represented onto a low-
dimensional feature space. We can achieve this description,
whereas appearance-based techniques are applied to raw
images without the need for preprocessing techniques to
restore true pixels or remove noise due to image-capturing
sensors. A number of representations exist from which we
can extract invariant interest points. One appearance-based
technique is principal component analysis (PCA) [11, 12].

PCA is a simple dimensionality reduction technique
that has many potential applications in computer vision.
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However, despite a few shortcomings—it is restricted to
orthogonal linear combinations and has implicit assumptions
of Gaussian distributions—PCA has been proven to be an
acclaimed technique due to its simplicity. In this study, PCA
is combinedwith a feature-based technique (SIFT descriptor)
for a number of face column instances to be generated by
principal components. Face projections of column vectors
range from one to six, in which the interval one can produce
high variances in the observed variables of the corresponding
face image after projecting the high-dimensional face matrix
onto a low-dimensional feature space. Thus, we can obtain
a set of low-dimensional feature spaces that correspond to
each column of a single face image. Principal components
are decided by a sequence of six integer numbers ranging
from 1 to 6 to be considered in order and based on which
six face instances are generated. Unlike a random sequence,
an ordered default sequence is taken from the mathematical
definition of eigenvector and the arithmetic distance of any
point to its predecessor and successor principal component
is always one. A SIFT descriptor, which is a suitable appli-
cation for these representations, can produce multiple sets
of invariant interest points without changing the dimension
of each of the keypoint descriptors. This process can change
the size of each vector, which consists of keypoint descriptors
to be constructed on each projected PCA-characterized face
instance. In addition, the SIFT descriptor is robust to partial
illumination, projective transform, image locations, rotation,
and scaling. The efficacy of the proposed approach has
been tested on frontal view face images with mixed facial
expressions. However, efficacy is compromised when the
head position of a face image is modified.

1.3. Relevant Face Recognition Approaches. In this section, we
introduce some related studies and discuss their usefulness
in face recognition. For example, the algorithm proposed in
[21] discusses a method that employs the local gradient patch
around each SIFT point neighborhood and creates PCA-
based local descriptors that are compact and invariant. How-
ever, the proposed method does not encode a neighborhood
gradient patch of each point; instead, it makes a projected
feature representation in the low-dimensional feature space
with variable numbers of principal components.Thismethod
extracts SIFT interest points from the reduced face instances.
Another study [22] examines the usefulness of the SIFT
descriptor and PCA-WT (WT: wavelet transform) in face
recognition. An eigenface is extracted from the PCA-wavelets
representation, and SIFT points are subsequently detected
and encoded to a feature vector. However, the computational
time increases due to the complex and layered representation.
A comparative study [23] employs PCA for neighborhood
gradient patch representation around each SIFT point and
a SURF point for invariant feature detection and encoding.
Although PCA reduces the dimensions of the keypoint
descriptor and compares the performances of the SIFT and
SURF descriptors, it is not employed for face recognition but
is applied to the image retrieval problem.

The remainder of the manuscript is organized as fol-
lows: Section 2 presents a brief outline of the cloud-based

face recognition system. Short descriptions about the SIFT
descriptor and PCA are discussed in Section 3. Section 4
exploits the framework and methodology of the proposed
method. The fusion of matching proximities and heuristics-
based cohort selection are presented in Section 5. Evaluation
of the proposed technique and comparison with other face
recognition systems are exhibited in Section 6. Section 7
computes time complexity. Conclusions and remarks are
made in Section 8.

2. Outline of Cloud-Based Face Recognition

To develop a cloud-based face recognition system, a cloud
infrastructure [5, 6] has been setup with the help of remote
servers, and a webcam-enabled client terminal and tablet PC
are connected to the remote servers via Internet connec-
tivity. Two independent IP addresses are provided to both
a client machine and a tablet PC. These two IPs help a
cloud engine to identify client machines from the point at
which the recognition task is performed. Figure 1 shows the
outline of the cloud-enabled face recognition infrastructure,
in which we establish three points with three different devices
for enrollment and recognition tasks. All other software,
application modules (i.e., preprocessing, feature extraction,
template generation, matching, fusion, and decision), and
face databases are placed on servers, and a storage device is
maintained in the cloud environment. During authentication
or identification, sample face images are captured via cameras
that are installed in both the client machine and tablet PC,
and the captured faces are sent to a remote server. In the
remote server, application software is invoked to perform
necessary tasks. After the matching of probe face images
with gallery images that are stored in the database, matching
proximity is generated and a decision outcome is sent to the
client machine over the network. At the client site, the client
machine displays the correct decision on the screen, and the
entry of malicious users is restricted. Although the proposed
system is a cloud-based face recognition system, our main
focus lies on a baseline face recognition system. After giving
a brief introduction of cloud-based infrastructures for face
recognition and use of publicly available face databases, such
as FEI and BioID, we assume that face images are already
being capturedwith the sensor installed in the clientmachine.
Further, they are sent to a remote server for matching and
decision.

The proposed approach is divided into the following
steps.

(a) As part of the baseline face recognition system, the
raw face image is localized and then aligned using the
algorithm described in [24]. During the experiment,
face images are employed with and without localizing
the face part.

(b) A histogram equalization technique [25], which is
considered the most elementary image-enhancement
technique, is applied in this step to enhance the
contrast of the face image.

(c) In this step, PCA [11] is applied to obtainmultiple face
instances, which are determined from each column
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Figure 1: Cloud-enabled face recognition infrastructures.

of the original image (they are not the eigenfaces) by
varying principal components from one to six at one
distance unit.

(d) From each instance representation, SIFT points [17,
18] are extracted in the scale-space to form an
encoded feature vector of keypoint descriptors (𝐾𝑖)
because keypoint descriptors other than spatial loca-
tion, scale, and orientation are considered feature
points.

(e) SIFT interest points that are extracted from the six
different face instances (npc: 1, 2, 3, 4, 5, and 6) of
a target face form six different feature vectors. They
are employed to separately match the feature vectors
that are obtained from a probe face. npc refers to the
number of principal components.

(f) In this step, matching proximities are determined
from the different matching modules and are subse-
quently fused using “sum” and “max” fusion rules; a
decision is made based on the fused matching scores.

(g) To enhance the performance and reduce the com-
putational complexity, we exploit a heuristic-based
cohort selection method during matching and apply
a T-norm normalization technique to normalize the
cohort scores.

3. Brief Review of SIFT Descriptor and PCA

In this section, the scale-invariant feature transform (SIFT)
and principal component analysis (PCA) are described.
Both the SIFT descriptor and PCA are well-known feature-
based and appearance-based techniques that are successfully
employed in many face recognition systems.

The SIFT descriptor [17–19] has gained significant atten-
tion due to its invariant nature and ability to detect stable
interest points around the extrema. It has been proven to

be invariant to rotation, scaling, a projective transform,
and partial illumination. The SIFT descriptor is robust to
image noise and low-level transformations of images. In the
proposed approach, the SIFT descriptor can reduce the face
matching complexity and computation time while detecting
stable interest points on a face image. SIFT points are detected
via a four-stage filtering approach, namely, (a) scale-space
detection, (b) keypoint localization, (c) orientation assign-
ment, and (d) keypoint descriptor computation. However,
keypoint descriptors are employed to generate feature vectors
for face matching.

The proposed face matching algorithm aims to produce
multiple face (six face instances) representations that are
determined from each column of the face image. These
face instances exhibit distinctive characteristics that are
determined by reducing the dimensions of features that
comprise the intensity values. Reduced dimensionality is
achieved by applying a simple feature reduction technique,
which is known as principal component analysis (PCA).
PCA projects a high-dimensional face image onto a low-
dimensional feature space, where the face instance of higher
variance, such as eigenvectors in the observed variables, is
determined. Details on PCA are provided in [11, 12].

4. Framework and Methodology

Main facial feature to frontal face recognition used in the
proposed experiment is a set of 128-dimensional vectors of
squared patch (region) centred at detected and localized
keypoints in multiple scale. This vector describes the local
structure around keypoints under computed scale. A key-
point if detected in a uniform region cannot be discrim-
inating because scale or rotational change does not make
the point distinguishable from its neighbors. SIFT detected
keypoints [17, 18] on frontal face are basically various corner
points like corners of lip, corners of eye, nonuniform contour
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between nose and cheek, and so forth which exhibit intensity
changes in two directions. SIFT detected these keypoints by
approximating the Laplacian of Gaussian (LoG) in terms
of Difference of Gaussian (DoG). As the Gaussian pyramid
builds image at various scales, SIFT extracted keypoints
are scale invariant and the computed descriptors remain
discriminating from coarse to fine matching. The keypoints
could have been detected by Harris corner detection (not
scale invariant) or Hessian corner detection method but
many of these points detected might not be repeatable under
large scale change. Further 128-dimensional feature point
descriptor obtained by SIFT feature extraction method is
orientation normalized, so rotational invariant. Additionally
SIFT feature descriptor is normalized to unit length to reduce
the effect of contrast. Maximum value of each dimension of
the vector is thresholded to 0.2 and once again normalized
to make the vector robust to certain range of irregular
illumination.

The proposed face matching method has been developed
with the concept of varying number of principal components
(npc) (npc: 1, 2, 3, 4, 5, and 6). These variations generate the
following improvements, whereas the system computes face
instances for matching and recognition.

(a) The projection of a face image onto some face
instances facilitates construction of independent face
matchers, which can vary their performance, whereas
SIFT descriptors are applied for extracting invariant
interest points; each instance-based matcher is veri-
fied for producing matching proximities.

(b) An individual matcher exhibits its strength to recog-
nize the faces and numbers of SIFT interest points,
which are extracted from each face instance, and sub-
stantially change from one projected face to another
projected face as with the effect of varying the number
of principal components.

(c) Its performance as a robust system is rectified when
the individual performances are consolidated into a
single matcher by fusion of matching scores.

(d) Let 𝜀𝑖, 𝑖 = 1, 2, . . . , 𝑚, be the 𝑚 eigenvalues arranged
in descending order. Let 𝜀𝑖 be associated with eigen-
vector 𝑒𝑖 (𝑖th principal eigenface in the face space).
Then percentage of variance is accounted for by the
𝑖th principal component = (𝜀𝑖/∑𝑚𝑖=1 𝜀𝑖) × 100. Gen-
erally first few principal components are sufficient to
capture more than 95% of variances. But that number
of components is dependent on the training set of
image space. It varies with the face dataset used. In
our experiments we observed that taking as few as
only 6 principal components gives a good result and
captures the variability which is very close to total
variability produced during generation of multiple
face instances.
Let training face dataset contain 𝑛 instances each of
uniform size 𝑝 (ℎ×𝑤 pixels), then face space contains
𝑝-dimensional 𝑛 sample points, and we can derive
at most 𝑛 − 1 eigenvectors, but each eigenvector is
still 𝑝-dimensional (𝑛 ≪ 𝑝). Now to compare two

face images each containing 𝑝 number of pixels (i.e.,
𝑝-dimensional vector) it is required to project each
face image onto each of the 𝑛 − 1 eigenvectors (each
eigenvector represents one axis of the new 𝑛 − 1
dimensional coordinate system). So from each of the
𝑚-dimensional face we derive 𝑛 − 1 scalar values by
dot product of mean centred image space face with
each of the 𝑛 − 1 face space eigenvectors. Now in the
backward direction given 𝑛 − 1 scalar values, we can
reconstruct the original face image by the weighted
combination of these eigenfaces and adding mean
centred data. In this reconstruction process an 𝑖th
eigenface contributes more than (𝑖 + 1)th eigenface
if they are ordered in decreasing eigenvalues. How
accurate the reconstruction is depends on how many
principal component (say 𝑘, 𝑘 = 1, 2, . . . , 𝑛−1) we take
into consideration. Practically it is seen that 𝑘 need
not be equal to 𝑛 − 1 to satisfactorily reconstruct the
face. After a specific value of 𝑘 (say 𝑡) contribution
from (𝑡 + 1)th eigenvectors up to (𝑛 − 1)th vector
is so negligible that it may be discarded without
losing significant information; indeed there are some
methods like Keisar criterion (discard eigenvectors
corresponding to eigenvalue less than 1) [11, 12], Scree
test, and so forth. Sometimes Keisar method retains
too many eigenvectors whereas Scree test retains too
few. In essence, the exact value of 𝑡 is dataset depen-
dent. In Figures 4 and 6 it is clearly shown that when
we continue to add one more principal component,
the capture of variability is increasing rapidly within
first 6 components. But starting from 6th principal
component variance capture is almost flat but does
not reach the total variability (100% marked line)
until last principal component. So despite the small
contribution that principal component 7 onwards
have, they cannot be redundant.

(e) Distinctive and classified characteristics, which
are detected in the reduced low-dimensional
face instance, support the integration of local
texture information with local shape distortion and
illumination changes of neighboring pixels around
each keypoint, which comprises a vector of 128
elements of invariant nature.

The proposed methodology is performed with two dif-
ferent perspectives; namely, the first system is implemented
without face detection and localization, and the second
system is focused on implementing a face matcher with a
localized and detected face image.

4.1. Face Matching: Type I. During the initial stage of face
recognition, we enhance the contrast of a face image by
applying a histogram equalization technique. We apply this
contrast enhancement technique to increase the count of
SIFT points that are detected in the local scale-space of a
face image. The face area is localized and aligned by using
the algorithm given in [24]. In the subsequent steps, the face
area is projected onto the low-dimensional feature space and
an approximated face instance is formed. SIFT keypoints are
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Figure 2: Six different face instances of a single cropped face image
with variations of principal components.

detected and extracted from this approximated face instance,
and a feature vector that consists of interest points is created.
In this experiment, six different face instances are generated
by varying the number of principal components from one to
six and they are derived from a single face image.

PCA-characterized face instances are shown in Figure 2;
they are arranged according to the order of the considered
principal components. The same set of PCA-characterized
face instances is extracted from a probe face, and feature vec-
tors that consist of SIFT interest points are formed. Matching
is performedwith their corresponding face instances in terms
of the SIFT points obtained from reference face instances.
We apply a k-nearest neighborhood (𝑘-NN) approach [26] to
establish correspondence and obtain the number of pairs of
matching keypoints. Figure 3 depicts matching pairs of SIFT
keypoints on two sets of face instances, which correspond
to reference and probe faces. Figure 4 shows the amount of
variance captured by all principal components; because the
first principal component explains approximately 70% of the
variance, we expect that additional components are probably
needed. The first four principal components explain the total
variability in the face image that is depicted in Figure 2.

4.2. FaceMatching: Type II. The second type of facematching
strategy utilizes outliers that are available around the mean-
ingful facial area to be recognized.This type of face matching
examines the effect of outliers and legitimate features together
that are employed for face recognition. Outliers may be
located on the forehead above the legitimate and localized
face area, around the face area to be considered outside the
meaningful area, on both the ears and on the head. However,
the effect of outliers is limited because the legitimate interest
points are primarily detected in major salient areas, which
may be an efficient analysis because face area localization
cannot be performed or sometimes outliers are an effective
addition to the face matching process.

In the Type I face matching strategy, we employ dimen-
sionality reduction and project an entire face onto a low-
dimensional feature space using PCA and construct six
different face instances with principal components that vary
between one and six.We extract SIFT keypoints from sixmul-
tiscale face instances and create a set of feature vectors. The
face matching task is performed using the 𝑘-NN approach,
and matching scores are generated as matching proximities
from a pair of reference and probe faces.Thematching scores
are passed through the fusion module and consolidated to
form an integrated vector of matching proximities. Figure 5
demonstrates matching between pairs of face instances of an
entire face, which corresponds to the reference face and probe

face for a certain number of principal components. Figure 6
shows the amount of variances that were captured by all
principal components; because the first principal component
explains less than 50% of the variance, we expect that
additional components are needed. The first two principal
components explain approximately two-thirds of the total
variability in the face image depicted in Figure 5.

5. Fusion of Matching Proximities

5.1. Baseline Approach to Fusion. To fuse [26–28] the match-
ing proximities that are computed from all matchers (based
on principal components) and form a new vector, we apply
two popular fusion rules, namely, “sum” and “max” [26].
Let ms = [ms𝑖𝑗] be the match scores that are generated
by multiple matchers (𝑗), where 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 =
1, 2, . . . , 𝑚. Here, 𝑛 denotes the number of match scores that
are generated by each matcher, and𝑚 represents the number
of matchers that are presented to the face matching process.
Consider that the labels 𝜔0 and 𝜔1 are two different classes
that are referred to as the genuine class and the imposter
class, respectively. We can assign ms to either the label 𝜔0 or
the label 𝜔1 based on the class-conditional probability. The
probability of error can be minimized by applying Bayesian
decision theory [29] as follows:

Assign ms 󳨀→ 𝜔𝑖 if

𝑃 (𝜔𝑖 | ms) > 𝑃 (𝜔𝑗 | ms)

for 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 0, 1.

(1)

The posterior probability 𝑃(𝜔𝑖 | ms) can be derived from
the class-conditional density function 𝑝(ms | 𝜔𝑖) using Bayes
formula as follows:

𝑃 (𝜔𝑖 | ms) = 𝑝 (ms | 𝜔𝑖) 𝑃 (𝜔𝑖)
𝑝 (ms) . (2)

Therefore, 𝑃(𝜔𝑖) is the priori probability of the class label 𝜔𝑖,
and 𝑝(ms) denotes the probability of encountering ms.Thus,
(1) can be rewritten as follows:

Assign ms 󳨀→ 𝜔𝑖 if

LR > 𝜏, where LR = 𝑝 (ms | 𝜔𝑖)
𝑝 (ms | 𝜔𝑗)

,

𝑖 ̸= 𝑗, 𝑖, 𝑗 = 0, 1.

(3)

The ratio LR is known as the likelihood ratio, and 𝜏 is the
predefined threshold. The class-conditional density 𝑝(ms |
𝜔𝑖) can be determined from the training match score vectors
using either parametric or nonparametric techniques. How-
ever, the class-conditional probability density function can be
extended to “sum” and “max” fusion rules. The max fusion
can be extended as follows:

𝑝 (ms | 𝜔𝑖) = max⏟⏟⏟⏟⏟⏟⏟
𝑗=1,2...,𝑚;𝑖=0,1

(𝑝 (ms𝑗 | 𝜔𝑖)) . (4)
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Figure 3: Matching pairs of face instances with variations of principal components for a pair of corresponding reference and probe face
images.
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Figure 4: Amount of variance accounted by each principal compo-
nent of the face image, as depicted in Figure 2.

Here, we replace the joint-density function by maximizing
the marginal density. The marginal density 𝑝(ms𝑗 | 𝜔𝑖) for
𝑗 = 1, 2, . . . , 𝑚 and 𝑖 = 0, 1 (𝑖 refers to either a genuine sample
or an imposter sample) can be estimated from the training
vectors of the genuine and imposter scores that correspond
to each𝑚matcher. Therefore, we can rewrite (4) as follows:

FS𝜔𝑖=0max = max⏟⏟⏟⏟⏟⏟⏟
𝑗=1,2,...,𝑚;𝑖=0,1

{𝑝 (ms𝑗 | 𝜔𝑖=0)} ,

FS𝜔𝑖=1max = max⏟⏟⏟⏟⏟⏟⏟
𝑗=1,2,...,𝑚;𝑖=0,1

{𝑝 (ms𝑗 | 𝜔𝑖=1)} .
(5)

FSmax denotes the fused match scores that are obtained by
fusing the 𝑚 matchers in terms of exploiting the maximum
scores.

We can easily extend the “max” fusion rule to the
“sum” fusion rule by assuming that the posteriori probability
does not significantly deviate from the priori probability.

Therefore, we can write an equation for fusing the marginal
densities that are known as the “sum” rule as follows:

FS𝜔𝑖=0sum =
𝑚

∑
𝑗=1

𝑝 (ms𝑗 | 𝜔𝑖=0) ,

FS𝜔𝑖=1sum =
𝑚

∑
𝑗=1

𝑝 (ms𝑗 | 𝜔𝑖=1) .
(6)

Independently, we apply “max” and “sum” fusion rules
to the genuine and imposter scores that correspond to each
of six matchers, which are determined from six different face
instances for which the principal components vary from one
to six. Prior to the fusion of the matching proximities that
are produced by multiple matchers, the proximities need to
be normalized and the data needs to be mapped to the range
of [0-1]. In this case, we use the min-max normalization
technique [26] to map the proximities to the specified range,
and the T-norm cohort selection technique [30, 31] is applied
to improve the performance. To generatematching scores, we
apply the 𝑘-NN approach [32].

5.2. Cohort Selection Approach to Fusion. Recent studies
suggest that cohort selection [30, 31] and cohort-based
score normalization [30] can exhibit robust performance and
increase the robustness of biometric systems. To understand
the usability of cohort selection, a cohort pool is considered.
A cohort pool is a set of matching scores obtained from
nonmatch templates in the database, whereas a probe sample
is matched with the reference samples in the database. The
matching process generates matching scores; among this
set of scores of the corresponding reference samples, one
template is identified as the claimed identity. This claimed
identity is the true match to the probe sample, and the
matching proximity is significant. In addition to the claimed
identity, the remainder of the matched scores are known as
cohort scores. We refer to a match score as a true matching
proximity, which is determined from the claimed identity.
However, the cohort scores and the score that is determined
from the claimed identity exhibit similar degradation. To
improve the performance of the proposed system, we need
to normalize the true matching proximity using the cohort
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Figure 5: Face matching strategy, which shows matching between pairs of face instances with outliers.

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

Principal component

Va
ria

nc
e e

xp
la

in
ed

 (%
)

0
10

20

30

40

50

60

70

80

90
(%

)

Figure 6: Amount of variance accounted by each principal compo-
nent of the face image depicted in Figure 5.

scores. We can apply simple statistics, such as the mean,
standard deviation, and variance, to compute the normalized
score of the true reference template using the T-norm cohort
normalization technique. We assume that “most similar
cohort scores” and “most dissimilar cohort scores” can con-
tribute to computation of the normalized scores, which have
more discriminatory information than the normal matching
score. As a result, the number of false rejection rates may
decrease, and the system can successfully identify a subject
from a pool of reference templates.

Two types of probe samples exist: genuine probe samples
and imposter probe samples. When a genuine probe face
is compared with cohort models, the best-matched cohort
model and the few models among the remaining cohort
models are expected to be very similar due to the simi-
larity among the corresponding faces. The matching of a
genuine probe face with the true cohort model and with the
remaining cohort models producedmatching scores with the
lowest similarity when the true matched template and the
remaining of the templates in the database are dissimilar.The
comparison of an imposter face with the reference templates
in the database can generate matching scores, which are
independent of the set of cohort models.

Although cohort-based score normalization is considered
extra overhead to the proposed system, it can improve
performance. Computational complexity will increase, if
the number of comparisons exceeds the number of cohort
models. To reduce the overhead of an integrating cohort
model, we need to select a subset of cohort models, which
contains the majority of discriminating information, and we
combine this cohort subset with the true match score to
obtain a normalized score. This cohort subset is known as
an “ordered cohort subset,” which contains the majority of
discriminatory information. We can select a cohort subset
for each true match template in the database to normalize
each true match score when we have a number of probe
faces to compare. In this context, we propose a novel
cohort subset selection method that utilizes heuristic cohort
selection statistics. Because the cohort selection strategy is
substantially inspired by heuristic-based 𝑇-statistics and a
baseline heuristic approach, we refer to this method of hybrid
heuristics statistics in which two-stage filtering is performed
to generate the majority of discriminating cohort scores.

5.2.1. Methodology: Hybrid Heuristics Cohort. The proposed
statistics begin with a cohort score set 𝜒𝑖 = {𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛},
where 𝑖 = {genuine scores, imposter scores} and 𝑛 is the
number of cohort scores that consist of the genuine and
imposter scores presented in the set 𝜒. Therefore, each score
is labeled with 𝑥𝑖𝑗 ∈ {genuine scores, imposter scores} and 𝑗 ∈
{1, 2, . . . , 𝑛} sample scores. From the cohort scores set, we can
calculate the mean and standard deviation for the class labels
genuine and imposter scores. Let 𝜇genuine and 𝜇imposter be the
mean values and let 𝛿genuine and 𝛿imposter be the standard
deviations for both class labels. Using 𝑇-statistics [33], we
can determine a set of correlation scores that correspond to
cohort scores:

𝑇 (𝑥𝑗) =
󵄨󵄨󵄨󵄨󵄨𝜇

genuine − 𝜇imposter󵄨󵄨󵄨󵄨󵄨
√(𝛿genuine𝑗 ) /𝑛genuine + (𝛿imposter

𝑗 ) /𝑛imposter
. (7)

In (7), 𝑛genuine and 𝑛imposter are the number of cohort scores,
which are labeled as genuine and imposter, respectively. We
calculate all correlation scores and make a list of all 𝑇(𝑥𝑗)
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scores. Then, we construct a search space that includes these
correlation scores.

Because (7) exhibits a correlation between cohort scores,
it can be extended to the baseline heuristics approach in the
second stage of the hybrid heuristic-based cohort selection
method. The objective of the proposed cohort selection
method is to select cohort scores that correspond to the
two subsets of highest and lowest correlation scores obtained
by (7). These two subsets of cohort scores constitute the
cohort subset. We separately collect the correlation scores in
a FRINGE data structure or OPEN list; with this initial score,
we expand the fringe by adding more correlation scores to
the fringe. We also maintain another list, which we refer to
as the CLOSED list. After calculating the first 𝑇(𝑥𝑗) score in
the fringe, we omit this score from the fringe and expand
this score. The next two correlation scores from the search
space are removed but retained in the fringe. The correlation
score, which was removed from the fringe, is added to the
CLOSED list. Because the fringe contains two scores, we
arrange them in decreasing order in the fringe by sorting
them and removing the maximum score from the fringe.
This maximum score is now added to the CLOSED list
and maintained in nonincreasing order with other scores in
the CLOSED list. We repeat this recursive process in each
iteration until the search space is empty. After expanding
the search space by moving all correlation scores from the
fringe to the CLOSED list, we construct a sorted list. These
sorted scores in the CLOSED list are divided into three parts:
the first part and last part are merged to create a single list
of correlation scores that exhibit the most discriminating
features. We establish a cohort subset by determining the
most promising cohort scores, which correspond to the
correlation scores on the CLOSED list.

To normalize the cohort scores in the cohort subset,
we apply the T-norm cohort normalization technique. T-
norm describes the property that indicates that the score
distribution of each subject class follows a Gaussian distri-
bution. These normalized scores are employed for making
decisions and assigning the probe face to one of the two
class labels. Prior to making any decisions, we consolidate
the normalized scores for six different facemodels depending
on the principal components to be considered, which range
between one and six.

6. Experimental Evaluation

The rigorous evaluation of the proposed cloud-enabled face
matching technique is conducted with two well-known face
databases, namely, FEI [34] and BioID [35]. The face images
are presented in the databases with changes in illumination,
nonuniform and uniform backgrounds, and facial expres-
sions. For experiments, we have set up a simple protocol
of face pair matching and apply two different fusion rules,
namely, max fusion rules and sum fusion rules. However,
we have implemented the proposed method by considering
two perspectives: the Type II perspective indicates that face
recognition employs face images, which are provided in the
databases without being cropped, and the Type I perspective

Figure 7: Face images from BioID database.

indicates that the face recognition technique uses a manually
localized face area after cropping the face images and fixing
the size of the face area to 140 × 140 pixels. The faces of
these two face databases are presented with a variety of
backgrounds; therefore, a uniform and robust framework
should be designed to examine the proposed face matching
techniques.

6.1. Databases

6.1.1. BioIDFaceDatabase. Theface images that are presented
in the BioID [35] database are recorded in a degraded
environment and are primarily employed for face detection.
However, we can also utilize this database for face recog-
nition. Because the faces are captured with a variety of
background information and illumination, the evaluation of
this database is challenging. Here, we analyze the Type I and
Type II face evaluation frameworks. The database consists of
1521 frontal view face images, which were obtained from 23
persons; all faces are gray level images with a resolution of
384× 286 pixels. Sample face images from the BioID database
are shown in Figure 7. The face images are acquired against
a variety of backgrounds, facial expressions, head position
changes, and illumination changes.

6.1.2. FEI Face Database. The FEI database [34] is a Brazilian
face database of images taken between June 2005 and March
2006. The database consists of 2800 face images of 200
people, who each contributed 14 face images. The faces are
captured against a white homogeneous background in an
upright frontal position, and all images have scale changes
of approximately 10%. Of the 2800 face images, the num-
ber of male contributors is equivalent to the number of
female contributors; that is, 100 male participants and 100
female participants have contributed an equal number of
face images, which total 1400 face images. All images are
colorful, and the size of each image is 640 × 480 pixels. Face
images from the FEI database are shown in Figure 8. Faces
are acquired against uniform illumination and homogeneous
backgrounds with neutral and smiling facial expressions.The
database contains faces of varying ages from 18 years to 60
years.
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Figure 8: Face images from FEI database.

6.2. Experimental Protocol. In this experiment, we have
developed a uniform framework for examining the pro-
posed face matching technique with the established viabil-
ity constraints. We assume that all classifiers are mutually
random processes. Therefore, to address the biases of each
random process, we perform an evaluation with a random
distribution of the number of training samples and probe
samples. However, distribution is completely dependent on
the database that is employed for the evaluation. Because the
BioID face database contains 1521 faces of 23 individuals, we
equally distribute the face images among the training and test
sets.The faces that are contributed by each person are divided
into two sets, namely, the training set and the test/probe set.
The FEI database contains 2800 face images of 200 people.We
devise a protocol for all databases as follows.

Consider that each person has contributed 𝑚 number of
faces and the database size is 𝑝 (𝑝 denotes the total number
of face images). We consider that 𝑞 denotes the total number
of subjects/individuals who contributed 𝑚 number of face
images. To extend this protocol, we divide 𝑚 into two equal
groups of face images 𝑚/2 and retain each group for the
training/reference and probe sets. To obtain the genuine
and imposter match scores, each face in the training set is
compared with 𝑚/2 number of faces in the probe set, which
corresponds to a subject, and each single face is compared
with the face images of the remaining subjects. Thus, we
obtain genuine match scores of 𝑞 × (𝑚/2) dimension and
imposter scores of 𝑞 × (𝑞 − 1) × 𝑚 dimension. The 𝑘-
NN (𝑘-nearest neighbor approach) metric is employed to
generate commonmatching points between a pair of two face
images, and we employ a min-max normalization technique
to normalize thematch scores andmap the scores to the range
of [0-1]. In this manner, two sets of match scores of unequal
dimensions, which correspond to a matcher, are obtained,
whereas the face images are compared within intraclass (𝜔𝑖)
sets and interclass (𝜔𝑗) sets, which we refer to as genuine and
imposter score sets.

6.3. Experimental Results and Analysis

6.3.1. On FEI Database. The proposed cloud-enabled face
recognition system has been evaluated using the FEI face
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Figure 9: Boxplot of principal components versus EER when faces
are not cropped and the number of principal components varies
between one and six.

database, which contains neutral and smiling expressions of
faces. The neutral faces are utilized as target/training faces,
and the smiling faces are used as probe faces. We perform
several experiments to analyze the effect of (a) a cloud-
enabled environment, (b) face matching without extracting
a face area, (c) face matching with extracting a face area, (d)
face matching by projecting the face onto a low-dimensional
feature space using PCA with varying principal components
(one to six) in the conditions mentioned in (a), (b), and (c),
and (e) using hybrid heuristic statistics for the cohort subset
selection. We depict the experimental results as ROC curves
and a boxplot. The ROC curves reveal the performance of
the proposed system by GAR versus FAR curves for varying
principal components.The boxplot shows how EER varies for
different values of principal components.

Figure 9 shows a boxplot when a face with face area has
not been extracted, and Figure 12 shows another boxplot
when the localized face has been extracted for recognition.
In the boxplot in Figure 9, the EER exceeds 7% when the
principal component is set to one, and the EERvaries between
0% and 1% for the remaining principal components. In the
second boxplot, a maximum EER of 10% is attained when the
principal component is 1 and the EER varies between 0% and
2.5%. However, an EER of 0.5% is determined for the princi-
pal components 2, 3, 4, and 5 after the face area is extracted
for recognition. A maximum EER of 1% is attained for the
principal components 3, 4, 5, and 6 when face localization
was not performed. As shown in Table 1, face recognition
performance deteriorates only for the case when the principal
component is set to one. For the remaining cases when the
principal component varies between two and six, however,
lowEERs are obtained; amaximumEER is obtainedwhen the
principal component is set to four. However, the ROC curves
in Figure 10 exhibit higher recognition accuracies for all cases,
with the exception of the case when the principal component
is set to 1. ROC curves are shown when face images are
not localized. Thus, we decouple the information about the
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Figure 10: Receiver operating characteristics (ROC) curve of GAR
versus FAR is shown when faces are not cropped and the number of
principal components varies between one and six.

Table 1: EER and recognition accuracies of the proposed face
matching strategy on FEI database when face localization is not
performed and the number of principal components varies between
one and six.

Face matching strategies with
varying number of principal
components

EER (%) Recognition
accuracy (%)

Principal component 1 7.07 92.93
Principal component 2 0.5 99.5
Principal component 3 0.97 99.03
Principal component 4 1.01 98.99
Principal component 5 1 99
Principal component 6 1 99

legitimate face area with explicit information about nonface
areas, such as the forehead, hair, ear, and chin areas. These
areas may provide crucial information, which is considered
additional information in a decoupled feature vector. These
feature points contribute to recognizing faces with varying
principal components. Figure 11 shows recognition accuracies
for different values of principal component determined on
FEI database while face localization does not perform. On
the other hand, Figure 14 shows recognition accuracies for
different values of principal component determined on FEI
database while face localization does perform.

Figure 13 shows the ROC curves that are determined
from extensive experiments of the proposed algorithm on
the FEI face database when a face image is localized and
only the face part is extracted. In this case, a maximum EER
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Figure 11: Recognition accuracy versus principal component curve
when face localization task is not performed.
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Figure 12: Boxplot of principal components versus EER when
faces are cropped and the number of principal components varies
between one and six.

of 6% is attained when the principal component is set to
1; in other cases, the EERs are as low as the EERs in cases
with nonlocalized faces. Table 2 depicts the efficacy of the
proposed face matching strategy as recognition accuracies
and EERs. With the exception of principal component 1, all
remaining cases have shown tremendous improvements over
the results listed in Table 1. By integrating feature-based and
appearance-based approaches, we have made the algorithm
robust not only for facial expressions but also for the areas
that correspond to major salient face regions (both eyes,
nose, and mouth), which have a significant impact on face
recognition performance. The ROC curves in Figure 13 also
show that the algorithm is inaccurate when the principal
components vary between two and six, even in the case
of principal component 3, when an EER and recognition
accuracy of 0% and 100%, respectively, are attained.

Based on two major considerations—with and without
face localizations—we investigate the proposed algorithm by
fusing face instances under a varying number of principal
components. To demonstrate the robustness of the system,
we apply two fusion rules—the “max” fusion rule and the
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Figure 13: Receiver operating characteristics (ROC) curve of GAR
versus FAR when faces are cropped and the number of principal
components varies between one and six.

Table 2: EER and recognition accuracies of the proposed face
matching strategy on the FEI database when face localization is
performed and the number of principal components varies between
one and six.

Face matching strategies with
varying number of principal
components

EER (%) Recognition
accuracy (%)

Principal component 1 6 94
Principal component 2 0.5 99.5
Principal component 3 0 100
Principal component 4 0.5 99.5
Principal component 5 0.5 99.5
Principal component 6 1 99.0

“sum” fusion rule. However, the effect of localizing the face
area and not localizing the face area is investigated, and
the conventions with these two fusion rules are integrated.
Figure 15 shows the ROC curves that are obtained by fusing
the face instances of principal components 1 to 6 without
performing face localization, and the matching scores are
generated from a single fused classifier, in which all six
classifiers are fused in terms of matching scores by applying
the “max” and “sum” fusion rules. When we apply the “sum”
fusion rule, we obtain 100% recognition accuracy, whereas
98.5% accuracy is obtained when the “max” fusion rule is
applied. In this case, the “sum” fusion rule outperforms
the “max” fusion rule. When a hybrid heuristic statistics-
based cohort selection method is applied to fusion rules for
a fusion-based classifier, the “sum” and “max” fusion rules
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Figure 14: Recognition accuracy versus principal component curve
when face localization task is performed.

Table 3: The table lists EER and recognition accuracies of the
proposed face matching strategy on the FEI database when face
localization is not performed and principal components are fused
using the sum and max fusion rules to form a single set of matching
scores. In addition, the hybrid heuristic statistics-based cohort
selection technique is applied, which uses T-norm normalization
techniques for match score normalization.

Fusion
rule/normalization/heuristic
cohort selection

EER (%) Recognition
accuracy (%)

Sum fusion rule + min-max
normalization 0.0 100

Max fusion rule + min-max
normalization 1.5 98.5

Sum fusion rule + T-norm (hybrid
heuristic) 0.5 99.5

Max fusion rule + T-norm (hybrid
heuristic) 0.5 99.5

achieve 99.5% recognition accuracy. In the general context,
the proposed cohort selection method degrades recognition
accuracy by 0.5% when it is compared with the “sum” fusion
rule-based classifier without applying the cohort selection
method. However, hybrid heuristic statistics render the face
matching algorithm stable and consistent for both the fusion
rules (sum, max) with 99.5% recognition accuracy. In Table 3
the recognition accuracies are shown and in Figure 16 the
same has been exhibited for “sum” and “max” fusion rules.

After evaluating the performance of each of the classifiers,
in which the face instance is determined by setting the value
of the principal component to one value among 1 to 6 and
the fusion of face instances without face localization, we
evaluate the efficacy of the proposed algorithm by fusing all
six face instances in terms of the matching scores obtained
from each classifier. In this case, the face image is manually
localized and the face area is extracted for the recognition
task. Similar to the previous approach, we apply two fusion
rules to integrate the matching scores, namely, “sum” and
“max” fusion rules. In addition, we exploit the proposed
statistical cohort selection technique, which is known as
hybrid heuristic statistics. For cohort score normalization, we
apply the T-norm normalization technique. This technique
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Figure 15: Receiver operating characteristics (ROC) curve of GAR
versus FAR for two fusion rules, namely, the sum fusion rule and
the max fusion rule, when faces are not cropped and the number of
principal components varies between 1 and 6.
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Figure 16: Curve of recognition accuracy versus face matching
strategy when face instances are fused in terms of matching scores
by applying max and sum fusion rules with and without applying
hybrid heuristic statistics for the cohort subset selection. The first
two cases show the recognition accuracies without applying the
cohort selectionmethod, and the last two cases show the recognition
accuracies when the cohort selection method is applied. These
accuracies are obtained without face localization.

maps the cohort scores into a normalized score set that
exhibits the characteristics of each of the scores in the cohort
subset and enables the correct match to be rapidly obtained
by the system. As shown in Table 4 and Figures 17 and 18,
when the “sum” and “max” fusion rules are applied with the
min-max normalization technique to the fused match scores,
we obtain 100% recognition accuracy. In the next step, we
exploit the hybrid heuristic-based cohort selection technique
and achieve 100% recognition accuracy in both cases, when
the “sum” and “max” fusion rules are applied. The effect
of face localization serves a central role in increasing the

Table 4: EER and recognition accuracies of the proposed face
matching strategy on the FEI database when face localization is
performed and the principal components are fused using the sum
and max fusion rules to form a single set of matching scores.
In addition, the hybrid heuristic statistics-based cohort selection
technique, which uses T-norm normalization techniques for match
score normalization, is applied.

Fusion
rule/normalization/heuristic
cohort selection

EER (%) Recognition
accuracy (%)

Sum fusion rule + min-max
normalization 0.0 100

Max fusion rule + min-max
normalization 0.0 100

Sum fusion rule + T-norm (hybrid
heuristic) 0.0 100

Max fusion rule + T-norm (hybrid
heuristic) 0.0 100
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Figure 17: Receiver operating characteristics (ROC) curve of GAR
versus FAR for two fusion rules, namely, the sum fusion rule and the
max fusion rule, when faces are cropped and the number of principal
components varies between one and six.

recognition accuracy to cent percent in four cases. Due to face
localization, however, the numbers of feature points that are
extracted from face images are determined to be dissimilar to
the nonlocalized face that is obtained by applying the cohort
selection method. These accuracies are obtained after a face
is localized.

6.3.2. BioID Database. In this section, we evaluate the per-
formance of the proposed face matching strategy for the
BioID face database considering two constraints. Consider-
ing the first constraint, the face matching strategy is applied
when faces are not localized, and recognition performance
is measured in terms of the number of probe faces that
are successfully recognized. However, the faces that are
provided in the BioID face database are captured in a variety
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Figure 18: Curve of recognition accuracy versus face matching
strategy when face instances are fused in terms of matching scores
by applying the maximum and sum fusion rules with and without
applying hybrid heuristic statistics for the cohort subset selection.
The first two cases show the recognition accuracies without applying
the cohort selection method, and the last two cases show the
recognition accuracies that are obtained by applying the cohort
selection method. These accuracies are obtained after a face is
localized.
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Figure 19: Boxplot of principal components versus EER when faces
are not cropped and the number of principal components varies
between one and six.

of environments and illumination conditions. In addition,
the faces in the database show various facial expressions.
Therefore, evaluating the performance of any face matching
is challenging because the positions and locations of frontal
view imagesmay be tracked in a variety of environments with
changes in illumination. Thus, we need a robust technique
that has the capability of capturing and processing all types
of distinct features and yields encouraging results in these
environments and variable lighting conditions. Face images
from the BioID database reflect these characteristics with a
variety of background information and illumination changes.

As shown in Figures 19 and 21, the recognition accuracies
significantly vary for the principal component range of
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Figure 20: Receiver operating characteristics (ROC) curve of GAR
versus FAR when faces are not cropped and the number of principal
components varies between one and six.

Table 5: EER and recognition accuracies of the proposed face
matching strategy for the BioID database when face localization
is not performed and the number of principal components varies
between one and six.

Face matching strategies with
varying number of principal
components

EER (%) Recognition
accuracy (%)

Principal component 1 8.53 91.47
Principal component 2 2.78 97.22
Principal component 3 8.5 91.5
Principal component 4 13.89 86.11
Principal component 5 13.89 86.11
Principal component 6 11.12 88.88

one to six. For principal component 2, the proposed face
matching paradigm yields a recognition accuracy of 97.22%,
which is the highest accuracy achieved when the Type II
constraint is validated for not localizing the face image. An
EER of 2.78%, which is the lowest among all six EERs, is
obtained. For principal components 4 and 5, we achieve
an EER and recognition accuracy of 13.89% and 86.11%,
respectively. Table 5 lists the EERs and recognition accuracies
for all six principal components, and Figure 21 shows the
same phenomena, which depicts a curve with some points
that denote the recognition accuracies that correspond to
principal components between one and six. ROC curves
determined on BioID database are shown in Figure 20 for
unlocalized face.
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Figure 21: Recognition accuracy versus principal component when
face localization task is not performed.
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Figure 22: Boxplot of principal components versus EER when
faces are localized and the number of principal components varies
between one and six.

After considering the Type I constraint, we consider the
Type II constraint, in which we obtain the localized face on
which the proposed algorithm is applied. Because the face
area is localized and localization is primarily performed on
degraded face images, we may achieve better results with the
Type I constraint.

As shown in Figures 22 and 23, the principal component
varies between one and six, whereas the recognition accuracy
varies with much better results. However, an EER of 8.5%
is obtained for principal component 1, and EERs of 5.59%
and 5.98% are obtained for principal components 4 and 5,
respectively. For the remainder of the principal components
(2, 3, and 6) we achieve a recognition accuracy of 100%
in recognizing faces. The ROC curves in Figure 23 show
the genuine acceptance rates (GARs) for varying number
of principal components and different false acceptance rates
(FARs). The principal components (2, 3, and 6) for which
the recognition accuracy outperforms other components
yield a recognition accuracy of 100%. Figure 24 depicts the
recognition accuracies that are obtained for a varying number
of principal components. The points on the curve that are
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Figure 23: Receiver operating characteristics (ROC) curve of GAR
versus FAR when faces are cropped and the number of principal
components varies between one and six.

Table 6: EER and recognition accuracies of the proposed face
matching strategy for the BioID database when face localization is
performed and the number of principal components varies between
one and six.

Face matching strategies with
varying number of principal
components

EER (%) Recognition
accuracy (%)

Principal component 1 8.5 91.5
Principal component 2 0 100
Principal component 3 0 100
Principal component 4 5.59 94.41
Principal component 5 5.98 94.02
Principal component 6 0 100

marked in red represent the recognition accuracies. Table 6
shows the recognition accuracies when localized face is used.

To validate the Type II constraint for fusions and hybrid
heuristics-based cohort selection, we evaluate the perfor-
mance of the proposed technique by analyzing the effect of
a face that is not localized. In this experiment, however, we
exploit the same fusion rules, namely, the “sum” and “max”
fusion rules, as they are introduced to the FEI database. We
also exploit the hybrid heuristics-based cohort selection and
the fusion rules. Considering the Type II constraint results,
which are obtained on the BioID database, is satisfactory
when the fusion rules and cohort selection technique are
applied to nonlocalized faces. As shown in Table 7 and
from Figure 25, it has been observed that for the first
two types of matching strategies, in which the “sum” and
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Figure 24: Recognition accuracy versus principal component when
face localization task is performed.

Table 7: EER and recognition accuracies of the proposed face
matching strategy for the BioID face database when face localization
is performed and the principal components are fused using the sum
and the max fusion rules to form a single set of matching scores.
In addition, a hybrid heuristic statistics-based cohort selection
technique, which employs T-norm normalization techniques for
match score normalization, is applied.

Fusion rule/normalization/heuristic
cohort selection EER (%) Recognition

accuracy (%)
Sum fusion rule + min-max
normalization 5.55 94.45

Max fusion rule + min-max
normalization 0 100

Sum fusion rule + T-norm (hybrid
heuristic) 0.5 99.5

Max fusion rule + T-norm (hybrid
heuristic) 0 100

“max” fusion rules are applied to fuse the six classifiers,
we can achieve a 94.45% recognition accuracy and a 100%
recognition accuracy, respectively, whereas EERs of 5.55%
and 0%, respectively, are obtained. In this case, the “max”
fusion rule outperforms the “sum” fusion rule, which is
further illustrated in the ROC curves shown in Figure 26. We
achieve 99.5% and 100% recognition accuracies for the next
twomatching strategies when hybrid heuristics-based cohort
selection is applied with the “sum” and “max” fusion rules.

In the last segment of the experiment, we observe the
performance to bemeasured in terms of recognition accuracy
and EER when faces are localized. However, the matching
paradigms that are listed in Table 7 have also been verified
against the Type II constraint. As shown in Table 8 and Fig-
ure 27, the first two matching techniques, which employ the
“sum” and “max” fusion rules, attained an accuracy of 100%,
whereas cohort-based matching techniques show abrupt
performance by achieving 99.35% and 100% recognition
accuracies. However, a minimal change in accuracy of 0.15%
for the combination of the “sum” fusion rule and hybrid
heuristics is unreasonable, and the remaining combination of
the “max” fusion rule and the hybrid heuristics-based cohort
selection method achieved an accuracy of 100%. Therefore,
we conclude that the “max” fusion rule outperforms the
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Figure 25: Curve of recognition accuracy versus face matching
strategy when face instances are fused in terms of matching scores
by applying themax and sum fusion rules with andwithout applying
hybrid heuristic statistics to the cohort subset selection. The first
two cases show recognition accuracies without applying the cohort
selectionmethod, and the last two cases show recognition accuracies
that are obtained by applying the cohort selection method. These
accuracies are obtained when a face is not localized.
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Figure 26: Receiver operating characteristics (ROC) curve of GAR
versus FAR for two fusion rules, namely, the sum fusion rule and
the max fusion rule, when faces are not cropped and the number of
principal components varies between one and six.

“sum” rule, which is attributed to a change in the produced
cohort subset, for both types of constraints (Type I and Type
II). In Figure 28, the recognition accuracies are plotted against
the matching strategies, and the accuracy points are marked
in blue.

It would be interesting to see how the current ensemble
framework would be useful for face recognition in the
wild while faces are found in unrestricted conditions. Face
recognition in the wild is challenging due to its nature of
face acquisition method in unconstrained environment. All
the face images are not frontal. Images of the same subject
may vary in pose, profile, occlusion, multiple background
face, color, and so forth. As our framework is based on only
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Table 8: EERs and recognition accuracies of the proposed face
matching strategy for the BioID database when face localization is
performed and the principal components are fused using the sum
and the max fusion rules to form a single set of matching scores.
In addition, the hybrid heuristic statistics-based cohort selection
technique, which employs T-norm normalization techniques for
match score normalization, is applied.

Fusion rule/normalization/heuristic
cohort selection EER (%) Recognition

accuracy (%)
Sum fusion rule + min-max
normalization 0 100

Max fusion rule + min-max
normalization 0 100

Sum fusion rule + T-norm (hybrid
heuristic) 0.65 99.35

Max fusion rule + T-norm (hybrid
heuristic) 0 100
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Figure 27: Receiver operating characteristics (ROC) curve of GAR
versus FAR for two fusion rules, namely, sum fusion rule and max
fusion rule, when faces are cropped and the number of principal
components varies between one and six.

first six principal components and SIFT features, it requires
incorporation of various tools. Tools to detect and crop face
region discard background images as far as possible, and
detected face regions are to be upsampled or downsampled
to make uniform dimensional face image vector to apply
PCA. Tools to estimate pose and then apply 2D frontalization
to compensate variance lead to less number of principal
components to consider.

6.4. Comparison with Other Face Recognition Systems. This
section reports a comparative study of the experimental
results of the proposed cloud-enabled face recognition pro-
tomodel with other well-known face recognition models.
These models include some cloud computing-based face
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Figure 28: Curve of recognition accuracy versus face matching
strategy when face instances are fused in terms of matching scores
by applying the maximum and sum fusion rules with and without
applying hybrid heuristic statistics for the cohort subset selection.
The first two cases show recognition accuracies without applying the
cohort selection method, and the last two cases show recognition
accuracies that are obtained by applying the cohort selection
method. These accuracies are obtained after a face is localized.

recognition algorithms, which are limited in number, and
some traditional face recognition systems, which are not
enabled with cloud computing infrastructures. Two differ-
ent perspectives are considered for which comparisons are
performed. The first perspective applies the concept of cloud
computing facilities, which are integratedwith a face recogni-
tion system, whereas the second perspective employs similar
face databases to compare with other methods. However,
the second perspective does not utilize the concept of cloud
computing. To compare the experimental results, we compare
the proposed systems with two cloud-based face recognition
systems: the first system utilizes eigenface in cloud vision
[36], and the second face recognition system utilizes social
media with mobile cloud computing facilities [37]. Because
cloud-based face recognition models are limited, we pre-
sented the results of only these two systems. The system
described in [36] employs the ORL face database, which
contains 400 face images of 40 individuals, whereas the
other system [37] employs a local face database that contains
approximately 50 face images. Table 9 shows the performance
of the proposed system and the two systems that are exploited
in [36, 37] in terms of recognition accuracy. Table 9 also lists
the number of training samples that are employed during
the matching of face images by different systems. Because
the proposed system utilizes two well-known face databases,
namely, BioID and FEI databases, and two different face
matching paradigms, namely, Type I and Type II, the best
recognition accuracies are selected for comparison.The Type
I paradigm refers to the face matching strategy, in which face
images are localized, and the Type II paradigm refers to the
matching strategy in which face images are not localized.
Table 9 also shows the results of two face recognition systems
[38, 39] that do not employ cloud-enabled infrastructure.
The comparative study indicates that the proposed system
outperforms other methods, regardless of whether they are
cloud-based systems or do not use cloud infrastructures.
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Table 9: Comparison of the proposed cloud-based face recognition system with the systems described in [36, 37].

Method Face database Number of face images Number of distinct subjects Recognition accuracy (%) Error (%)
Cloud vision [36] ORL 400 40 97.08 2.92
Mobile cloud [37] Local DB 50 5 85 15
Facial features [38] BioID 1521 23 92.35 7.65
2D-PCA + PSO-SVM [39] BioID 1521 23 95.65 4.35
Proposed: Type I BioID 1521 23 100 0
Proposed: Type I FEI 2800 20 100 0
Proposed: Type II BioID 1521 23 97.22 2.78
Proposed: Type II FEI 2800 20 99.5 0.5
Proposed: Type I + fusion BioID 1521 23 100 0
Proposed: Type I + fusion FEI 2800 20 100 0
Proposed: Type II + fusion BioID 1521 23 100 0
Proposed: Type II + fusion FEI 2800 20 100 0

7. Time Complexity of Ensemble Network

The time complexity of the proposed ensemble network
quantifies the amount of time taken collectively by different
modules to run as a set of functions of the length of the input.
The time complexity is estimated by counting the number
of operations performed by different modules or cascaded
algorithms. The ensemble network involves a few cascaded
algorithms which together perform face recognition in cloud
environment and the algorithms are PCA computation, SIFT
features extraction fromeach face instances,matching, fusion
of matching scores using “sum” and “max” fusion rules,
and heuristic-based cohort selection. In this section, time
complexity of individual modules is computed first and then
overall complexity of the ensemble network is computed by
summing them together.

(a) Time Complexity of PCA Computation. For PCA algo-
rithm, the computation bottleneck is to derive covariance
matrix. Let 𝑑 be the number of pixels (height × width)
determined from each grayscale face image and let the
number of face images be 𝑁. PCA computation has the
following steps.

(i) Finding mean of𝑁 sample is𝑂(𝑁𝑑) (𝑁 addition of 𝑑
dimensional vectors and then summation is divided
by𝑁).

(ii) As covariance matrix is symmetric, deriving only
upper triangular matrix elements is sufficient. So for
each of the 𝑑(𝑑 + 1)/2 elements 𝑁 multiplications
and additions are required leading to 𝑂(𝑁𝑑2) time
complexity. Let the 𝑑 × 𝑁 dimensional covariance
matrix be𝑀.

(iii) If Karhunen-Loeve (KL) trick is employed then
instead of 𝑀𝑀𝑇 (𝑑 × 𝑑 dimension) compute
𝑀𝑇 𝑀(𝑁×𝑁)which requires𝑑multiplications and𝑑
additions for each of the𝑁2 elements, hence 𝑂(𝑁2𝑑)
time complexity (generally𝑁 ≪ 𝑑).

(iv) Eigen decomposition of 𝑀𝑇𝑀 matrix by SVD
method requires 𝑂(𝑛3).

(v) Sorting the eigenvectors (each eigenvector 𝑑 × 1
dimensional) in descending order of the eigenvalues
requires 𝑂(𝑁2). Then taking only first 6 principal
component eigenvectors requires constant time.

Projecting the probe image vector on each of the eigenfaces
requires a dot product between two vectors resulting in scalar
value. Hence 𝑑2 multiplication and 𝑑2 addition for each
projection lead to𝑂(𝑑2). Six such projections require𝑂(6𝑑2).

(b) Time Complexity of SIFT Keypoints Extraction. Let the
dimension of each face image be 𝑀 × 𝑁 pixels and let the
face image be represented in column vector of dimension
𝑑(𝑀×𝑁). Gaussian kernel of dimension𝑤×𝑤 is used. Each
octave has 𝑠+3 scales and total 𝐿 number of octaves has been
used. The important phases of SIFT are as follows.

(i) Extrema detection.

(a) Compute scale.

(1) In each scale, 𝑤2 multiplication and 𝑤2 − 1
addition is done by convolution operation
for each pixel, so 𝑂(𝑑𝑤2).

(2) 𝑠+3 scales are in each octave, so𝑂(𝑑𝑤2(𝑠+
3)).

(3) 𝐿 is number of octaves, so,𝑂(𝐿𝑑𝑤2(𝑠 + 3)).
(4) Overall 𝑂(𝑑𝑤2𝑠) is found.

(b) Compute 𝑠 + 2 number of Difference of Gaus-
sians (DoG) for each of the 𝐿 number of octaves:
𝑂((𝑠+2)𝑥𝑑/2𝑘), 𝑘 = 21/𝑠, so for𝐿 octaves𝑂(𝑠𝑑).

(c) Extrema detection: 𝑂(𝑠𝑑).

(ii) Keypoint localization: after eliminating low contrast
point and points along edge let𝛼𝑑 be number of pixels
survived, so 𝑂(𝛼𝑑𝑠).

(iii) Orientation assignment: 𝑂(𝑠𝑑).
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(iv) Keypoint descriptor computation: if 𝑝 × 𝑝 neighbor-
hood of the keypoint is considered, then 𝑂(𝑝2𝑑) is
found.

(c) Time Complexity of Matching. Each keypoint is repre-
sented by a feature descriptor of 128 elements. To compare
any two such points by Euclidean distance requires 128
subtractions: square of each of the previous 128 subtracted
elements, 127 additions to add them up, and one square root
at the end. So linear time complexity is 𝑂(𝑛), where 𝑛 =
128. Let 𝑖th eigenface of probe face image and reference face
image have 𝑘1 and 𝑘2 number of survived keypoints. So each
keypoint from 𝑘1 will be compared to each of 𝑘2 keypoints by
Euclidean distance. So 𝑂(𝑘1𝑘2) for a single eigenface pair is
𝑂(6𝑛2) for 6 pairs of eigenfaces (𝑛 = number of keypoints).
If there are𝑀 numbers of reference faces in the gallery then
total complexity would be 𝑂(6𝑀𝑛2).

(d) Time Complexity of Fusion.As the six individual matchers
domains are different, therefore, to bring them into uniform
domain, min-max normalization technique is used. For
each normalized value, computation has two subtraction
operations andone division operation. So, it requires constant
time 𝑂(1). The 𝑛 pair of probe and gallery images in 𝑖th
principal component requires𝑂(𝑛). So, for six principal com-
ponents, it requires 𝑂(6𝑛). Finally, the sum fusion requires
five summations for each pair of probe and reference face. So,
it is a constant time 𝑂(1). Subsequently, for 𝑛 pairs of probe
and reference face images, it requires 𝑂(𝑛).

(e) Time Complexity of Cohort Selection. Cohort selection
requires four operations to be performed: computation of
correlation in the search space, insertion of correlation values
into the OPEN list, insertion of correlation values at the
proper positions into the CLOSED list according to insertion
sort, and, finally, division of the CLOSED list of correlation
values of size 𝑛 into three disjoint sets. First two operations
take constant time and the third operation takes 𝑂(𝑛2)
complexity as it follows the convention of insertion sort.
Finally, the last operation takes linear time. Overall time
required by cohort selection is 𝑂(𝑛2).

Now, the overall time complexity (𝑇) of ensemble net-
work would be calculated as follows:

𝑇 = max (max (𝑇1) +max (𝑇2) +max (𝑇3) +max (𝑇4)

+max (𝑇5)) = max (𝑂 (𝑛3) + 𝑂 (𝑑𝑤2𝑠)

+ 𝑂 (𝑀𝑛2) + 𝑂 (𝑛) + 𝑂 (𝑛2)) ≈ 𝑂 (𝑛3) ,

(8)

where

𝑇1 is time complexity of PCA computation,
𝑇2 is time complexity of SIFT keypoints extractions,
𝑇3 is time complexity of matching,
𝑇4 is time complexity of fusion,
𝑇5 is time complexity of cohort selection.

Therefore, the overall time complexity of ensemble network
would be 𝑂(𝑛3) while both enrollment time and verification
time through cloud network is assumed to be constant.

8. Conclusion

In this paper, a robust and efficient cloud engine-enabled
face recognition system, in which cloud infrastructure has
been successfully integrated with a face recognition system,
has been proposed. The face recognition system utilizes a
baseline methodology, in which face instances are computed
by applying a principal component analysis- (PCA-) based
texture analysis method to establish six fixed points of
principal components, which range from one to six.The SIFT
operator is applied to extract a set of invariant points from
each face instance, which correspond to the gallery and probe
face images. In this methodology, two types of constraints are
employed to validate the proposed matching technique: the
Type I constraint and the Type II constraint, which denote
face matching with face localization and face matching
without face localization, respectively. The 𝑘-NN method is
employed to compute a pair of faces and generate matching
points asmatching scores.We investigate and analyze various
effects on the face recognition system, which directly or
indirectly attempt to improve the total performance of the
recognition system in various dimensions. To achieve robust
performance, we have analyzed the following effects: (a) effect
of cloud environment, (b) effect of combining a texture-
based method and a feature-based method, (c) effect of using
match score level fusion rules, and (d) effect of using a hybrid
heuristics-based cohort selectionmethod. After investigating
these aspects, we have determined that these crucial and
necessary paradigms render the system significantly more
efficient than the baseline methodology, whereas remote
recognition is achieved either from a remotely placed com-
puter terminal or mobile phones or tablet PCs. In addition,
a cloud-based environment reduces the cost required by
organizations who would like to implement this integrated
system. The experimental results demonstrate high accu-
racies and low EERs for the types of paradigms that we
presented. In addition, the proposed method outperforms
other methods.
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