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Experimental method of temperature and strain discrimination with fiber Bragg gratings (FBGs) sensors embedded in carbon
fiber-reinforced plastic is proposed.The method is based on two-fiber technique, when two FBGs inscribed in different fibers with
different sensitivities to strain and/or temperature are placed close to each other and act as a single sensing element. The nonlinear
polynomial approximation of Bragg wavelength shift as a function of temperature and strain is presented for this method. The
FBGs were inscribed with femtosecond laser by point-by-point inscription technique through polymer cladding of the fiber. The
comparison of linear and nonlinear approximation accuracies for array of embedded sensors is performed. It is shown that the use
of nonlinear approximation gives 1.5–2 times better accuracy.The obtained accuracies of temperature and strain measurements are
2.6–3.8∘C and 50–83 𝜇𝜀 in temperature and strain range of 30–120∘C and 0–400 𝜇𝜀, respectively.

1. Introduction

Polymer composite materials (PCM) are widely used in aero-
space industry, shipbuilding, and wind-power energetics due
to their lightweight, strength, corrosion immunity, and fire
resistance [1, 2]. One of the key questions for PCM construc-
tion details is their long-term reliability. That is why their
condition should bemonitored in real time to detect damage,
delamination, wear, and tear (during fabrication, transporta-
tion, and exploitation). Sensors based on fiber Bragg gratings
are ideally suited for embedding into composite materials
since the optical fiber size is comparable with thickness of
composite monolayer. In addition, they enable easy multi-
plexing and high measurement accuracy with immunity to
electromagnetic interference.

Main problem of embedded FBG sensors concerns their
simultaneous sensitivity to temperature and strain. Current
techniques of their discrimination lead to significant increase
in cost and complexity of interrogation equipment.Therefore
simpler techniques are required, which will combine advan-
tages of fiber sensors and applicability for embedding into
composite materials. One of the most applicable techniques
of strain and temperature discrimination in PCM is the
method that employs FBGs in two different fibers, embedded
side by side [3]. The advantage of the method is that there
is no need for fiber etching or polishing [4], splicing [5], or
other structural impacts [6, 7], which can increase the fiber
fragility. On the other hand, it is difficult to find a pair of
optical fibers, which could let one achieve the typical figures
of merit (sensitivity and repeatability). The method requires
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the temperature and/or strain sensitivity of FBGs, formed
in two fibers, to be strongly different from each other [3].
This difference could be achieved with pair of polymer and
silica optical fibers, as FBGs written in polymer fibers have
negative sign of temperature sensitivity comparing to those
in silica fibers [8]. Polymer fibers are commercially available,
but they can be damaged during the PCM molding process
because of high temperature of annealing or composite
curing processes. Core and cladding materials, dopants, and
their concentrations are the valuable parameters affecting
the temperature sensitivity of the FBG. For example, FBGs
in lead-doped fibers have increased sensitivity [9], while
gratings in boron doped fibers have decreased one [5].
However, fibers with special dopants have high cost as they
are less demanded, comparing to telecommunication fibers
like SMF-28e. One more way is to use different types of
ultraviolet (UV) inscribed gratings [10], but, in this case,
the difference between temperature sensitivities is not big
enough.More accessible and cheap variant of UV-inscription
methods needs FBG to be recoatedwith polymer coating after
the inscription that may lead to increased fragility in PCM
after embedding. In this work femtosecond (fs) inscribed
FBGs are used. Advantages of fs-FBGs as compared withUV-
FBGs consist of the possibility of FBGs inscription through
the polymer cladding without damaging cladding [11, 12]
with increased speed of fabrication. The main disadvantage
is the higher scattering due to noncircular shape of fs-
modified area in fiber-core cross section. It leads to increased
coupling to cladding modes and additional spectral sideband
that may influence dynamics of the FBG spectra. Therefore,
considering unexpected effects after embedding of fs-FBGs,
the method of strain and temperature discrimination based
on nonlinear polynomial approximation is used.Themethod
can be useful in other applications, where nonlinear polyno-
mial approximation is necessary to increase the accuracy of
measurements.

2. Methodology

To separate temperature and strain contributions, themethod
based on FBGs in two fibers with different characteristics is
applied [3]. Two FBGs inscribed in different fibers are located
in one measurement point thus producing one sensor. The
larger the sensitivity difference between FBGs, the higher
the measurement accuracy of the sensor. A polynomial
approximation (second-order polynomial for temperature
[13] and linear for strain) is introduced, which fits the shift
of reflection spectrum Δ𝜆

1,2
of FBGs better than linear

approximation:
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when the PCM sample is exposed to longitudinal strain load

and to variable temperature, while the Bragg wavelengths
shifts are measured. Effective coefficients 𝐾
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together with root-mean-square error for wavelength
shifts 𝛿𝜆RMS1,2 of each FBG can be found using least-square
method [14]. All possible noises of calibration setup including
interrogation system, extensometer, and thermometer are
included in 𝛿𝜆RMS1,2. Another error source is the apparatus
error 𝛿𝜆

𝐴
of measuring interrogation system (different from

calibration one). It can introduce significant errors if fast
wavelength meter with comparatively low resolution (∼10–
100 pm) is used. The apparatus error is included in full
wavelength shift error 𝛿𝜆
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that can be found as 𝛿𝜆2
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, where 𝛿𝜆RMS1,2 and 𝛿𝜆𝐴1,2 are
independent values and normally distributed [15]. Using the
notations of temperature error as𝛿𝑇 = 𝛿(Δ𝑇) and strain error
as 𝛿𝜀, the measurement accuracies of system (1) are estimated
as
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Equations (2) can be deduced from (1) as errors of indirect
measurements. The errors of parameters in mathematical
interpretation can be considered as their variations. The
differential (𝛿) of (1) atΔ𝑇, 𝜀, andΔ𝜆

1,2
shows the influence of

this variation on solution of (1). The linear equations system
of variations can be solved at variables𝛿𝑇 and𝛿𝜀.The solution
of the second-order linear equation system consists of two
terms, 𝐶
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are independent and
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from the solution as [(𝐶
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To test the method the following pair of fibers was
chosen. Germanium doped fiber Fibercore SM1500P (9/125)
(SM1500P-125/150) with diameter 150𝜇m of polyimide coat-
ing was used as a fiber with high temperature sensitivity.
Boron doped fiber Fibercore PS1250-1500 (PS1250-125/250)
with diameter 250 𝜇m of acrylate coating was used as a fiber
with low temperature sensitivity.

Three FBGs were inscribed in each of these fibers by
a femtosecond laser with the wavelength of 1026 nm. The
femtosecond inscription was performed by point-by-point
technique with femtosecond laser through the coating [12];
therefore mechanical characteristics of fibers did not change.
It is known that the temperature sensitivities for FBGs
inscribed by UV methods in fibers PS1250 and SM1500P are
different and approach about 9 and 13 pm/∘Ccorrespondingly
[5]. This difference was supposed to be enough for effective
discrimination of temperature and strain with estimated
accuracy not worse than 10∘C and 100 𝜇𝜀 correspondingly
with linear approximation and apparatus error of wavelength
meter about 20 pm (fast device with comparatively low
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Figure 1: The CFRP sample with embedded fiber-optic sensors.
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Figure 2:The topology of the fiber sensors in the sample, S1, S2, and
S3 (FBG sensor array).

resolution for impact control). We believe that it is possible
to improve the accuracy using the nonlinear approximation.

The packages of prepreg were assembled for experimental
tests. They were based on epoxy fusion adhesive VSE-1212
and medium-tensile carbon fiber Toho Tenax IMS65 of 500
× 500 × 2mm size with layer reinforcing structure [0]

𝑛

and formed slabs, from which the samples of carbon fiber-
reinforced plastic (CFRP) 400 × 25 × 2mm size have been
fabricated by mechanical cutting [16]. Two CFRP samples
were fabricated (Figure 1 shows number 2). Two fibers, each
comprising three FBGs of 2mm length separated by 𝐿

1
=

40mm, were placed close (ℎ = 1mm) to each other between
central prepreg layers in parallel with the long edge of sample
in such a way that the FBG sensor array (S1, S2, and S3)
was located in the central area of samples (Figure 2). Optical
fibers were routed out of the sample surface at angle of
15∘ through PTFE tubes safely securing the fiber with a
sufficient flexibility. Molding of prepreg’s packages was made
in autoclave with maximum temperature 180∘C and specific
pressure not exciding 0.7MPa.

3. Experiment and Results

Figure 3 shows the measured spectra of the fiber sensors
embedded into the CFRP number 2 sample (line) and not
embedded (dotted line). Normalized spectra show slightly
decreasing amplitude of peaks for PS1250 FBGs after embed-
ding. This is possible due to microbending of fiber and
increasing of scattering. Since embedding into the sample
does not influence sufficiently the spectra, it seems possible
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Figure 3:Normalized reflection spectra of FBGs before (dotted line)
and after (line) the embedding into CFRP.

Figure 4: A sample of CFRP in testing machine.

to use standard interrogation techniques and algorithms
for identification of spectral peak position. The FBGs in
SM1500P fiber (red) have smaller losses than those for FBGs
in PS1250 fiber (blue), which probably have scattering nature
since the intensity decreases from peak to peak. The absolute
peak reflections of FBGs are about 60% for SM1500P and 40–
90% for PS1250.

In the next step, coefficients of temperature and strain
sensitivity for FBGs embedded into the CFRP sample were
determined with testing machine Zwick/Roell Z250 com-
prising temperature chamber and extensometer (Figure 4).
During the test, the sample was heated up to +30, +55, +80,
+100, and +120∘C. One cycle of loading unloading to 2.5 kN
with a step of 0.5 kN was performed at each temperature
step (Figure 5(a)). The load value was limited by the grips
used. Peak wavelength shifts were measured by means of
interrogator Astro A322 with resolution of 1 pm at 1Hz
sampling rate. Sample elongation was measured by exten-
someter with ∼1 micron accuracy (declared). The measured
longitudinal strainwas 400𝜇𝜀. Temperaturewasmeasured by
thermoresistor fixed at CFRP samplewith accuracy of 0.04∘C.

Figure 5(a) shows that the FBGs in PS1250-125/250
fiber have higher temperature sensitivity than that for FBGs
in SM1500P-125/150 fiber. The effect of PS1250-125/250
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Figure 5: Experiment data. (a) The wavelength shifts of FBGs, (b) strain (line), and temperature (dashed line) during calibration process.

Table 1

Fiber Sensor Wavelength, nm 𝐾
1𝜀

, pm/𝜇𝜀 𝐾
1𝑇

, pm/∘C 𝐾
2𝑇

, pm/∘C2 𝛿𝜆RMS, pm 𝛿𝜆
(lin)
RMS, pm

PS1250
S1 1538.56 0.528 22.07 −5.02𝑒 − 05 29.2 58.7
S2 1544.40 0.638 18.65 −3.22𝑒 − 05 25.9 41.7
S3 1548.62 0.540 20.22 −3.81𝑒 − 05 31.7 50.0

SM1500P
S1 1557.13 1.225 16.50 −7.09𝑒 − 05 50.5 87.9
S2 1562.43 1.232 15.64 −6.21𝑒 − 05 51.6 81.4
S3 1567.75 1.212 14.98 −5.47𝑒 − 05 45.1 71.5

increased thermal sensitivitymay be explained by influencing
of some factors and/or their combinations. Probably, the
main factor is different influence of embedding process on
different types of fibers, especially on fiber coatings. The
less probable factor is the influence of scattering in fs-FBG
and microbending of fibers inside CFRP on the dynamics
of FBGs spectra. The picture also shows that FBGs in
SM1500P-125/150 fiber have higher strain sensitivity. It may
be explained by better adhesion of polyimide coating to
polymer matrix of the sample. Figure 5(b) shows data from
thermometer and extensometer corresponding to Figure 5(a).
There was high noise of extensometer, which makes notice-
able contribution to main calibration errors 𝛿𝜆RMS1,2. The
measured sensitivity coefficients are presented in Table 1.

Calibration errors 𝛿𝜆(lin)RMS for linear approximation are
shown in the last column of Table 1, which are 1.5–2 greater
than the second-order ones, 𝛿𝜆RMS.

According to formulae (2) in case of the nonlinear poly-
nomial approximation, errors depend on the absolute values
of temperature and strain. It means that in general case the
errors need to be represented in 3D or in contour graphics. As
(2) are independent of absolute strain, Figure 6 demonstrates
(in 2D) the accuracy of sensors consisting of two FBGs in
PS1250 and SM1500P fibers: pairs are S1 (1538.56, 1557.13),
S2 (1544.40, 1562.43), and S3 (1548.62, 1567.75), with the
above-mentioned values of coefficients and apparatus error
𝛿𝜆
𝐴
= 10 pm. Presented errors for temperature (Figure 6(a))

and strain (Figure 6(b)) are smaller for the second-order
approximation than for linear one in whole temperature
interval. The accuracy value varies in 2.6–3.8∘C range for
temperature and 50–83𝜇𝜀 for strain. Probably, the calibration

accuracy is limited by the extensometer noise (Figure 5(b)),
as it does not provide enough precision at low strain level.

As follows fromTable 1, thermal sensitivities𝐾
1𝑇

for FBG
in PS1250 fiber embedded in the composite exceed standard
values two times for bare fiber. To prove the influence of
embedding on FBG’s properties the temperature sensitivity
test of bare FBGs in PS1250 fiber was carried out. Three
FBGs at a distance 40mm between each other were written
by the same point-to-point femtosecond laser modification
method. The result is 𝐾

1𝑇1
= {8.5, 11.1, 11.6} pm/∘C, which

corresponds to FBGs formed by UV-inscription in the same
fiber [5]. The sensitivity of FBGs in SM1500P in bare fiber
has increased insignificantly compared to UV FBGs, which
typically is𝐾

1𝑇2
≈ 13 pm/∘C.

Reproducibility of embedding process is confirmed by
almost the same temperature dependence of FBGs wave-
length shifts in sample number 1 as in number 2 without
tensile force. Full calibration procedure with sample number
1 was not performed.

4. Conclusion

The experiment shows that the proposed experimental
method of temperature and strain discrimination is appli-
cable for its fabrication, calibration, and utilizing of CRFP
with embedded fiber-optic fs-FBGs sensors. The nonlinear
approximation for wavelength shift is presented, along with
analytical formulae for strain and temperature errors. The
comparison of linear and nonlinear approximation accura-
cies was performed. It was shown that the use of nonlinear
approximation results in 1.5–2 times better accuracy. The
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Figure 6: The accuracy 𝛿𝑇 of temperature (a) and 𝛿𝜀 of strain (b) separation versus temperature 𝑇
1

. Dotted circles show corresponding
approximation polynomial.

obtained accuracies of temperature and strain measurements
are 2.6–3.8∘C and 50–83𝜇𝜀 in temperature and strain range
of 30–120∘C and 0–400 𝜇𝜀, respectively.
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