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Decision-making algorithm, as the key technology for uncertain data fusion, is the core to obtain reasonable multisensor
information fusion results. DS evidence theory is a typical and widely applicable decision-making method. However, DS evidence
theory makes decisions without considering the sensors’ difference, which may lead to illogical results. In this paper, we present
a novel decision-making algorithm for uncertain fusion based on grey relation and DS evidence theory. The proposed algorithm
comprehensively takes consideration of sensor’s credibility and evidence’s overall discriminability, which can solve the uncertainty
problems caused by inconsistence of sensors themselves and complexity of monitoring environment and simultaneously ensure the
validity and accuracy of fusion results.The innovative decision-making algorithm firstly obtains the sensor’s credibility through the
introduction of grey relation theory and then defines two impact factors as sensor’s credibility and evidence’s overall discriminability
according to the focal element analyses and evidence’s distance analysis, respectively; after that, it uses the impact factors to modify
the evidences and finally gets more reasonable and effective results through DS combination rule. Simulation results and analyses
demonstrate that the proposed algorithm can overcome the trouble caused by large evidence conflict and one-vote veto, which
indicates that it can improve the ability of target judgment and enhance precision of uncertain data fusion.Thus the novel decision-
making method has a certain application value.

1. Introduction

In practical applications, single sensor is difficult to meet
the requirements like target accuracy and identification
performance. Thus, there is a broad application of decision-
making algorithm on data fusion about target’s attributes,
characteristics, and types through comprehensive processing
of information obtained from multisensor. Currently, data
decision-making technology [1–3] based on multisensor is
highly valued by scholars at home and abroad. In addition,
a lot of theorems and algorithms emerge in the area of
data decision-making. However, due to constraints on the
attributes as well as the types of data, there is still no unified
theoretical framework or unique algorithm for classification
issue of multisensor data decision-making.

For multisensor decision-making field, the traditional
algorithms are statistical method [4], empirical reasoning [5],
voting method [6], Bayesian inference [7], template method
[5], and adaptive neural network [8], among others. These

typical methods all can settle the decision fusion of multisen-
sor information to some extent, whereas they all have some
defects. Statistical method, empirical reasoning, and voting
method are too simple to achieve the reliable decision results
for multisensor information fusion. Bayesian inference needs
the prior knowledge of environment to finish the reasoning,
which cannot be guaranteed in actual applications. And
template method would waste time and energy of system
when selecting the suitable template according to certain
rules. Although adaptive neural network can fulfill a reason-
able decision fusion, it is usually not adopted in practical
applications because of its large computation complexity. DS
evidence theory [9, 10] is favored for its ability of dealing with
uncertainty, integration of measurement information, and
reasonable theoretical derivation. Thus, DS evidence theory
has become themainstreammethod inmultisensor decision-
making field.

As awildly used decision-making algorithm for uncertain
data fusion, DS evidence theory is able to deal with the uncer-
tainty and imprecision of multisensor information fusion.
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Hence, DS evidence theory can properly handle the incon-
sistency of sensor conditions and complexity of monitoring
environment. With its introduction and perfection put for-
ward by Dempster and Shafer, respectively, DS evidence the-
ory occupies a lot in the development of intelligent computing
and identification theory for multisensor information fusion.
Along with its development, DS evidence theory has been
widely applied in various fields, like pattern recognition [11],
target identification [12], cognitive radio network [13], fault
diagnosis [14], signal recognition [15], and decision-making
[16], among others. Although there are some problems of
DS evidence theory itself, these problems can be effectively
solved through rigorous theoretical derivation, scientific
improvements, and combination with other methods. For
example, a new entropy, named as Deng entropy, is proposed
in [17] to handle the uncertain measure of BPA, which is
the generalization of Shannon entropy. The new entropy
provides a promising way to measure the uncertainty of
multisensor fusion system. Besides, Deng entropy is applied
in [18] to realize the measurement of information volume
of the evidence. This improvement makes the application
of DS evidence theory with more validity and robustness.
Due to limit space, the classic modified methods [19–31]
are exhibited in references and partially taken as compared
methods in Section 5.2.

In this paper, systematic research is implemented on
DS evidence theory, and the multisensor decision-making
algorithm is realized by the combination of DS evidence
theory and grey relation analysis [32, 33]. The proposed
decision-making algorithm for uncertain data fusion firstly
utilizes sensors’ report generator to settle the acquisition
processing of sensor’s credibility by the introduction of grey
relation theory. Then, the sensor’s credibility is consecutively
adjusted by twodifferent processes of consistency and conflict
analysis in focal elements. At the same time, the novelmethod
defines the evidence’s overall discriminability according to
the concept of evidence’s distance function. Finally, the
original evidences are modified by two impact factors as
sensor’s credibility and evidence’s overall discriminability,
which can ensure getting more reasonable and effective
decision-making results after evidences combine.

This paper is organized as follows. The theoretical theo-
rem and derivation of DS evidence theory and grey relation
theory are briefly introduced in the next section. And the
implementation diagram and flow chart of uncertain data
fusion system are given in Section 3. Then, Section 4 high-
lights the implementation method and specific steps of the
new decision-making algorithm for uncertain data fusion,
and Section 5 presents the simulation results and comparative
analyses. Concluding remarks are given in the last section of
this paper.

2. Theoretical Foundations

DS evidence theory and grey relation theory are separately
presented in this section, which are the foundations of the
novel decision-making algorithm in this paper.

2.1. DS Evidence Theory. DS evidence theory, also called
Dempster-Shafer theory, is an effective data decision-making
method to deal with the uncertainty of multisensor infor-
mation fusion system. Relative to probability theory [5], DS
evidence theory can settle imprecise data and has a more
extensive application area. Similar to Bayesian inference [7],
DS evidence theory uses the prior probability to represent the
evidence interval of posterior probability, which can quantify
the credible degree andplausibility degree of propositions.DS
evidence theory is briefly comprised by the following four key
points.

2.1.1. Frame of Discernment and the Power Set. In DS model,
the frame of discernment (FoD) denoted byΘ indicates a set
of 𝑁 mutually exclusive and exhaustive hypotheses, which
represents all interested propositions. And FoD is defined as
the form of function set as

Θ = {𝐻1, 𝐻2, . . . , 𝐻𝑁} = {𝐻𝑖 | 𝑖 = 1, 2, . . . , 𝑁} , (1)

where 𝐻𝑖 is the 𝑖th hypothesis belonging to Θ and 𝑁 is the
number of hypotheses.

On the basis of FoD, we can derive 2Θ as the power set,
which is composed of 2𝑁 propositions of Θ (all subsets of
FoD).

2Θ = {0, {𝐻1} , {𝐻2} , . . . , {𝐻𝑁} , {𝐻1, 𝐻2} , {𝐻1, 𝐻3} , . . . ,
{𝐻1, 𝐻𝑁} , . . . , {𝐻1, 𝐻2, . . . , 𝐻𝑁}} , (2)

where 0 is the empty set, which belongs to any propositions.

2.1.2. Basic Probability Assignment. The basic probability
assignment (BPA) is a mass function𝑚 : 2Θ → [0, 1] defined
on 2Θ, which should satisfy the following demands:

𝑚(0) = 0,
∑
𝐴⊆Θ

𝑚(𝐴) = 1, (3)

∀𝐴 ∈ 2Θ. 𝑚(𝐴) is called the mass function of proposition𝐴 that represents the basic belief degree and initial support
degree strictly assigned to proposition 𝐴 [17].

Due to the lack of further knowledge, 𝑚(𝐴) cannot be
subdivided. Any proposition satisfying that 𝑚(𝐴) > 0 (𝐴 ∈2Θ) is called the focal element, and the set of all focal elements
is named as the core of BPA.

2.1.3. Belief Function and Plausibility Function. DS evidence
theory designates two uncertain measurements as the belief
function (Bel) and plausibility function (Pl). Similar to the
definition of BPA, Bel and Pl can be defined, respectively, as

Bel (𝐴) = ∑
𝐵⊆𝐴

𝑚(𝐵) , (4)

Pl (𝐴) = ∑
𝐵∩𝐴 ̸=0

𝑚(𝐵) , (5)
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Figure 1: Relationship diagram of Bel(𝐴) and Pl(𝐴).

∀𝐴 ∈ 2Θ, where Bel(𝐴) is interpreted as the low probability
of 𝐴, while Pl(𝐴) is interpreted as the upper probability of𝐴. The relationship between Bel(𝐴) and Pl(𝐴) is derived as
follows:

Bel (𝐴) ≤ Pl (𝐴) ,
Pl (𝐴) = 1 − Bel (𝐴) , (6)

where 𝐴 is the complement set of 𝐴.
According to the relationship between Bel(𝐴) and Pl(𝐴),

DS evidence theory also divides the evidence interval into
supporting interval, uncertainty interval, and rejecting inter-
val, which are shown in Figure 1.

The interval [Bel(𝐴),Pl(𝐴)] is named the uncertainty
interval, which represents the uncertainty and imprecision of
multisensor fusion system.

The concept of uncertainty interval is similar to prob-
ability, but not entirely expressed as probability. The inter-
val makes the proposition possibly real; that is, it does
not directly support or reject the proposition. That feature
demonstrates that DS evidence theory needs weaker axiom
than probability theory and can represent the difference
between uncertainty and unknown of proposition [9]. Thus,
DS evidence theory is the generalization of probability theory
and is an effective solutionmethodwhen the prior knowledge
is absent.

2.1.4. DS Combination Rule. DS evidence theory provides a
useful evidence combination function. Suppose that there
are 2 independent and not completely conflict evidences that
exist on the same FoD in system; we can get a synthesis
support degree for propositions by DS combination rule.The
combination rule can be computed by the orthogonal sum of
their mass functions; that is,

𝑚(𝐴) = [𝑚1 ⊕ 𝑚2] (𝐴)
= 11 − 𝑘 ∑

𝐴𝑖∩𝐵𝑗=𝐴

𝑚1 (𝐴 𝑖) ⋅ 𝑚2 (𝐵𝑗) , (7)

∀𝐴 ∈ 2Θ, where ⊕ represents the orthogonal sum operator. 𝑘
is the global conflict factor, which demonstrates the conflict
degree between𝑚1 and𝑚2:

𝑘 = 1 − ∑
𝐴𝑖∩𝐵𝑗=0

𝑚1 (𝐴 𝑖) ⋅ 𝑚2 (𝐵𝑗) . (8)

If 𝑘 is close to 0, 2 evidences are on the verge of
conformity. While 𝑘 is close to 1, 2 evidences are totally

conflict.Thedenominator 1/(1−𝑘) is the normalization factor
which ensures that (3) are contented.

The equations and properties of DS combination rules
based on 2 evidences are exhibited here; readers can deduce
the equations and properties of multiple evidences’ synthesis
with similar principle.

Obviously, the DS combination rule satisfies both com-
mutative law and associate law.

𝑚1 ⊕ 𝑚2 = 𝑚2 ⊕ 𝑚1,
(𝑚1 ⊕ 𝑚2) ⊕ 𝑚3 = 𝑚1 ⊕ (𝑚2 ⊕ 𝑚3) . (9)

2.2. Grey Relation Theory. Grey relation theory [34] is the
quantity processing and ordering procedure of systems with
incomplete information or uncertain data. It can be seen
as a global analysis of system. Since appropriate reference
is essential to obtain reasonable sensor credibility result, a
certain sensor is used as a comparative standard to determine
the credibility degree of multisensor [35].

2.2.1. Grey Relation Factor. Grey relation factor is the basis of
grey relation analysis [32].The space ofGrey relation factors is
determined by sequence that has properties as comparability,
accessibility, and extreme consistency.

Suppose that the sequences of system are 𝑥𝑖 = [𝑥𝑖(1),𝑥𝑖(2), . . . , 𝑥𝑖(𝑛)], 𝑖 = 0, 1, 2, . . . , 𝑚, where 𝑥0 is the reference
sequence and 𝑥𝑖, 𝑖 = 1, 2, . . . , 𝑚, is the comparison sequence.𝛾(𝑥0(𝑘), 𝑥𝑖(𝑘)) represents the comparisonmeasurement of 𝑥0
and 𝑥𝑖 at the 𝑘th point in grey relation factors’ space.Then we
define the grey relation factor of 𝑥𝑖 as 𝛾(𝑥0, 𝑥𝑖), which is the
average value of 𝛾(𝑥0(𝑘), 𝑥𝑖(𝑘)) at all points.Hence, the degree
of grey relation factor is defined as

𝛾 (𝑥𝑖, 𝑥0) = 1𝑛
𝑛∑
𝑘=1

𝛾 (𝑥0 (𝑘) , 𝑥𝑖 (𝑘)) , (10)

where the comparisonmeasurement of 𝑥0 and 𝑥𝑖 is expressed
as

𝛾 (𝑥0 (𝑘) , 𝑥𝑖 (𝑘))
= min𝑖min𝑘Δ 0𝑖 (𝑘) + 𝜁max𝑖max𝑘Δ 0𝑖 (𝑘)Δ 0𝑖 (𝑘) + 𝜁max𝑖max𝑘Δ 0𝑖 (𝑘) , (11)

where 𝜁 ∈ [0, 1] is the resolution index and Δ 0𝑖(𝑘) is the
discriminative information.

2.2.2. Properties of Grey Relation Factor. It is apparent that the
grey relation factor has the following elementary properties
[34]:

(1) Normativity:

0 ≤ 𝛾 (𝑥0, 𝑥𝑖) ≤ 1,
𝛾 (𝑥0, 𝑥𝑖) = 1 ⇐⇒

𝑥0 = 𝑥𝑖,
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Figure 2: Implementation diagram of uncertain data fusion system.

𝛾 (𝑥0, 𝑥𝑖) = 0 ⇐⇒
𝑥0, 𝑥𝑖 ∈ 0.

(12)

(2) Symmetry:

𝛾 (𝑥0, 𝑥𝑖) = 𝛾 (𝑥𝑖, 𝑥0) . (13)

(3) Accessibility:

Δ 0𝑖 (𝑘) ↓= 𝛾 (𝑥0 (𝑘) , 𝑥𝑖 (𝑘)) ↑ . (14)

Namely, the smaller the discriminative informationΔ 0𝑖(𝑘)
is, the bigger the comparison measurement 𝛾(𝑥0(𝑘), 𝑥𝑖(𝑘)) is.
3. The Implementation Diagram of

Uncertain Data Fusion System

According to the proposed decision-making algorithm, the
implementation diagram of uncertain data fusion system is
defined in Figure 2.

The structure of the proposed decision-making algorithm
is marked by the rectangular block with imaginary lines in
Figure 2. It is evident that the new decision-making method
is comprised of four parts. Thus, we can get the flow chart in
Figure 3.

The new method is realized by the following four steps.

Step 1. Obtain sensor’s credibility through sensors’ report
generator based on grey relation theory and consecu-
tively adjust sensor’s credibility, respectively, through overall
weighted factor analysis and proportional factor analysis.
Then, filtrate the evidences according to sensor’s credibility’s
value.

Step 2. Define evidence’s overall discriminability by evi-
dences’ distance analysis.

Step 3. Modify the original evidences by two impact factors
as sensor’s credibility and evidence’s overall discriminability.

Step 4. Combine the modified evidences by proper DS
combination rule, and put the synthetic results into decision-
making rule to get the final decision results.

4. The New Decision-Making Method Based on
Grey Relation and DS Evidence Theory

Asdescribed last section, the particular procedures of the new
method are presented. The novel decision-making algorithm
takes two impact factors as sensor’s credibility and evidence’s
overall discriminability to modify the original evidences,
respectively, by focal element analyses and evidences’ dis-
tance analysis. The proposed algorithm can settle system’s
uncertainty caused by inconsistency of sensor conditions and
complexity of monitoring environment. Therefore, the new
method is able to guarantee the decision accuracy of data
fusion.

4.1. Two Consecutive Adjustments of Sensor’s Credibility

4.1.1. Generation of Sensor’s Credibility Based onGrey Relation.
In this part, the concept of grey relation theory is utilized to
analyze sensor’s credibility by generating sensor’s report.

For multisensor information fusion system, let us denote
the exclusive and exhaustive FoD as Θ = {𝐻1, 𝐻2, . . . , 𝐻𝑚},
where 𝑚 is the number of hypotheses. Taking a sensor as
template, we can associate the measurement information
provided by each sensor with the template sensor. Then
sensor’s credibility report is built.

Suppose X0 = {X0(𝑗) | 𝑗 = 1, 2, . . . ,𝑀} is the measure-
ment information of the reference sensor, X𝑖 = {X𝑖(𝑗) | 𝑗 =1, 2, . . . ,𝑀} is the measurement information of multisensor,
where the index 𝑖 = 1, 2, . . . , 𝑛 represents the 𝑖th sensor, 𝑛
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Figure 3: Flow chart of the novel decision-making algorithm.

is the number of targets, and 𝑗 indicates the characteristic
information of each sensor. Under these assumptions, we can
acquire sensor’s credibility with following steps.

Firstly, calculate the absolute difference of attributes as
𝜔𝑖 (𝑗) = 󵄨󵄨󵄨󵄨X0 (𝑗) − X𝑖 (𝑗)󵄨󵄨󵄨󵄨 , (15)

where | ⋅ | represents the absolute index and 𝜔𝑖(𝑗) indicates
the absolute difference between X0 and X𝑖 in sensor’s 𝑗th
attribute.

Secondly, use the classic grey relation theory to calculate
relation coefficient of the 𝑖th sensor.

𝜉𝑖 (𝑗) = min𝑖min𝑗𝜔𝑖 (𝑗) + 𝜌max𝑖max𝑗𝜔𝑖 (𝑗)𝜔𝑖 (𝑗) + 𝜌maxmax𝑗𝜔𝑖 (𝑗) , (16)

wheremin𝑖min𝑗𝜔𝑖(𝑗) is theminimumabsolute difference and
the max𝑖max𝑗𝜔𝑖(𝑗) is the maximum absolute difference. And
the resolution index 𝜌 is a constant as 𝜌 = 0.5 in this paper.

Then, obtain the grey relation factor of the 𝑖th sensor with
average processing.

𝛾𝑖 = 1𝑀
𝑀∑
𝑗=1

𝜉𝑖 (𝑗) ⋅ 𝑎 (𝑗) . (17)

At last, the sensor’s credibility of the 𝑖th sensor is shown
as

𝜔𝑖 = 𝛾𝑖
max𝑖 (𝛾𝑖) . (18)
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4.1.2. Two Consecutive Adjustments of Sensor’s Credibility
Based on Focal Element Analysis. In order to guarantee the
normalization of the synthetic results, the sum of all sensors’
credibility should be unit. However, due to the influence of
noise and imprecise device, the sum of sensors’ credibility is
not always unit. To make the final decision for information
fusion obtained from such sensors, sensor’s credibility and
the information provided by sensors should be considered
simultaneously. In this section, we discuss how to combine
sensor’s credibility with focal element analyses to make the
final decision.

From what is mentioned above, we suppose that Θ ={𝑚𝑖(𝐻𝑗) | 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚} is the FoD of system,
and 𝑚𝑖(𝐻𝑗) are BPAs of focal element. 𝑖 is the number of
sensors and𝐻𝑗 represents the 𝑗th focal element.

To begin with, sensors’ credibility is obtained through
grey relation algorithm as

𝑊 = {𝜔1, 𝜔2, . . . , 𝜔𝑛} . (19)

The consecutive adjustments are based on the compati-
bility and conflict processing of focal elements.

Primarily, the similarity and conflict between two evi-
dences can be defined separately as

𝐸𝑖𝑗 = 𝑚∑
𝑝=𝑞=1

𝑚𝑖 (𝐹𝑝) ⋅ 𝑚𝑗 (𝐹𝑞) ,

𝐶𝑖𝑗 = 𝑚∑
𝑝=𝑞=1,𝑝 ̸=𝑞

𝑚𝑖 (𝐹𝑝) ⋅ 𝑚𝑗 (𝐹𝑞) .
(20)

With the introduction of similarity and conflict concepts,
the proportional conflict factor of the 𝑖th sensor can be
confirmed, which reflects the conflict level of the 𝑖th evidence.

𝑘𝑖 = ∑
𝑛
𝑗=1,𝑗 ̸=𝑖 𝐶𝑖𝑗 − ∑𝑛𝑗=1,𝑗 ̸=𝑖 𝐸𝑖𝑗∑𝑛𝑗=1,𝑗 ̸=𝑖 𝐶𝑖𝑗 + ∑𝑛𝑗=1,𝑗 ̸=𝑖 𝐸𝑖𝑗 . (21)

Then, the average conflict coefficient 𝑘∗ of all evidences
can be calculated as

𝑘∗ = 12 (1 + 1𝑛
𝑛∑
𝑖=1

𝑘𝑖) . (22)

After that, define the overall weight factor of all evidences𝜔∗ according to 𝑘∗.
𝜔∗ = 𝑛 ⋅ (𝑘∗)𝛼 ⋅min {𝜔𝑖 | 𝑖 = 1, 2, . . . , 𝑛} , (23)

where 𝛼 is the regulatory factor, and the related analysis is
discussed in Section 5.1.

Finally, the adjustments of sensors’ credibility are based
on different processing of 𝜔∗. One is based on 𝜔∗ itself, and
the other is based on two parts of 𝜔∗ as the proportion of
compatible focal elements and the proportion of conflict focal

elements. Thus, the first and the second adjustment for all
sensors’ credibility are, respectively,

𝑊1 = {𝜔1 − 1𝑛𝜔∗, 𝜔2 − 1𝑛𝜔∗, . . . , 𝜔𝑛 − 1𝑛𝜔∗} , (24)

𝑊2 = {𝜔1 − 1𝑛𝜔∗ + 𝜔11 + 𝜔12, 𝜔2 − 1𝑛𝜔∗ + 𝜔21
+ 𝜔22, . . . , 𝜔𝑛 − 1𝑛𝜔∗ + 𝜔𝑛1 + 𝜔𝑛2} ,

(25)

where 𝜔𝑖1, 𝜔𝑖2 separately represent the proportion of com-
patible focal elements and the proportion of conflict focal
elements, which are defined as

𝜔𝑖1 = 𝐸𝑖∑𝑛𝑖=1 𝐸𝑖𝜔
∗
1 ,

𝜔𝑖2 = 1/𝐶𝑖∑𝑛𝑖=1 (1/𝐶𝑖)𝜔
∗
2 .

(26)

𝑊2 is the modified sensors’ credibility, in which the
conflict among evidences can be reflected. When the sensor’s
credibility of certain evidence is very small, it indicates that
this evidence has big conflict with all the other evidences.
Thus, a threshold is indispensable for dealing with sensor’s
credibility which can help system to delete those evidences
with low sensor’s credibility. In this paper, the threshold is set
to 0.5.

4.2. Establishment of Evidence’s Overall Discriminability Based
on Evidences’ Distance Processing. Firstly, the form of evi-
dences’ distance function is introduced, which can distin-
guish the evidences’ difference.

𝑑 (m1,m2)
= √12 (⟨m1,m1⟩ + ⟨m2,m2⟩ − 2 × ⟨m1,m2⟩)

(27)

in which

⟨m1,m2⟩ = 2
𝑁

∑
𝑖=1

2𝑁∑
𝑗=1

m1 (𝐴 𝑖)m2 (𝐴𝑗)
󵄨󵄨󵄨󵄨󵄨𝐴 𝑖 ∩ 𝐴𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐴 𝑖 ∪ 𝐴𝑗󵄨󵄨󵄨󵄨󵄨 , (28)

where | ⋅ | indicates the number of focal elements.
According to the property that two evidences are more

similar with smaller distance function, we can define evi-
dences’ overall discriminability as

𝐷𝑖 = 𝑚∑
𝑗=1

𝑑𝑖𝑗. (29)

And for the normalization feature of the synthetic results,𝐷𝑖 should be normalized.

𝐷𝑖 (norm) = ((1/𝐷𝑖) /∑𝑚𝑖=1 (1/𝐷𝑖))∑ ((1/𝐷𝑖) /∑𝑚𝑖=1 (1/𝐷𝑖)) . (30)

It can be easily proved that𝐷𝑖 reflects the incompatibility
degree between the 𝑖th evidence and all the other evidences.
That is, the larger 𝐷𝑖 is, the less the support degree can be
obtained, and the worse the evidence’s credibility will be.
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4.3. Modification of Evidences. Taking sensor’s credibility
and evidence’s overall discriminability simultaneously into
consideration, the modified evidences can be expressed as

𝑚𝑖 (𝐻𝑗) = 𝑊2 (𝑖) 𝑚𝑖 (𝐻𝑗)
+ 𝑒−𝑘 (1 − 𝐷𝑖) (𝑊2 (𝑖) − 𝐷𝑖) ,

𝑚𝑖 (Θ) = 1 − 𝑚∑
𝑗=1

𝑚𝑖 (𝐻𝑗) ,
(31)

where 𝑘 is the global conflict factor.
The modification of evidences takes full advantage of

sensor’s credibility and real-time information provided by
sensors to ameliorate evidences. If one modified evidence
has zero focal element, we choose to delete the evidence
and replace it with the average of other evidences. This
procedure will not only guarantee a reasonable fusion results,
but also effectively avoid the occurrence of one-vote veto
when evidences combine.

4.4. Combination ofModified Evidences. Finally, themodified
evidence is integrated with the comprehensive DS combina-
tion rule to make the final judgment.

Consider that the combination results satisfy

𝑚(𝐻1) = max {𝑚 (𝐻𝑖) ,𝐻𝑖 ⊂ Θ} ,
𝑚 (𝐻2) = max {𝑚 (𝐻𝑗) ,𝐻𝑗 ⊂ Θ,𝐻𝑗 ̸= 𝐻1} ,
𝑚 (𝐻1) ≥ 𝜀1,
𝑚 (𝐻1) − 𝑚 (𝐻2) ≥ 𝜀2.

(32)

𝐻1 is the decision-making result through the novel algo-
rithm, where 𝜀1 and 𝜀2 are preset threshold values. Otherwise,Θ is the result, which means that the system cannot be
identified rationally.

5. Simulation and Comparative Analyses

This section is divided into two parts. One is the experiment
preparation that discusses the value of the regulatory factor𝛼,
and the other is effectiveness validation of the new decision-
making method.

5.1. Experiment Preparation. Prior to the experiment, the
analysis about the accurate expression of evidences’ conflict
and the selection of the regulatory factor are described in this
section.

5.1.1. Precise Expression of Conflict. An experiment is carried
out to prove the effectiveness of the improved algorithm in
expressing evidences’ conflict.

Assume that FoD is Θ = {𝐴, 𝐵, 𝐶}, where 𝐴, 𝐵, 𝐶
are mutually exclusive. The standard and reference sensor’s
judgment value is 𝑚0 = {0.5, 0.3, 0.2}. Ten groups of sensor’s
judgment values obtained by multisensor data fusion system

Table 1: Ten sensors' BPAs and their credibility.

Sensors Sensor’s credibility Propositions𝐴 𝐵 𝐶
Sensor 1 0.7094 0.5853 0.3791 0.0357
Sensor 2 0.5777 0.1680 0.5756 0.2565
Sensor 3 0.6266 0.2591 0.3936 0.3473
Sensor 4 0.5781 0.3938 0.5982 0.0080
Sensor 5 0.6304 0.7387 0.1461 0.1151
Sensor 6 0.8882 0.5560 0.2960 0.1480
Sensor 7 0.5953 0.2870 0.5881 0.1249
Sensor 8 0.4556 0.0120 0.5957 0.3923
Sensor 9 0.9040 0.5462 0.2728 0.1810
Sensor 10 0.6018 0.2893 0.5814 0.1293
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Figure 4: Comparison between the global conflict factor and the
average conflict coefficient.

and the corresponding sensor’s credibility are shown in
Table 1.

According to Table 1, the comparison between the global
conflict factor 𝑘 in DS evidence theory and the average
conflict coefficient 𝑘∗ in the novel method is shown in
Figure 4.

It is obvious in Figure 4 that 𝑘 in DS evidence theory is
getting larger along with the increasing of evidences’ number.
However, the acquisition of evidences is the processing to
get support for propositions, not the processing to get more
conflict.Thus, 𝑘 is not able to accurately represent the conflict
situation. However, 𝑘∗ in the novel method is the effective
expression of actual evidences’ conflict. Thus, Figure 4 indi-
rectly illustrates the rationality of the new decision-making
method.

5.1.2. Analysis of the Regulatory Factor. During the consec-
utive adjustments of sensor’s credibility, there is an indis-
pensable index as the regulatory factor 𝛼. To analyze the
numerical selection of 𝛼, statistical methods are adopted. As
themodified sensor’s credibility𝑊2 is partially determined by
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Figure 5: Relationship of sensor’s credibility and the regulatory
factor with two evidences.
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Figure 6: Relationship of sensor’s credibility and the regulatory
factor with four evidences.

𝛼, the relationship between the regulatory factor and sensor’s
credibility with 2 evidences is indicated in Figure 5.

As can be seen from Figure 5, with the increasing of
the regulatory factor 𝛼, sensor’s credibility gradually tends to
be stable. It proves that the perfect regulatory factor can be
confirmed.

In order to further reflect the numerical range of 𝛼,
the number of sensors is increased to finish the simulation.
Figure 6 shows the relationship of sensor’s credibility and the
regulatory factor with 4 evidences.

From Figure 6, it is clear that sensor’s credibility tends to
be relatively stable when the regulatory factor reaches 5.Thus,
the regulatory factor value is set to 5 in the next experiment.

5.2. Effectiveness Validation of the New Decision-Making
Method. In this experiment, the proposed algorithm is

Table 2: Four sensors' BPAs and their credibility.

Sensors Sensor’s credibility Propositions𝐴 𝐵 𝐶
Sensor 1 0.7563 0.5853 0.3791 0.0357
Sensor 2 0.6182 0.3938 0.5982 0.0080
Sensor 3 0.4792 0.0000 0.5756 0.4244
Sensor 4 0.9595 0.5462 0.2728 0.1810

Table 3: The fusion result of 2 sensors.

Algorithms Propositions𝐴 𝐵 𝐶 Θ
LIU 0.5004 0.4986 0.0010 0.0000
YAGER 0.5037 0.4956 0.0006 0.0000
GUO 0.4972 0.5000 0.0028 0.0000
LI 0.5041 0.4727 0.0001 0.0231
TAN 0.4794 0.4653 0.0008 0.0546
CHENG 0.5018 0.4982 0.0000 0.5018
CHEN 0.5018 0.4982 0.0000 0.5018
HE 0.3258 0.3206 0.0004 0.3532
YE 0.3864 0.2652 0.2955 0.0530
YAO 0.4960 0.4918 0.0121 0.0000
FLOREA 0.3263 0.3257 0.0146 0.3334
MURPHY 0.5004 0.4986 0.0010 0.0000
Proposed method 0.5079 0.4786 0.0134 0.0000

compared with other methods to prove its priority in over-
coming problems such as high conflict and one-vote veto and
ulteriorly realizing uncertain data fusion correctly.

Assume that FoD is Θ = {𝐴, 𝐵, 𝐶}, where 𝐴, 𝐵, 𝐶 are
mutually exclusive.The standard and reference sensor’s judg-
ment value is𝑚0 = {0.5, 0.3, 0.2}.

Four groups of sensor’s judgment values obtained bymul-
tisensor data fusion system and the corresponding sensor’s
credibility are shown in Table 2.

It is checked in Table 2 that the commonsensical fusion
result should give proposition 𝐴 the largest support as two
sensors with big credibility both support proposition 𝐴 to a
great extent. With similar principle, proposition 𝐶 in fusion
result should own the minimum support.

The data fusion of 4 sensors is divided into 3 steps.
And we take 12 common improved methods in [20–31]
as the compared algorithms. These methods are separately
abbreviated as LIU [20], YAGER [21], GUO [22], LI [23], TAN
[24], CHENG [25], CHEN [26], HE [27], YE [28], YAO [29],
FLOREA [30], and MURPHY [31].

Firstly, the data fusion of sensor 1 and sensor 2 is achieved
and the result is shown in Table 3.

FromTable 3, we can see that allmethods give proposition𝐴 the largest support except GUO, which demonstrates that
GUOmakes the wrong decision.Moreover, CHENG, CHEN,
and FLOREA allocate Θ a lot of support, which is not
conducive to final judgment. Concerning method YE, the
fusion result is averagely allocated to each proposition, in
which the support to proposition 𝐶 mismatches with the
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Table 4: The fusion result of 3 sensors.

Algorithms Propositions𝐴 𝐵 𝐶 Θ
LIU 0.1660 0.8299 0.0041 0.0000
YAGER 0.0000 0.9991 0.0009 0.0000
GUO 0.3813 0.4548 0.1639 0.0000
LI 0.0000 0.7451 0.0000 0.2549
TAN 0.0000 0.6707 0.0008 0.3285
CHENG 0.2623 0.7301 0.0076 0.0000
CHEN 0.0000 1.0000 0.0000 0.0000
HE 0.0000 0.5756 0.4244 0.0000
YE 0.2864 0.3652 0.2955 0.0530
YAO 0.3282 0.5856 0.0862 0.0000
FLOREA 0.1399 0.2218 0.0669 0.5714
MURPHY 0.2671 0.6719 0.0610 0.0000
Proposed method 0.5193 0.4797 0.0010 0.0000

supporting degree proved by original evidences. Although
LIU, YAGER, LI, TAN, HE, YAO, and MURPHY offer
proposition A the largest support, the numerical difference
of support to propositions 𝐴 and 𝐵 is too tiny to facilitate
decision-making fusion.Thus, only the improvedmethod can
get the proper fusion result.

In addition, sensor 3 is added in uncertain data fusion
to strengthen effectiveness validation of the new decision-
making method. Table 4 is the fusion result of 3 sensors.

As can be seen from Table 2, sensor 3 is significantly
different from others which leads to high conflict, and the
support to proposition 𝐴 is zero which leads to zero focal
element. In view of the particularity properties of sensor
3, we can see in Table 4 that one-vote veto phenomenon
exists in YAGER, LI, TAN, CHEN, and HE. It reveals that
the appearance of zero focal element directly deteriorates
the fusion result. FLOREA still assigns a lot of support
to Θ and increases the uncertainty in fusion result. LIU,
GUO, CHENG, YE, FLOREA, and MURPHY are unable
to reasonably handle zero focal element and utilize sensor’s
credibility. The fusion results of them all give proposition𝐵 the excessive support as the incorporation of sensor 3.
The proposed algorithmmodifies the 3rd evidence via taking
sensor’s credibility into account as well as the overall situation
of all evidence’s discriminability, which reduces its influence
on fusion result.Thus, in the fusion of 3 sensors, the proposed
method is still the optimal resolution for uncertain data
fusion.

Finally, in order to verify the priority of the proposed
method, evidence with relatively higher sensor credibility is
imported, and the data fusion is accomplished with 4 sensors.
The decision-making processing is also completed, whose
result is displayed inTable 5.The threshold values in decision-
making rule are 𝜀1 = 0.40 and 𝜀2 = 0.15.

We can see from Table 5 that the occurrence of zero focal
element in sensor 3 seriously affects the data fusion. Even
sensor 4with large sensor’s credibility supports proposition𝐴
explicitly, one-vote veto phenomenon still exists in YAGER,
LI, TAN, CHEN, andHE, and the decision fusions of LIU and

Table 5: The decision result of 4 sensors.

Algorithms Propositions Decision result𝐴 𝐵 𝐶 Θ
LIU 0.3136 0.6863 0.0001 0.0000 𝐵
YAGER 0.0000 0.9994 0.0006 0.0000 𝐵
GUO 0.4414 0.4055 0.1531 0.4414 Θ
LI 0.0000 0.7506 0.0000 0.2494 𝐵
TAN 0.0000 0.8664 0.0004 0.1332 𝐵
CHENG 0.4520 0.5401 0.0079 0.4520 Θ
CHEN 0.0000 1.0000 0.0000 0.0000 𝐵
HE 0.0000 0.1013 0.0001 0.8986 Θ
YE 0.5462 0.2728 0.1810 0.0000 𝐴
YAO 0.4339 0.4617 0.1045 0.4339 Θ
FLOREA 0.1173 0.1404 0.0499 0.6923 Θ
MURPHY 0.3826 0.5481 0.0693 0.0000 𝐵
Proposed method 0.7137 0.2860 0.0003 0.0000 𝐴

MURPHY give the wrong decision results to proposition 𝐵,
while the decision fusion of FLOREA sequentially regards Θ
as the decision result. Secondly, due to the preset of threshold
values in decision-making rule, GUO, CHENG, and YAO
consider Θ as the decision result. Moreover, only YE and the
proposedmethod generate reasonable decision results as they
take proposition 𝐴 as the final decision. Compared with YE,
the proposedmethod assigns larger support to proposition𝐴,
which is beneficial to get the precise decision result.Thus, the
proposed method is more rational and reliable.

The data fusion of 4 sensors above reflects that the
proposed method makes the reliable and accurate decision
in comprehensive consideration of sensor’s credibility and
overall evidence’s discriminability. Besides, the decision result
reveals that the proposed method will not only give accurate
decision, but also avoid harmful effects caused by sensors
with low credibility and zero focal elements.

6. Conclusion

Asmultisensor information fusion is broadly applied inmany
civil andmilitary areas, the valid decision-makingmethod for
uncertain information fusion is under great attention. This
paper raises a neoteric decision-making algorithm based on
grey relation and DS evidence theory to solve the uncertainty
caused by inconsistence of sensors itself and complexity of
monitoring environment. The new algorithm is carried out
with three innovative treatments: generation of sensor’s cred-
ibility based on grey relation theory, focal element analyses
as overall weighted factor analysis and proportional factor
analysis, and evidences’ overall discriminability processing.
Simulation results and analyses show that the proposed
algorithm canmake precise decision without worrying about
sensors’ unreliability and evidence’s high conflict. Thus, it
has great application significance and excellent engineering
prospect.

In further study, the decision-making method for uncer-
tain data fusion should pay close attention to relieve the huge
computation burden for system as the increasing number of



10 Journal of Sensors

sensors and try to realize the on-time and on-line decision-
making system.
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