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Using visual sensors for detecting regions of interest in underwater environments is fundamental for many robotic applications.
Particularly, for an autonomous exploration task, an underwater vehicle must be guided towards features that are of interest. If the
relevant features can be seen from the distance, then smooth control movements of the vehicle are feasible in order to position
itself close enough with the final goal of gathering visual quality images. However, it is a challenging task for a robotic system
to achieve stable tracking of the same regions since marine environments are unstructured and highly dynamic and usually have
poor visibility. In this paper, a framework that robustly detects and tracks regions of interest in real time is presented. We use the
chromatic channels of a perceptual uniform color space to detect relevant regions and adapt a visual attention scheme to underwater
scenes. For the tracking, we associate with each relevant point superpixel descriptors which are invariant to changes in illumination
and shape.The field experiment results have demonstrated that our approach is robust when tested on different visibility conditions
and depths in underwater explorations.

1. Introduction

Visual tracking of relevant regions in scenes with poor visi-
bility is an important problem in robotic vision research. In
particular, for the autonomous robotic exploration of natural
underwater structures (e.g., coral reefs), it is fundamental
to perform a closer, cautious, and a noninvasive analysis
of the changes that occur in the structure of interest to
assist in the research of marine biologists. Usually, human
intervention is required to indicate which regions are of
interest formonitoring by remotely operating the underwater
vehicle. As this can be quite demanding, the need of using an
Autonomous Underwater Vehicle (AUV) is very appealing.
Moreover, the visual and control algorithms need to be quite
robust and run in real time in order to be effective. In recent
years, several systems capable of collecting information,
dynamically or statically, in underwater environments have
been developed. In the case of AUVs, great efforts have been
made to provide them with sufficient autonomy to perform
specific tasks. Thus, the main challenge is to transfer to

the robotic agent the ability of recognizing what regions
are of interest for monitoring and to keep those regions
on view for a certain period of time to be able to obtain
useful visual data for its posterior analysis. However, as these
targets or regions of interest may be located far from the
vehicle, they need to be detected from the distance. The
rapid attenuation of electromagnetic radiation in water limits
the range of optical sensors. Also, the existence of variable
lighting and the presence of suspended particles (also known
as marine snow) cause geometrical and color distortions
that result in poor visibility. Furthermore, the structure (in
terms of geometric shape) of coral reefs is practically null.
Since underwater environments are highly unstructured and
constantly changing environments, one of themain problems
that still remains open is the accurate estimation of the
robot’s position and orientation.Thismakes the detection and
tracking of visual cues difficult. Considering the mentioned
problems, if the goal is to cautiously explore the fragilemarine
life that exists in coral reefs, it is necessary to first detect
visual targets that are relevant for the exploration and then
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robustly track them so that the robot movements are not
erratic or abrupt. In other words, the tracking must be stable
enough to allow for smooth controlmovements in the robotic
system.

We are interested in allowing an AUV to conduct an
exploration of coral reefs according to how a human diver
would do it: that is, the route to follow is guided by the
features in the environment that catch her attention. It
turns out that for underwater environments using this type
of exploration there exists limited research work in the
literature. For example, in [1], a method is presented to
classify the captured images by the robot according to the
degree of novelty contained in the features. The novelty
parameter is an indicator used to control the speed of the
robot along a predefined path. An extension of this work
is presented in [2], where the movement of the robot is
controlled to be directed to areas in the image with more
visual content, causing the robot to move to areas containing
coral reef and ignore the areas where only sand is present.
One important thing to note is that, in an exploration mode,
it is crucial not to limit the movements of the robot to a
previous specified path; instead, the approach used should
allow for a more natural scanning. In this sense, a diver
(sufficiently curious and fearless) exploring a coral reef for
the first time will be guided by what catches her attention,
despite not having prior information about what she could
find.

In this research work, we present a real-time visual-based
framework to robustly detect and track relevant features from
the distance with the aim of exploring coral reefs. The real-
time performance in robotics applications is fundamental
since the tracked features will help to direct the exploration
trajectories in subsequent captured images while estimating
the relative pose of the robot. We build upon our previous
work [3, 4]. In [4], a visual attention model, adapted to
underwater scenes, was presented for the first time. The
inputs were a set of videos taken underwater. Although the
visually relevant cueswere likely to be detected on subsequent
frames, it was not enough to keep track of a particular relevant
cue for long.Moreover, it only workedwhenwater conditions
were optimal, thus failing when poor visibility conditions
were present. In [3], we characterized the colors of relevant
features by using a perceptually uniform color space. We
compared theCIE𝐿𝑎𝑏 and the𝐿𝛼𝛽, whichwere able to define
a super-color-pixel descriptor to describe a relevant region
by using its chromatic channels only. The color opponent
processing (blue-yellow and green-red) makes the recovering
of color underwater easy, in particular red and yellow tones,
by enhancing their contrast wrt the blue/green tonalities of
sea waters.

In this paper, we have extended our previous work in
many aspects. First, we give a detailed description of each of
the stages involved in our Aquatic Visual Attention (AVA)
model as well as improvements to have a better saliency
map in terms of the compactness of the relevant regions.
Second, we have compared the performance of the proposed
framework. On one hand, we compare the quality in the
detection of regions of interest of ourAVAmodel in underwa-
ter scenes at different depths with the classic Neuromorphic

Vision Toolkit method. On the other hand, we compare
the robustness of superpixels descriptors for tracking the
most relevant region of interest with other methods of object
tracking.

The contribution of this paper is a novel computational
visual attention model built to work on underwater envi-
ronments, namely, coral reefs. The proposed visual attention
model focuses on detecting as well as tracking relevant
regions. The purpose of having a tracker is to lead the
motion of an Autonomous Underwater Vehicle (AUV) in
an exploration task. This way the AUV should be able to
detect, without human intervention or any kind of precise
information of a particular region, which part of the coral reef
could draw the attention for a human and move towards it.

The outline of the paper is as follows. Section 2 presents
background on the perception of color in underwater scenes
and also on visual attention models. Section 3 describes
our model and its implementation. The experimental results,
comparison of the performance of the proposed framework,
and discussion are presented in Section 4. Finally, in Sec-
tion 5, the conclusions and future work are given.

2. Background

2.1. Underwater Perception of Color. Poor visibility condi-
tions underwater affect the perception of color. This is due to
the attenuation of light, water conditions, distance to objects,
depth, and other factors [5]. Visibility in foggy days is very
similar to that of underwater images. The effect is that near
objects are clearer while distant objects gradually disappear.
This effect is illustrated in Figure 1 by comparing images of the
same natural scene under foggy and normal day conditions.
The mountains in the back of Figure 1(a) cannot be seen in
Figure 1(b).

Color perception in common sea water diminishes
according to the distance or depthwhere the object of interest
is located. In most cases, the color in objects that are more
than 10 meters of distance are almost indistinguishable (see
Figure 2). As for depth, the first color to disappear is red;
beginning as soon as 3m of depth there is almost not red
light left from the sun. From 5m to 10m, the range from
orange to yellow lights is lost. By 25m, only blue light remains
[5]. Figure 3 shows an example of an image of our AUV at
different depth and water conditions. We know that the color
of our robot is red by the sides. By verifying the color of the
intensity pixels in a small window (zoomed in), we see that
the color is very different from red, ranging from dark red
to dark blue. However, the processes carries out in our brain
adjust the colors up to certain grade.

2.2. Perceptually Uniform Color Spaces for Color Discrimina-
tion. Natural structures underwater, such as the formations
of coral reef, are rich in color and texture. They may have
certain shapes, but they do not always follow a specific pattern
or geometry. Thus, if we want to have a descriptor for a
given feature, the only cue to detect and recognize would
be color. In this trend, the discrimination of color is the
problem we want to solve. This is different to the color
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(a) Image in a sunny day

(b) Image in a foggy day

Figure 1: The same outdoor natural scene under different weather
conditions. In (b), the effects of fog clearly show how objects in the
distance gradually disappear (e.g., mountains in the back, clearly
seen in (a), are gone).This effect is similar in underwater scenes (see
Figure 2). Taken from [3].

restoration problem, in which a good result is basically that
with a natural look of color appearance, but there is not
guarantee that the true original color has been recovered
whatsoever.

To discriminate color, one needs to measure the dif-
ferences among the entire range of visible colors in a way
that matches perceptual similarity as good as possible. This
task can be simplified by the use of perceptually uniform
color spaces, in which a small change of a color will pro-
duce the same change in perception anywhere in the color
space. This is due to the fact the chromatic channels are
spaced further apart. Examples of perceptual uniform color
spaces are the CIE 𝐿𝑎𝑏 and the 𝐿𝛼𝛽. On one hand, the
CIE 𝐿𝑎𝑏 model was specifically developed to describe all
the color that the human eye can perceive [6] and it was
designed to preserve the perceptual color distance. Thus,
the Euclidean distance is an accurate representation of the
perceptual color difference. The 𝑎 channel values represent
the relative light purplish red (magenta) or greenness of each
pixel. Shifting the curve upwards builds up magentas and
weakens greens. The 𝑏 channel does the same for yellow
versus blue. Altering the slope of these curves changes color
contrast, while adjusting parts of the curve selectively changes
different ranges of colors. On the other hand, the 𝐿𝛼𝛽 is
a decorrelated principal component color space. This color
space was derived from a large ensemble of hyperspectral
images of natural scenes using the first-order statistics of
the images. Because of its decorrelation property of three

(a)

(b)

Figure 2: Examples showing the effect of distance perception
in underwater. Same as in foggy days, distant objects gradually
disappear. However, an additional effect is that near objects appear
bigger than they actually are.

Figure 3: Example of color perception at different depth and water
conditions.

channels, the 𝐿𝛼𝛽 space has been used for color mapping in
terrestrial applications [7, 8] and just recently it was used for
underwater applications for color correction [9] with good
results.

2.3. Experiments: Underwater Color Discrimination. We
carried out experiments to visually compare how color can
be discriminated when using the RGB, HSV, CIE 𝐿𝑎𝑏, and
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L 𝛼 𝛽

(A) Input image

(B) The channels of the RGB, HSV, CIE Lab and L𝛼𝛽 color spaces

Figure 4: Chromatic channels of different color spaces applied to an outdoor scene. Note that the red channel of RGB and the 𝑎 channel of
CIE 𝐿𝑎𝑏 are in the last column in order to visually facilitate the comparison. Taken from [3].

the 𝐿𝛼𝛽 color spaces. It is important to remind that our goal
is to see how red and yellow tonalities are detected. We are
neither doing a restoration of the color nor enhancing the
color in images. The underwater images were taken on three
different sea waters, from the Caribbean and the Yucatan
peninsula. As it was previously mentioned, the advantage of
using opponent color spaces is because for this type of images;

one of the opponent colors is basically the color of water,
that is, a bluish or greenish tone. Since colors are usually
defined in terms of human observation, the evaluation of the
performance of an algorithm that involves color information
is a more qualitative aspect than a quantitative one. Figures
4 and 5 show examples of using different color spaces in
an outdoor and underwater images under poor visibility
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(A) Input image

(B) The channels of the RGB, HSV, CIE Lab and L𝛼𝛽 color spaces

Figure 5: Chromatic channels of different color spaces applied to an underwater scene. Note that the red channel of RGB and the 𝑎 channel
of CIE 𝐿𝑎𝑏 are in the last column in order to visually facilitate the comparison. Taken from [3].
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conditions which are illustrated. Figure 4 depicts in the first
row the input image taken outside water; then in the next
rows, the three channels of the RGB, HSV, CIE 𝐿𝑎𝑏, and 𝐿𝛼𝛽
color spaces, respectively, are shown. In similar arrangement
of images, Figure 5 shows the three channels of each color
space when applying to underwater images in poor visibility
conditions.

It can be observed that all color spaces discriminate red
and yellow colors in the images.However, in underwater, only
the CIE 𝐿𝑎𝑏 and 𝐿𝛼𝛽 color spaces were able to discriminate
the red color of the ball.This conclusion arises from a visually
qualitative comparison.

2.4. Visual Attention Models. Visual attention is a selective
process that allows us to determine what draws our atten-
tion according to the visual stimuli we receive from our
environment. Several works have been done in the area of
neuropsychology to understand how humans pay attention
to what we see. Even today, there are several theories about
how the human visual attention system works. Based on
those theories, various computermodels have been proposed.
Studies about visual attention originally emerged in the area
of psychology and neurophysiology over a century ago [10],
when scientists began to develop theories and models to
explain it. But it was not until 1987, in the work presented by
Koch and Ullman [11], when the first model of a biologically
inspired computational attention was published. After this
work many more were proposed, being the work by Itti et
al. [12] the most relevant to date. A comprehensive survey of
visual attention and its implementation in computer systems
can be found in [13].

One of the motivations for incorporating attention capa-
bilities in systems that process huge amount of information
is to reduce the amount of the data to be processed. This
can be achieved by taking only the information. In the area
of computer vision it is particularly noticeable, as images
contain thousands, even millions of pixels. The problem of
reducing image information has been addressed in various
ways. To mention a few, there exist methods that are based
on the detection of points of interest, such as the Harris’
corner detector [14], SURF [15], or the well-known SIFT [16].
Also, there are detectors of lines, ellipses, and circles [17, 18].
Another approach that has also been applied involves the
predictivemethods, which use information regarding the task
to be performed to limit the amount of information to be
processed.

Two of the more popular attention models, due to their
easy implementation, flexibility, and fast computation, are the
Neuromorphic Vision Toolkit (NVT) proposed by Itti et al.
[12] and the attention system called Visual Object detection
with a computational attention system (VOCUS) by Frintrop
et al. [19]. The Focus of Attention (FoA) is the place in the
image that draws the attention of the system. Itti et al. [12]
searched for the FoA by using a Winner-Take-All neural
network. Frintrop et al. [19] find the point with the highest
saliency value by scanning every point, and the most salient
region is determined by seed region growing.

Recently, visual attention models have been used in
robotic applications [20], and in underwater applications to
primarily assist marine biologists in their review of underwa-
ter videos. For example, Walther et al. [21] and Edgington et
al. [22] detect objects and potentially interesting visual events
for humans in order to label the frames of a video stream as
interesting or boring. In both research works, the NVT [12]
model is used.The videos used in those works were recorded
by a Remotely Operated Vehicle (ROV).

Barat and Rendas [23] present a visual attention system
for detection of manufactured objects. Their model is based
on the minimum description length test for detecting the
motion of contrasting neighboring regions. After that, a
statistical technique is adapted to determine the boundary of
the object. Correia et al. [24] use intensity, motion, and edge
maps as features for their visual attention model to detect the
Norway lobsters and help scientist to quantify them.

In all these works, the visual attention models are used
for aiding humans in the task of analyzing video streams. In
our case, we want the visual attention model to direct the
robot motion through the automatic detection and tracking
of features that could be of interest for a human during an
exploration. Particularly, we are interested in transferring
abilities to an AUV in order to detect regions of interest
without human supervision while successfully navigating
the environment. For the case of autonomous underwater
exploration the visual attention algorithm requires real-time
performance.Moreover, as hardware limitations in underwa-
ter robots are still an issue, the algorithms should have a low
computational cost.

3. The Proposed Method

In this section, the method we propose for detecting and
tracking relevant features in underwater scenes is described.
Our approach for detection of relevant features uses some key
ideas of Itti’s and Frintop’s visual attention models [12, 19].
A computational visual attention algorithm detects relevant
regions in an image emulating the human visual attention.

Traditionally, the detection of relevant features relies on
a saliency map—a gray-scale image in which the brightest
part is the most relevant in terms of features such as intensity,
color, and orientation. Given that the existing natural objects
in underwater scenes lack specific orientation and shape,
our attention model strongly relies on color information.
However, the inherent poor visibility and color degradation
of sea water are critical at distances and depths greater
than 10 meters. For that reason, it is important to select an
appropriate color space to achieve an effortlessly underwater
image enhancement. We use the CIE 𝐿𝑎𝑏 color space.

The most relevant regions can be found by selecting
the location with the highest value in the saliency map. In
a sequence of underwater images of the same scene, it is
common that the location associatedwith the highest value of
saliency changes drastically from one frame to the next. This
is due to the variations in the illumination and/or local water
conditions. Thus, if the location of the region of interest in
the image domain is going to lead the motion of the vehicle
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Figure 6: A general overview of the proposed method for detecting relevant regions.

in the space domain, then a robust tracking of the same or
very similar region (in position and appearance) is crucial to
minimize the erratic motion of the vehicle.

In the following sections, we describe in more detail
each of the steps involved in our visual attention model. In
Figure 6, a general overview of the proposed method for
detecting relevant regions is depicted.

3.1. Preprocessing of the Image. The input image is scaled to
a proper size (typically 0.25 of the original size). Then, the
image is converted to the CIELab color space. In Section 2.3
some advantages of this color space as well as some examples
can be found.

3.2. Getting the Features Maps. We use intensity and color
(red, yellow, green, and blue) as features. The intensity map
corresponds to 𝐿-channel of the CIELab image. The colors

are extracted from 𝑎 and 𝑏 channels, as described in [25], as
follows:

F
𝑖
(𝑥, 𝑦) = 𝑉max −

󵄩󵄩󵄩󵄩𝑎𝑏 (𝑥, 𝑦) − 𝑝
󵄩󵄩󵄩󵄩 , (1)

where 𝐹
𝑖
(𝑥, 𝑦) is ith feature map, 𝑉max = 255 in 8-bit depth

images, 𝑝 = (𝑎
𝑑
, 𝑏
𝑑
) is the desired color to extract in terms

of the chromatic channels, and 𝑎𝑏(𝑥, 𝑦) is the 𝑎𝑏-channel of
the image. The color feature maps are gray-scale images in
which the intensity indicates how near is the desired color to
the original color of the pixel. We do not use the orientation
feature in our model, as it mainly works well in structured
environments (e.g., man-made environments).

3.3. Getting the Conspicuity Maps. The conspicuity map is a
gray-scale image where themost relevant regions (in terms of
a feature) appear brighter than other regions.The first step to
calculate these maps is to build a Gaussian pyramid for each
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Figure 7: Example of the saliency map obtained from an underwater image.

feature. A Gaussian pyramid is built by applying a Gaussian
filter and then downsampling the image in half. If we apply
this process again to the resulting image, we can construct the
other levels of the pyramid. The number of levels used in the
pyramid depends on the size of the input image and the size of
the relevant regions to be found. Bigger regions require more
level in the pyramid to be effectively detected.We use a 5-level
pyramid: that is, five scales 𝑠

𝑚
= {1, 0.5, 0.25, 0.125, 0.0625}.

An important aspect to consider in any computational
visual attention system is highlighting the relevant part for
each feature map. This is usually done by using a center-
surroundmechanism (also called center-surround difference),
which is inspired in cells of the human visual receptive field
[26]. In our approach, these differences are implemented
as convolution. Let P(𝑑) be the image in the level 𝑑 of
the pyramid for a given feature, then the center-surround
differences are applied as follows:

P󸀠 (𝑑, 𝜎) = P (𝑑) − K (𝜎) ∗ P (𝑑) ,

K (𝜎) = 1

(2𝜎 + 1)
2
− 1

[
[
[
[

[

1 ⋅ ⋅ ⋅ 1

.

.

. 0
.
.
.

1 ⋅ ⋅ ⋅ 1

]
]
]
]

](2𝜎+1)×(2𝜎+1)

,

(2)

where 𝜎 defines the size of the mask and ∗ is the convolution
operator between an image and the mask. For each level of
the pyramid two maps are obtained, P󸀠(𝑑, 3) and P󸀠(𝑑, 4).

The resulting images from the application of the center-
surround differences are resized to 0.25 of the size of the
original image. After that, all the images from the same
feature pyramid are added to a single image C, called
conspicuity map.

It is important to note that, contrary to [12, 25], in which
the created conspicuity map involves all colors, we calculate
a conspicuity map for each of the color features. This allows

us, in the posterior stages, to indicate which colors have more
relevance during the exploration.

3.4. Getting the Saliency Map. The saliency map is a gray-
scale image, in which the most relevant parts appear brighter.
To obtain this map, a Difference of Gaussians (DoG) is
applied to each conspicuity map. After that, a weighted sum
of the resulting maps (normalized in the range [0, 1]) is
computed. Formally, the saliencymap is calculated as follows:

S = ∑
𝑖

𝑤
𝑖
⋅ DoG (C

𝑖
) , (3)

where index 𝑖 represents each of the conspicuity maps
obtained from each feature. By assigning different weight
values𝑤

𝑖
to eachmap, we can give a preference to a particular

color tonality. The weighted sum can be seen as a simple
way to incorporate a top-down attention. Unlike VOCUS, in
which a training image containing the object to search is used,
our model does not need images of a particular object. In
any case, we just need to have some information about the
possible dominant color of an object of interest. An example
of a saliency map can be seen in Figure 7.

3.5. Searching of Relevant Points. Once the saliency map is
calculated, a search for 𝑞 more relevant points or regions
of interest (RoI) is carried on. As in VOCUS, a sequential
search of the highest values over all image pixels is done.
Also, to avoid repeating the location of points, we apply an
inhibition of return approach.This way, the area surrounding
each of the relevant points is inhibited and the next relevant
point will be far from the previous one, allowing for a sparse
distribution of relevant regions. Figure 8 shows an example
of the RoIs detected in an image. Unlike our previous work
[3, 4] where a fixed area around a given point is inhibited, in
this work a Seeded Region Growing method [27] is used over
the saliency map to determine a circle that encloses the area
to be inhibited.
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Figure 8: Example of relevant regions detected (enclosed by red circles) in an underwater scene.

3.6. Superpixel-Based Descriptors for Tracking of Relevant
Regions. From the set of regions of interest detected with the
AVA algorithm, the Focus of Attention (FoA) is the one with
the highest value. Thus, the FoA represents the region that
caught the attention the most in an underwater scene.

For some applications, once a FoA is selected, it is
important to keep track of it in the following images in
a sequence. As our purpose is to explore an underwater
environment, our AVAmodelmust keep track of the same (or
very similar) FoA in subsequent frames as much as possible,
if and only if this region is still among the most relevant ones.
We are interested in this behavior because it will lead the
actions of a robot during an exploration task. Having abrupt
changes of the FoA’s location from one frame to the next one
may cause an erratic motion.

To track a region or a point in an image, a descriptor is
needed. We propose to use a superpixel-based descriptor. A
particular advantage that superpixels offer is that they adapt
their shape to enclose similar characteristics of a region, in
terms of color and position. Thus, if we associate with each
relevant region to be tracked the superpixel characteristics
they belong to, we are assuring a local robust description.

The procedure is as follows.The input image is segmented
in 𝑀 superpixels using the SLIC algorithm [28] with𝑀 ≪

𝑁, where 𝑁 the number of pixels in the input image.
Each superpixel is a set of pixels with similar features and
it is characterized by a 5-dimensional vector of the form
[𝐿
𝑠
, 𝑎
𝑠
, 𝑏
𝑠
, 𝑥
𝑠
, 𝑦
𝑠
], where 𝐿, 𝑎, 𝑏 are the mean color values of

the pixels belonging to a given superpixel in the CIELab
color space and (𝑥

𝑠
, 𝑦
𝑠
) is the centroid of the superpixel.

A relevant region is described by the vector s composed
from the components 𝑎

𝑠
, 𝑏
𝑠
, 𝑥
𝑠
, and 𝑦

𝑠
from the superpixels

it belongs to. It can be noted that 𝐿
𝑠
component is not

taken into account because the illumination in this kind of
environments can change from frame to frame.

Once we have the descriptors for each of 𝑞most relevant
regions, we choose the closest one (the most similar) to
the descriptor of the FoA from the previous frame. The
chosen region becomes the FoA of the current frame. The
distance (similarity) measure between two superpixel-based
descriptors, s

𝑗
and s
𝑘
, is based on the SSD metric as in [28],

without the luminance part:

𝐷(s
𝑗
, s
𝑘
) = √(

𝑑
𝑐

𝑁
𝑐

)

2

+ (
𝑑
𝑠

𝑁
𝑠

)

2

, (4)

where

𝑑
𝑐
= √(𝑎

𝑗
− 𝑎
𝑘
)
2

+ (𝑏
𝑗
− 𝑏
𝑘
)
2

,

𝑑
𝑠
= √(𝑥

𝑗
− 𝑥
𝑘
)
2

+ (𝑦
𝑗
− 𝑦
𝑘
)
2

,

(5)

where𝑁
𝑐
and𝑁

𝑠
are normalization factors for the distance in

the color and image space, respectively. These values were set
as described in [29].

Figure 9 illustrates the use of superpixels to achieve a
stable tracking of similar FoAs in a region of interest. If the
distance from the closest saliency descriptor to the previous
FoA descriptor is greater than a defined threshold 𝜇, the
distances are ignored and the point with the highest saliency
value is chosen as the new FoA.

4. Experimental Results

In this section, we present the experimental results to val-
idated the parts of the proposed approach. First, we show
the outcome of the comparison of detected relevant regions
by humans and the proposed system. Then we compare
the relevant regions detected by our approach (AVA) and
the Neuromorphic Visual Toolkit (NVT) [12]. After that, a
comparison in terms of tracking is shown. Finally, we present
the outcome of using the proposed approach to guide the
motion of an underwater robot in an exploration task.

4.1. Relevant Regions Detected by Humans. A comparison
between the regions considered as relevant by a group of
people and by the proposed approach is presented. The
purpose of this experiment is to show that our visual attention
algorithm is able to detect regions that have the potential
to draw the attention of a human. Thus, the AUV can
autonomously explore the underwater environment in terms
of what a human could consider relevant.

We asked 32 people (16 men and 16 women between
20 and 30 years of age with no experience in coral reefs) to
select (by clicking on the screen) the region that attracts their
attention the most in a set of underwater images containing
various scenes of coral reef. Then, we applied our algorithm
on the same set of images. Two regions are considered
coincident if their circles of radius 𝑟 centered at the relevant
region present an overlapping greater than 80%. Figure 10
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Figure 10: Regions of interest (RoI) detected by our method and
the percentage of coincidence made by a group of 32 people. Each
column shows patches containing the five most relevant regions
detected by our system in the corresponding image. More than half
of the group choose as relevant at least one of the areas detected with
our visual attention system.

depicts the obtained results. Each row of the array of images
in the figure contains the five most relevant regions detected
by AVA and the percentage of people that considered the
same region as relevant.

In the presented results, more than half of the group
choose as relevant at least one of the areas detected with our
visual attention system. This study shows us that our model
approximates the way a person will select regions of interest
in coral reefs environments. This is important since we want
our robot to explore the coral reef as a diver visiting it for the
first time.

4.2. Comparison of Detected Regions. In order to measure the
performance of our method in terms of detecting relevant
regions on underwater scenes, we carried on an analytical

comparison of our results with those obtained using the
NVT method [12]. This method was used as implemented
in the Saliency Tool Box (STB) (the STB can be found
in http://www.saliencytoolbox.net/) [30]. For the STB, the
default configuration was used. The features used by our
algorithm are the intensity and color (red, green, yellow,
and blue). For our method, we set the weights of all the
conspicuity maps equal to 1.

For this study,weneed to determine if the relevant regions
detected by the computational attention methods can be
considered of interest for a human. This can be done by
using a person’s judgement. However, this criterion can be
very subjective and time consuming for a large set of images.
We decided to simplify the evaluation and assumed that the
interesting regions should appear on parts of the coral reef:
that is, the areas that visually correspond only to water are
not considered of interest. First, to divide the image intowater
and nonwater regions, we applied an adapted version of the
robust superpixel-based classifier proposed in [31].

This classifier is used to segment the floor in indoor
environments for mobile robot reactive navigation. We have
adapted this classifier so it can segment water instead. One of
the advantages is that it can be trained online with the current
water conditions, and once it is running, it can automatically
adapt to possible changes in tonality. All this makes the
classifier quite robust. A classification example is depicted in
Figure 11.

To perform the comparison test, both algorithms were
set to detect the five most relevant regions on each of the
1550 frames in six video sequences. The videos contain a
great variety of water conditions, depths, and scenarios of
the coral reef of Costa Maya, Mexico. It is important to
mention that many of the images in the sequence present
challenging situations, for example, high brightness from the
sun, bluish and greenish tonalities in case of images taken
at deeper locations, and blurriness due to camera motion.
All the detected regions that fell into the nonwater area were
counted as relevant. In Table 1, the results obtained are shown.
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Blue dots indicate the regions
classified as water

classified as nonwaterregion detected by the algorithm. The 

regions
yellow circles enclose the other relevant

Cyan circles indicate the most relevant Red dots indicate the regions

Figure 11: Example of a classification of water (blue dots superpixels) and nonwater (red dots superpixels) regions. Also in this image, five
relevant regions detected by our visual attention algorithm are shown. The most relevant region is enclosed in a cyan circle whereas the rest
are enclosed in yellow circles.

It can be seen that the percentage of regions detected as
interesting by our method is greater than the percentage
when using NVT. Let us not forget that these results are over
the five most relevant regions detected by both algorithms.
We carried on another test, in which only the first most
relevant regions were considered. If this relevant region was
considered as interesting then it was counted as correct.
Table 2 shows the percentages of the interesting regions for
the two algorithms for comparison purposes. Although the
proposed algorithm percentage is higher than the NVT, the
difference is minimal. For this case, however, we have noted
(by visually inspecting the detected regions) that many of the
relevant points detected by the NVT method were on areas
containing only sand or rock formations of brown or black
color, which are not considered of interest in an exploration
task.

In Figure 12, some images from the video sequences with
the relevant regions detected by the algorithms are shown.
Qualitatively, in terms of relevance, it can be seen that some
of the regions detected by the NVT algorithm are on water or
on irrelevant parts like sand or shadows. Also, it can be noted,
in the sixth row of both figures, that the regions detected by
our algorithm tend to be in the coral reef despite of the abrupt
illumination changes due to the sun.

As was shown in Tables 1 and 2, the detected regions
by our algorithm tend to be part of the coral reef in more
occasions than the detected regions by the NVT algorithm.
The difference is notorious when the five most relevant
regions were counted. This fact could be useful when we
want to lead an autonomous robotic exploration to gather
video-observations of this kind of environments (coral reefs),
because if more regions are detected in the coral reef then the
autonomous agent will go to that place instead of moving to
a zone where there is only water.

Table 1: Comparison of the five most relevant regions detected as
relevant or interesting (nonwater regions) by using the NVT and the
proposedmethod. In the last row the total number of images and the
average of the percentage of detected relevant regions are specified.

Seq. Frames Depth [m]
% of

interesting
regions
(NVT)

% of
interesting
regions
(AVA)

1 168 7.7 75.20 95.85
2 243 7.8 66.91 95.80
3 153 7.8 83.00 99.60
4 181 11.8 57.79 92.15
5 163 7.1 74.47 98.28
6 242 11.3 59.92 90.76

1150 69.04 94.90

4.3. Tracking of Relevant Regions. In this section, a compar-
ison between the tracking of a region by using the super-
pixel descriptors and a keypoint-based descriptor is done.
As keypoint detector and descriptor we have used SURF
[15], SIFT [16], and ORB [32]. The implementation of the
descriptors is the one available on OpenCV. To find the
correspondence between keypoints we have use a robust
matcher which is available in [33]. The keypoint descriptors
and detectors are used with default configuration. For AVA,
the yellow and red features have preference through the
weights.

For this test, we evaluate the length of tracking, that
is, the number of consecutive frames that a given region is
tracked in a sequence of images. The region to be tracked
is the most relevant as considered by the proposed visual
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Figure 12: Some of regions detected as interesting by our visual attention algorithm and the NVT. The videos sequences were taken
approximately between 7.5m and 11m of depth.
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Table 2: Comparison of the most relevant region detected as
relevant (nonwater regions) by using the NVT and the proposed
method. In the last row the total number of images and the average
of the percentage of detected relevant regions are specified.

Seq. Frames Depth [m] % of relevant
region (NVT)

% of relevant
region (AVA)

1 168 7.7 90.47 91.07
2 243 7.8 94.23 95.06
3 153 7.8 99.34 100
4 181 11.8 88.39 95.5
5 163 7.1 95.02 98.15
6 242 11.3 87.02 91.60

1150 92.41 95.23

Table 3: Tracking length comparison of SURF, SIFT, and ORB
against the proposed approach.

Tracker
Processing
time per
frame

Tracking
length

SURF 227.8ms 64.67%
SIFT 258.6ms 74.35%
ORB 13.6ms 32.65%

attention algorithm. The image sequences are taken from
different videos recorded by a diver while exploring a coral
reef.

It is important to remark that the complexity of the AVA
algorithm is 𝑂(𝑁), where 𝑁 is the total number of pixels
in the image. The average processing time, in a 2.1 GHz
dual-core processor, for an image of 480 × 270 is 122ms. A
total of 8545 images comprises the sequences used in this
test.

In Table 3, the average percentages of length of track-
ing between the proposed method and the keypoint-based
trackers and the average processing times are shown. The
percentage indicates how a long keypoint-based method’s
tracking length is in comparison with the AVA tracking
length. For example, the tracking length of the SIFT-based
tracker is 74.3% of the AVA tracking length. We have nor-
malized all the percentages with respect to the AVA tracking
length because it was themethod that gets the longer tracking
length.

Although the SIFT-based tracker is the one with almost
the same tracking length as AVA, it is approximately twice
slower. The faster tracker is the one based on ORB; how-
ever, it is also the one with the smallest tracking length.
From the results of Table 3, it can be noted that the pro-
posed approach outperforms the other methods when track-
ing regions in underwater environments, particularly coral
reefs.

With respect to the processing time, our method can
process in average 8 frames of size 480 × 270 per second. It is
important to consider that the current implementation of our

method is not yet optimized in terms of software. However,
we have found that the current processing frame rate can
be good enough to work when exploring an underwater
environment because this task tends to be executed with slow
motions of the AUV.

From the presented results, it can be remarked that the
proposed method can detect and track regions that are likely
to draw the attention of humans in coral reefs.Thismakes our
approach suitable for using it to guide an exploration in terms
of regions of potential interest for humans.

4.4. Field Trials. For experimental tests we use an amphibi-
ous robot namedMexibot of the AQUA family [34]. In water,
the robot’s propulsion is based on six fins that can provide
motion in 5 degrees of freedom up to depths near 35 meters.
Mexibot’s medium size (60 × 45 × 12 cm) allows for easy
maneuverability, which is important in the time response
on the robot’s control, when navigating with the purpose of
closely monitoring an unstructured environment.

All the trials were performed in an area that belongs to
the second largest coral reef system, located in Costa Maya,
Mexico. The coral reef ecosystem in this zone has a wide
diversity of living organisms (flora and fauna) with a great
variety in colors. It also has variable conditions in terms of
depth and visibility.Weperformed the experiments in a depth
range from 5 to 18m.

During the field trials several exploration tests were per-
formed. Most of the tests were set to a two-minute duration
as we needed to verify their performance under different
conditions. In Figure 13, the results from an exploration are
shown.During this test theAUVwas programmed to turn 90∘
around its 𝑍 axis every certain time. This had two purposes:
the first one is for safety, to avoid a possible collision between
the robot and the coral reef. In the moment of the tests
the AUV did not have an implemented method for collision
avoidance. The second purpose is for testing the capabilities
of the proposed approach to detect and track new regions.
This way the AUV should detect and track a different region
every certain time.

It can be seen in Figure 13 that the AUV effectively
changes its yaw angle in order to track the region detected
by the visual attention algorithm. The boxes in Figures 13(a)
and 13(b) enclose the period during which the same RoI was
tracked by the AUV. It can be seen that these regions were
followed during several seconds by the AUV until before
the 90∘ turn. These results show that the proposed approach
can be used to guide the motion of a AUV for exploring an
unknown environment.

5. Conclusions and Future Work

We have presented ongoing research on the detection and
tracking of invariant features that are considered relevant
during the exploration of a coral reef habitat. The main
goal is to perform an autonomous cautious exploration and
gather high quality image data with a robotic system that
could be directly deployed into the environment, with few or
no prior information of it. It is important to highlight that



14 Journal of Sensors
X

-c
oo

rd
in

at
e (

px
)

Time (s)
0 10 20 30 40 50 60 70

RoI X-coordinate

X-coordinate

−1.0

−0.5

0.0

0.5

1.0

1 2

3
4

5

6

(a) 𝑋-coordinate of the current tracked region
A

ng
le

 (d
eg

.)

Time (s)
0 10 20 30 40 50 60 70

Yaw angle

Yaw
Desired yaw

1

2

3

4

5 6

−200

−150

−100

−50

0

50

(b) AUV’s yaw angle and the desired yaw

1

2

3
4

5 6

(c) Examples of the tracked regions during the test

Figure 13: Obtained results during a field trial in a coral reef. In (a) and (b) we can observe the𝑋-coordinate of the region of interest as well
as the yaw angle of the AUV, respectively. In (c) images from the tracked RoI can be seen.

the system is trained to adapt itself to the local water and
illumination conditions in an online manner. The integrated
framework is fast enough to perform the exploration while
fitting to the control navigation requirements of the system.
Future research will focus on the incorporation of a notion
of forward movement to estimate how far the robot is from
a certain region as well as adding texture information on the

detection of regions of interest in order to reduce errors in the
selection of relevant regions (e.g., sand or rock regions are not
of interest for exploration).
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