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In Wireless Sensor Networks (WSNs), Context Awareness is typically realized through Context Aware Systems (CASs). Although
almost each CAS follows sense-decide-adapt cycle, the notion of context is hardwired into the applications; that is, when an event
is triggered, the sense-decide-actuate cycle runs and performs required actuation. In situations, for instance, whenever the same
event is triggered, the cycle produces the same actuation through mechanical use of the same resources, posing the same processing
and time. In this paper, we propose CRAM, a context added system in which actuations once performed by the system help it to
internally evolve by serving as new contexts. As the system is exposed to more situations overtime, its context repository is enriched
through such retrospective contexts, gradually letting it perform internal actuation through improved introspective contexts. This
internal actuation leads the system towards the evolution of intelligent processing by reducing the independent function of decision
in sense-decide-actuate cycle and merging it with new context. Finally, the system reaches a juncture where recurrence of each event
proves to be a stimulus for the system to respond impulsively, through priming memory of introspective contexts, to achieve an

imitation of learned reflex action resulting into reduced time and energy expenditure.

1. Introduction

Wireless Sensor Networks (WSNs) comprising a large num-
ber of interconnected sensing nodes have been the subject
of intensive research for the last one and half decades. The
growing applications of WSNs in more or less each aspect
of human life have made them the up-to-the-minute topical
research area. The broad canvas of WSNs novel applications
ranges from volcano, glaciers, and aeroground monitoring,
reptile tracking, maritime navigations, and studies of human
anatomy at much larger scale to the surveillance and defense
which conclusively illustrates the omnipresence of WSNs in
human atmosphere. Visual SensorNetworks (VSNs)—special
featured WSNs are the networks of visual devices, mostly
cameras, equipped with enough onboard processing power to
support collaborative image analysis. Being highly diverse in
operations, VSN are integrated with such capabilities where
local processing controls video and image data acquisition,

removes cross-layer correlations, and aggregates such data
to transmit only what is essential. To strike at such optimal
trade-off amongst performance and QoS guarantees amidst
time synchronization, storage capability, and multicamera
collaboration necessitates autonomous reasoning and deci-
sion making in unison in a highly distributed manner.

To achieve such autonomous reasoning, VSNs must be
empowered with visual context awareness. Regardless of the
sensing type, context awareness is the ability of a system,
artifact, or service to be aware of its physical environment
and to respond intelligently. In particular case of VSN,
visual context aware systems augment sensing devices with
such capability that comprehends the user’s real time visual
perception and defines corresponding interactions with its
environs in a particular situation [1]. In order to accomplish
the targeted task, these context aware systems follow a sense-
decide-actuate and adapt cycle in which they acquire the
context, dig out the situation, reason and decide the suitable



actuation, and then adapt to the resulting situation. A context
aware system that has gone through multiple actuations in
response to multiple and even so repeating events does not
learn the pattern of the occurrences of events. It means that
when an event is triggered, it is treated afresh and the system
always responds by executing the sense-decide-actuate cycle
and carries out the requisite task. It is interesting to observe,
however, that for scenarios in which the event is reiterated
the sense-decide-actuate cycle is executed in its entirety once
again. In other words, a context aware system deals with the
same events again and again but it does not have the capability
to establish an association between such recurrences of events
in order to perform adaptation of its internal functionality.
This limitation of context aware systems is exacerbated in
VSNs because the recurrence of a visual event in itself is
always treated as the arrival of a new scene or a video.
Since a context has not been predefined for such recurrence
of visual events as a metaevent, a context aware system
becomes static and performance limited. The same amount
of image processing is replicated at each cooperating node
during each new occurrence of the same event and the
accumulated processing results are considerably higher. This
overprocessing resulting in corresponding time and energy
expenditures can be restricted through the knowledge, that
is, stored context with associated actuation learned by the
system based on its prior encounter with the same event.
This associative learning as a metaevent context helps the
system to respond impulsively against the recurrence of an
event emulating a conditioned reflex arc (reflex arc is the
impulsive response of a biological system that bypasses the
brain through conditioned behavior). Simultaneously, the
actuation once performed by the system helps the system to
internally evolve by acting as a new context. As the system
is exposed to more situations where the same context occurs
over time, its context repository is enriched through such
retrospective contexts, gradually letting it perform internal
actuation through improved introspective contexts which are
learnt-and-stored actuations. Finally, it reaches a juncture
where a new situation demands minimal external actuation,
hence transforming it into a context added system, an ultimate
imitation of an autonomic system.

In this paper, we propose CRAM, a novel cut-through
processing paradigm for contemporary visual context aware
systems. CRAM proposes memory-based visual context
addition through a learnt reflex arc implementation. The
reflex action is realized through a tenon-mortise layered
architecture that uses priming memory to associate prior
experiences with newer contexts. Using an analytical model
and an underlying testbed based on VISTA by Jabbar etal. [2],
we show that CRAM results in significant reduction in image
processing load, provides energy efficiency, and improved
compliance to end-user delay bounds and visual accuracy
requirements.

The organization of this paper is as follows: Section 2
briefly presents the contemporary related work on the field.
Section 3 describes in detail the proposed architecture.
Section 4 deals with the memory hierarchy of CRAM
and its similitude with human memory. Section 5 shows
performance evaluation through simulation based results
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while Section 6 presents an analytical model to validate this
research work. Section 7 concludes the paper.

2. Literature Survey

This section is tetrapartite. The first part presents context and
situation. The second part presents context aware systems in
general and visual context aware systems in particular. The
third part presents building blocks of context aware systems.
And finally the last part explores contemporary applications
of bioinspired reflex arc on computing systems.

2.1. Context and Situation. One of the prime challenges
which have been faced by the researchers is to define the
context and exhibit it as a different expression from situation.
Baldauf et al. [3], Ryan et al. [4], Abowd et al. [5], and
Cheverst et al. [6] refer to context as user’s identity, current
location, environment, and time illustrating an explicitly
non-all-inclusive depiction of context. Dey [7] describes the
context as the user’s focus of attention, emotional state,
date and time, location, and orientation as well as bits-and-
pieces and people in user’s vicinity. It opens up a new omni-
dimensional nature of context where sensing, perception,
and measurement of sentiments and conjecturing the focus
of intention are of elementary concern. Brown [8] defines
context as the elements located in the user’s environment
about which the computer has the information. These sorts
of definitions are often too wide-ranging. Conceivably, the
most often used definition has been offered by Abowd et al.
[9]. These authors refer to the context as “any information
that can be used to characterize the situation of entities (i.e.,
a person, place, or object) that are considered relevant to
the interaction between a user and an application including
the user and application themselves.” It is generally agreed
upon that no single definition of the context even in the
contemporary research has been reached. Hull et al. [10]
attempt to establish relationship between the context and
situation with the former being the characteristics of the
latter. Since the concept of situation is very closely related
to the notion of context, various authors have continued to
relate the two of them. Zimmermann et al. [11] suggest that
situation can be taken as an instantaneous and structured
representation of a part of the context which may be directly
compared with the snapshot taken by a camera. Loke [12]
remarks that the situation can be viewed as being at a higher
level of abstraction than context. Baker et al. [13] describe the
situation as “the complete state of universe at an instance of
time.” Other studies state that sensors can be used to capture
the context and construct high level context models of part
of the real world. These models can further be used for the
recognition of situation and its corresponding reasoning.

2.2. Context Awareness and Context Aware Systems. With
a background of user’s increasing expectations from its
environment to adapt to itself, context aware systems have
emerged as powerful means to synergize context generat-
ing sensors, wireless networks, and the consequent context
utilization. From an interactive perspective, as mentioned
by Schmidt [14], context aware systems show either of the



Journal of Sensors

()
FIGURE I: (a) Context based building blocks of CAS. (b) Conceptual building blocks of CAS.

two behaviors, adaptive or proactive. Adaptive CASs act on
behalf of users, try to adapt to user’s context, and are often
single trigger based, while, on the other hand, proactive
CASs require user’s involvement and interaction as they are
multitriggered. From an architectural perspective, the CASs
can be standalone, centralized, or distributed. Standalone
architecture is the simplest and easily deployable but it does
not allow internode sharing of context limiting it only for
small domain specific applications. In centralized systems,
the whole range of sensors and devices is connected to
a context server equipped with necessary computing and
storage capacity making it simple to add and exchange
context offering devices. Chatterjea et al. and Jin and Li
[15, 16] propose that while being a single point of failure,
the centralized approach is particularly not suited for CASs
because the delay involved in context update might change
the context itself at the source, whereas Zafeiropoulos et al.
[17] take the view that distributed systems offer to use locality-
based context acquisition and processing. A comprehensive
classification has also been performed by Zontar et al. [18] on
the basis of such kinds of architecture.

2.3. Building Blocks of Context Aware Systems. A CAS is a
complex system that is often defined and composed to meet
the desired level of context processing. Usually, context as
the pivotal information is the main emphasis of CASs for
acquisition, modeling, reasoning, and dissemination. What
differs in various approaches is the operational flow and
extent of these.

Perera et al. [19] present a cyclic pathway to traverse
the context based hierarchy of the building blocks as illus-
trated in Figure 1(a). Context can be acquired through a
diversity of sources. These sources include physical, virtual,
and logical sensors. Physical sensors are tangible sources for
context acquisition which provide low-level context which
is raw, less meaningful, and noisy. Virtual sensors are not
direct resources of context but they retrieve diverse types
of data from different sources (e.g., phone directories, social
websites, profiles, and databases) and publish it in the form of
context. The logical sensors (software sensors) combine the
physical and virtual sensors to produce high level and more

Context dissemination

Context reasoning
Context modeling

Context acquisition

(®)

meaningful context (e.g., weather forecasting web service
combines data from temperature, humidity, and wind sensors
and corresponding weather maps and seasonal calendars to
produce the weather information). Context modeling is the
process of defining the context in terms of its characteristics,
aspects, quality, and interrelationship with previous contexts
and with the set of queries it corresponds to. Context
reasoning includes preprocessing, fusion, and inference of
context. It handles imperfection and uncertainty of raw data
in order to deduce information and in best cases knowledge
as high level context [20]. Finally, context dissemination or
distribution is its propagation to other entities.

A number of researchers [13, 21, 22] have followed a
layered approach to elaborate the fundamental elements of
CASs as shown in Figure 1(b). The primary processes of
context acquisition, modeling, and reasoning have jointly
been incorporated in context and its semantic layers. Context
and situation work in cohesion to realize context awareness.
Finally, situation as high level context is disseminated for
realizing context awareness through actuation layer.

Based upon the above discussed hierarchy, the following
CASs are presented. Chen et al. [23] present Context Broker
Architecture (CoBrA) to support context aware systems
in smart and active spaces. CoBrA maintains a model of
current context as repository of knowledge shared amongst
all the components of the same smart place. The coupling
of this shared model with reasoning provides the presence
of a user in the smart meeting room. Roman et al. [24]
come up with a metaoperating GAIA to support the devel-
opment and execution of portable applications for active
spaces. It implements Context File System (CFS) which uses
modeling and reasoning by federating application-defined
properties and environmental context information to realize
active spaces. MobiLife [25] follows similar conceptual frame
work to realize context aware platform to contact anyone,
anytime and anywhere. SPICE [26] demonstrates a tetralay-
ered architecture including a specific layer that they term
knowledge layer providing rich set of mechanisms for con-
text acquisition and knowledge processing. Knowledge layer
ensures realization of context aware services by making this
knowledge available. Open Platform for User-Centric Service



Creation and Execution (OPUCE) [27] emphasizes designing
an architecture based on context cycle for integration of
communication features in social networking applications
and to realize interoperation of Telco-IT applications in a
seamless event-driven way. Lamorte et al. [28] demonstrate
a similar kind of platform for enabling context awareness
in telecommunication services. Baker et al. [13] elaborate
the mapping of context life cycle in actual conceptualization
of context based situation, perception, decision, actuation,
and adaptation process. They further discuss the role of
context awareness and CASs based on this hierarchy in future
Internet to realize the intelligent society and to address its
implications. Barrenechea et al. [29] come forward with a
context aware and adaptive approach in distributed event-
based systems to model and implement context aware proac-
tive applications involving the combination of context and
distributed events. Perera et al. [19] present an IoT paradigm-
based detailed analysis of CASs and underscore that each
context aware system follows a sense-decide-actuate cycle.

2.4. Context Aware Systems and Bioinspired Reflex Arc. It is
intuitive to note that there may exist an analogy between
context aware systems and reflex actions that are involuntary
and automatic responses of living organisms provoked by
a sensory stimulus. Although the idea has started to gain
strength, there is no contemporary work to the best of our
knowledge that truly tries to emulate natural reflex arc in
entirety. A recent research project titled “reflex-tree” [30]
tries to implement reflex arc for gas pipeline maintenance
in urban environments. The authors present a four-tier
hierarchy each being part of the reflex arc. The paper however
falls short of elaborating how exactly this reflex arc mimics
the natural reflex arc. They do not shed any light on the
nature of biological reflex arcs if theirs is instinctive or learned.
A deep insight into various studies [31-33] on human and
animals provides converging evidence for the existence of
two foremost genera of reflexes in human beings: firstly,
inborn or intrinsic reflexes which execute their required
functions without underlying foundations of memory or
prior experience, and these instinctive reflexes are never
learned by the subject consciously or unconsciously, and,
secondly, learned or conditioned reflexes, which carry out
their requisite operations on the basis of some preceding
experience or on the basis of the information items stored
in the nondeclarative or implicit unconscious portion of the
memory. This specific portion of implicit memory serves as
the priming memory in which the store is “primed” through
repetition of experiences. This primed store helps them to
respond very promptly.

On the basis of a thorough review of above-cited liter-
ature, our corresponding intuition about context aware sys-
tems as sense-decide-actuate cycle, and associative learning-
based conditioned reflex action, we conclude the following:

(1) Each CAS operates through a sense-decide-actuate
cycle in which the actuation once performed by
the system against a specific event does not help
the system to treat the reappearance of the same
event intelligently through on-the-fly metacontext.
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Consequently, CAS executes the same cycle to gain
the same actuation resulting in suboptimal perfor-
mance leading to corresponding time and energy
expenditures.

(2) In contemporary CAS, there is no such mechanism
that supports retention and recollection of actuations
performed thus far. This limitation restricts the sys-
tem to adopt the self-associative learning ability and
therefore cannot react reflexively in case of recurrence
of an event.

In this paper, we propose CRAM, a novel cut-through
processing paradigm for contemporary visual context aware
systems. CRAM provides a cohesive approach to integrate
visual context addition and associative learning-based con-
ditioned reflex action to reduce visual context processing
so as to evolve CAS into the autonomic state of minimalist
actuation. The reflex action is physically realized through
supplementation of a memory module into CAS that gets
primed every time an event occurs. Both context addition
and conditioned reflex implemented as an overlay on CAS
result in the reduction of node and network-level image
processing, increased network-wide energy efficiency, and
delay cutbacks.

3. CRAM Architecture

In this section, we present conceptualized behavior based
upon context addition and reflex arc that forms the basis of
the architecture subsequently presented. The layered imple-
mentation of the architecture through tenon-mortise is then
given.

3.1. Conceptualized Behavior. The envisaged behavior of four
layers of CASs is shown in Figure 2.

CRAM provides mobile object (MO) detection, tracking,
and recognition mechanism through a distributed context
added system. The sensing layer being the first and the lowest
layer is comprised of pertinent sensing devices. Sensing
process takes place whenever a MO is detected. The sensing
process always occurs at every node in entirety and it does
not undergo any change over time. However, the behavior of
other layers changes over time as per Figure 2.

The processing layer that typically implements context
semantics in traditional CASs changes its behavior in CRAM
with the incorporation of context addition. When MO is
detected at the first node, its context is processed in entirety.
As MO moves on to the subsequent node in its trajectory,
context processing starts to reduce. It is due to the fact that
the actuation performed by each predecessor node serves as
a metacontext to its successor. The processing and decision-
making gradually reach asymptotic minima.

Over time, the corresponding actuation once performed
by the system helps the system to internally evolve by serving
as a new context. As the system is exposed to more situations
in due course of time including recurrence of events, its
context repository is enriched through such retrospective
contexts, gradually letting it perform internal actuation
through improved introspective contexts. Finally, it reaches
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of CRAM that realizes context addition and reflex arc through
cross-layer modules.

3.2.1. Camera Deployment and Mobility Model. We formulate
the following assumptions for the realization of tenon-
mortise layered model:

(i) The blueprint of Rol is predefined in which each
external or edge node (EN) is equipped with sonar
and camera while each inner node (IN) is provided
with camera only.

(ii) All SNs have preprogrammed locations in Rol such
that each node is aware of its location and the relative
locations of each of its one-hop neighbors.

(iii) All internal nodes have the same computational and
memory resources. The external nodes have been
provided with an additional memory module that
serves as priming (imitation).

(iv) ENs exhibit three states based upon energy con-
sumption with regard to sonar, camera, timer, and
transceiver operations as shown in Table 1, while INs
exhibit two states of activation with respect to camera,
timer, and transceiver as depicted in Table 2.

(v) The fields of view of EN sonar and camera are
calibrated to be exactly the same.

Since we present a mobile object detection, tracking, and
recognition system, it is important to lay out the physical
deployment of sonars and cameras and consequent mobility
considerations. As MO mobility is constrained to the road
segments only (Figure 3), we find Manhattan mobility model
as the most suitable one for MO in Rol.

CRAM is comprised of two sensor node stratums. The
outer stratum consists of two layers of ENs. The twofold
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edge node hierarchy is deployed to assure the detection
and recognition of intruding MO in a reliable and energy-
efficient manner. The operation of sonars in sets of duo with
overlapping (FoV) is presented to ensure coverage while the
operation of sonars in triplets achieves energy efficiency.

Considerations for Camera Deployment of ENs. For the length
of each side of exterior layer as L, the total number of nodes
Nj, each with Field of View (FoV) of width W, required to
cover is given by N, = L,/W, and the total number of ENs
required to secure the complete perimeter = 4N].

Similarly, for interior layer, N, L,/W,. The total
number of ENs required to secure the complete perimeter =
4N,.

It is obvious that FoVs of W, = 2W, = N, =N, -1 =
N, =N, +1.

Considerations for Camera Deployments of INs. In order to
detect and track MOs that follow Manhattan model, two types
of INs are deployed. The first type of nodes are cameras nodes
which are deployed in such a way that each camera covers
“n” number of horizontal road segments and “m” number of
vertical road segments in Rol. For instance, as in Figure 3,
visual coverage of IN_1 is three horizontal road segments
RS_H4, RS_H5, and RS_H6. Similarly, IN_8 provides visual
coverage of RS_V7, RS_V8, and RS_V9. These road segments
all together form rows and columns across Rol as a grid-
like structure. The total number of INs required to provide
complete Rol coverage is given as (IN):

(IN)r = (R-1)+(C-1), @
where R is the total number of rows and C is the total number
of columns.

The second type of INs is Carrefour nodes that are
deployed at the Carrefour (Carrefour is French word for
intersection). Carrefour nodes provide coverage for MOs
approaching or departing an intersection of four road seg-
ments. The total number of Carrefour cameras required to
cover whole Rol can be given as

(IN), = (R-2)(C-2). 2)

3.2.2. 'The Layered Architecture. We present tenon-mortise
modules as the realization of the implementation architecture
of CRAM based upon cross-layered approach as shown in
Figure 4.

Physical layer deals with necessary hardware infrastruc-
ture and provides signaling information to the network and
processing layers using sonar and timer and shuttered-in
frames through cameras. The network layer is just above the
physical layer. It implements sonar and timer modules to
manage sensing, sleeping, and synchronization operations.
It also manages the transceiver through routing decision
modules. Memory management module at the network layer
allows the management of memory either at the same SN
or amongst a set of SNs. Image processing layer, being
the highest layer, performs image detection, recognition,
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and tracking through an interplay of database management,
image processing, and routing decision operations.

Physical Layer. The physical deployment of hardware devices
such as sonar, timer, camera, and transceiver is defined at
physical layer:

(i) ENs monitor the existence of an intruding MO
through sonar. Consequently, cameras are only acti-
vated after sonars have detected MO.

(ii) Timers are used to disseminate timing information
for synchronization of image acquisition activity at
neighboring SNs through in-time activation of next
expected nodes.

(iii) The key function of camera is to capture the image of
an intruding MO into Rol. The camera is turned on
just at the arrival of MO in SNs and is turned off soon
after the image acquisition for conserving energy. A
multitude of image processing algorithms are then
applied.

(iv) Memory provides workspace and storage capabilities.
Nonvolatile memory is utilized to store and update
topology tables, silhouette tables, and other types
of prestored information. Volatile memory provides

run-time environment to perform more intelligence-
intensive operations at the upper layers.

(v) Transceivers are used for the transmission and recep-
tion of packetized information messages from upper
layers.

Network Layer. The network layer is comprised of sonar-
sensing, sonar-based sleeping, time synchronization, and
memory management modules. Memory management mod-
ule manages the CRAM memory hierarchy with a prime
focus to deal with the explicit and implicit memory items.
This module ensures the placement of image extracted during
the run-time processing of MO in the priming memory that
further plays the main role in realization of reflex action
(Section 4).

Sonar-sleeping module is incorporated with focus on the
fact that CRAM assumes to have sonars only at ENs. It
becomes improbable to detect MO again in Rol if sonars
fail or laxly do so. In order to provide stronger means of
detection, two layers of sonars are deployed as shown in
Figure 5(a). ENs in both exterior and interior layers are
positioned in such a way that one background node resides
behind and between two foreground ENs forming a triplet
such that FoV of an inner EN is double that of an outer EN
(Figure 5(b)).
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TaBLE 3: CRAM failure resilience through triplet formation.

Malfunctioning triplet Triplet nodes Failing nodes Alternatively working nodes
1 1,2, A lor2orland2or A 2,Aorl,AorAorl,?2
2 2,3, B 2or3or2and3orB 3,Bor2,BorBor2,3
3 3,4,C 3ord4or3and4orC 4,Cor3,CorCor3,4
4 4,5,D 4or5or4and5orD 5, Dor4,DorDor4,5
5 56, E 5or6or5and6or E 6,Eor5 EorEor5,6

Such triplet formation results in improvements in fault
tolerance and failure resilience. For example, when one triplet
fails, two neighboring triplets automatically provide alternate
coverage. In order to ensure this coverage, intersonar dis-
tances of background ENs follow the following well-known
solid angle relationship:

L,= d191’
L,= d292, (3)
L,=d,0,.

AsL, =2L,orL, =2L,,d, = 2d, or d, = 2d, such that
when IN is on, its coverage should be equal to the coverage of
two ENs.

For power consumption analysis, we suppose that the
number of ENs at each layer of outer layer is # (as for very
large networks n = n + 1). If p is the amount of power
consumed by each node, the average power consumed by
outer stratum exterior layer is Py, = np.

Since in each triplet one background node operates
against two foreground nodes, the total number of ENs at
interior layer for corresponding #n nodes of exterior layer
in triplets must be n/2. Now if p is the amount of power
consumed by each node, then the total amount of power
consumed by all nodes of triplets at interior layer can be given
as P = (n/2)p.

If the distance between inner ENs is doubled (requisite for
a triplet), the power consumption becomes fourfold. Then,
the above relation can be modified as P, = (n/2)4p =
Py« = 2np. And, finally, if the average power consumed by
two layers in triplet form is Py, then it can be demonstrated
by the following relation: P,y = (Pgg + Pip)/2 = Pyyg =
(np + 2np)/2.

Hence,
PAvg = 1.5np. (4)

So the power consumption difference between nontriplet for-
mat and triplet format is 0.5np. Clearly, the triplet formation
bears a power tax of 0.5np, but this power added levy provides
us with almost complete border breach avoidance system [34]
in which the system performs equally well even if 50% of
nodes fail. Table 3 shows failure resilience of CRAM through
triplet formation.

The power expenditure at ENs can be efficiently managed
through a distributed sleep scheduling among the foreground
and background nodes of the triplet in such a way that if a
foreground EN fails, the background node can be activated

instead. Vice versa, two foreground ENs can be activated in
case of background EN malfunction. The sleeping schedule
among the foreground and background nodes is shared
through SMAC protocol [35] in which background nodes
play the role of synchronizers and foreground ones play the
role of followers in each triplet.

Sonar-sensing module identifies the entrance of the MO
in the Rol after receiving Mobile Object Detected (MOD)
message from sonar. At the deployment time, distance-
based fingerprinting of reflected Received Signal Strength
Indicator (RSSI) is computed and stored as RSSIyyresporn
at each EN. The EN at the boundary of Rol periodically
sends out beacons to sense possible presence of MO. An
EN responds to detection only when the measurement of
received RSSI is greater than that of RSSItyresporp- Upon
reception of an echo to the beacon at exterior layer EN,
the duos of foreground ENs, on the basis of the received
RSSI on both of the duo nodes, communicate with each
other for the selection of an apt EN to kick off the MO
detection job. If the signal is received by the background EN
of the triplet, it proceeds with the task of MO recognition
itself. For assuring that MO is present and is detected in
Rol, we propose that three readings must be taken and
analyzed according to Table 4 before camera activation takes
place.

Unnecessary camera activation is avoided by anticipating
MO trajectory in the network which leads to network
longevity. For instance, if a mobile object approaches a
sonar and then turns back or moves away from its defined
trajectory, no camera is activated. This module, after sensing
the existence of any MO in the Rol, generates MOD message
to activate the next hop IN.

Time Synchronization Module. Each IN sends MO image
related information to next hop IN with an associated local
time of its acquisition which provides time reference for
synchronization [35]. Such synchronization requires accu-
racy and timeliness so that other INs are activated only
and definitely when MO is in this proximity. In order to
realize tightly coupled synchronization of INs timer clocks,
we present Camera-Activation Delay Avoidance Time Syn-
chronization (CADETS) scheme in the time synchronization
module (Figure 6) which is tailored to the unique sequence of
camera activation and image processing. Here, synchroniza-
tion activity is initiated in the relevant section of Rol upon the
detection of MO by the ENs through beacons to successive
INs to update the time information. This time information
is further used by INs as reference to synchronize their time
clocks and those of subsequent INs in their radio ranges well
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TABLE 4: Object movement and EN response.

Sonar reading MO movement EN response
r=r,=1r;=0 MO not present No MO detection by SN
=T, >0, MO present but moving away MO detected but not recognized
Ty >, > 1, MO present but moving away No MO recognition
Ty <1y > 1 MO present, coming close, and now moving away No MO recognition
=T, =1, MO present but standing still MO recognition is performed at that SN
T <Ty=1; Came close and stopped MO recognition is performed at that SN
T >T, <1y Came close, went away, and came close MO recognition is performed at that SN
1 <1y <1y Moving towards and entering Rol MO recognition performed all along its trajectory
=7, <713 Moving towards Rol MO recognition performed all along its trajectory
EN ; TABLE 5: SN positions and camera orientations.
1 2 —
Time sync info MO . SN_ID SN position (cell, SN camera orientation (direction)
At information column/row)
IN_1 L 1) w
IN_2 (1,11) E
IN_3 (12, I10) E
FIGURE 6: Time synchronization through CADETS scheme. (i) Each SN maintains another table in its declarative
memory called silhouette table. This table contains sil-
houettes of probable MOs with their respective iden-
tifiers (IDs), silhouettes aspect ratios with respect to
before image processing module disseminates upper layer their segments, classes assigned to these silhouettes,
messages. octets, views, angles, and sureties defined against
Memory management module particularly manages the these stored silhouettes as shown in Table 6. In
intercommunication of memory module and database man- CRAM, two classes have been assigned to the stored
agement module. One of the main features of this module is silhouettes. Class 1 represents vehicles while class 2
to administer the memory module that consists of declarative corresponds to humans. Each silhouette is segmented
memory in the form of RSSIpyggsporp, topology table, on the basis of its evident number of prominent
silhouette table, and the compressed images that resulted visual features and then aspect ratios are computed
through SICS. The memory module is also included with for each segment of silhouette. This calculation has
nondeclarative memory (priming memory) in the form of been discussed in detail at the end of this section.
priming table comprising aspect ratios of MOs in totality. Octet is an ASCII code assigned to a recognized MO.
Memory management module detailed working has been Angle is the angle of camera with respect to MO while
discussed in Section 4. the view is the angle of MO with respect to camera.
, ) ] Surety represents the percentage match of acquired
Processing Layer. It contains and executes the logical and image with the stored silhouette and for each stored
algorithmic segment of CRAM to deal with the task of silhouette it can be given by the following relation:
object tracking and identification. It consists of database
management module, image processing module, and routing Silhouette surety at observing SN
decision module. The operational contribution of each of
these modules is elaborated below. 0 if no silhovette is present (5)
Database Management Module. A distributed database based % X100 otherwise,
on the regional aspects, application constraints, and require-
ments to correctly detect, track, and recognize the MO has where k is the total number of silhouettes of a single
been deployed over entire Rol. object with different aspects distributed throughout
the Rol.
Database Organization. Consider the following: (iii) The static background image of the stored silhouettes

(i) Each EN maintains a database record in its memory
called topology table to store the neighbor SN’s
positions and their camera orientations. This table

is also stored in the database for the further use in the
image processing procedures.

Database Deployment. Consider the following:

provides the key support in perspective-based mobile (i) Topology table deployment: For successful tracking of

object tracking as shown in Table 5.

MO, each SN is equipped with a topology table which
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TABLE 6: Silhouette table.
D Class Silhouette Silhouette aspect ratios with respect to segments Octet View Angle  Surety
Total segments Aspect ratios
1 . 3 (Segment ID, aspect ratio) Car Front 0 12.5%
0 (vehicles)

2 - 3 (Segment ID, aspect ratio) Bus Back 180 12.5%
3 1 (humans) * 4 (Segment ID, aspect ratio) Human Front 90 25%

TaBLE 7: Topology table for IN_4.

SN position

SN_ID (cell, SN camera orientation (direction)
column/row)

IN3 (12, 110) E

IN_5 (15, V) w

IN_6 (10, VI) E

IN_7 (18, VII) S

IN_8 (19, VIII) N

IN_9 (7, 1X) \

contains all neighboring SN’s positions and orienta-
tions. Table 7 shows the deployment of topology table
at IN_4.

(ii) Deployment of silhouette table: Storage of silhouette

table at each SN depends primarily on its locality.
For instance, IN_1, IN_2, and IN_5 are expected to
cover a solo side of the MO, so one silhouette of
requisite dimension for each expected MO is enough
to be stored in its silhouette table as shown through
Table 8 for IN_2. Conversely, as a Carrefour camera
is positioned to acquire image through its multiple
(sides, front, back, and tilted views) aspects, its table
will be provided with all possible dimensions of
probable MO silhouettes as shown in Table 9 for IN_9.

(iii) It has been erudite that the number of silhouettes in

entire network rises with the increase in Rol if the
SNs are mounted at a constant distance from each
other while if deployed at variable distance, the total
number of silhouettes depends upon the number of
SNs deployed in Rol.

(iv) Silhouette table is affected by few factors in which

camera orientation becomes at primary level. Each SN
is stored with the silhouettes which have the higher
matching probability with acquired MO silhouettes as
for IN_2 side views of MO have the highest probability
to match. Secondly, with the increase in type of MO to
be passed through Rol, silhouette table amplifies in its
size. Thirdly, in case Gauss’s Markov mobility model is
used, it will require storing silhouettes of all possible
aspects over the entire network and correspondingly

the surety depends upon the number of silhouettes
stored for a single object as demonstrated in Table 10.

Silhouette Segmentation and Aspect Ratio Calculation. The
silhouettes of multiple MOs with the highest matching
probabilities are stored in SNs that are used to identify MO
by matching them with run-timely acquired ones. Silhou-
ette segmentation process is based on the total number of
prominent features; for example, the front view of a human
is segmented with five prominent features as head, neck,
shoulders, torso, and lower limbs. Figure 7(a) illustrates the
different segmented views of a human. Similarly, Figure 7(b)
shows the prominent features based segmented images of
hatchback and saloon cars with different views.

The computation of aspect ratios is carried out by taking
the width-to-height ratios of segmented parts. For instance,
Figure 8 explicates the segmentation of human in five parts
based on prominent features and calculation of aspect ratios
stored in the database table.

Image Processing Module. IP module is initiated directly by
sonar interruption at EN or upon reception of MOD message
at any SN. Being the central part of the CRAM, IP module
plays the key role in image capturing and processing. It
captures the MO instantaneous image, processes it through
different image processing algorithms to convert it into MO
silhouette, matches this extracted silhouette with the stored
one, recognizes the MO, and presents its outcomes in the
form of percentage surety. It operationally proceeds with the
following assumptions:

(i) The prestored and extracted silhouettes are of identi-
cal scales.

(ii) The background subtraction algorithm is restricted to
be applied only in the condition when the distance
between road segments and the SNs remains the
same.

Image processing module contains some submodules whose
role is elaborated as follows.

Image capturing submodule is responsible for acquisition
of instantaneous image. Upon reception of MOD message,
the corresponding SN triggers its camera for At time and cap-
tures fixed size MO image. It is of the fundamental concern
that in presence of variance in MO arrival time At affects
the total “Shutter ON” time. The image acquisition frequency
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TaBLE 8: Silhouette table of IN_2.

1

Aspect ratios with respect to segments

ID  Class Silhouette Octet View Angle Surety
Segments Aspect ratios
1 - 3 (Segment ID, aspect ratio) Bus Left side 90 12.5%
2 . 3 (Segment ID, aspect ratio) Tank Left side 90 12.5%
0
3 . 4 (Segment ID, aspect ratio) Car Right side 270 25%
4 ‘ 4 (Segment ID, aspect ratio) Jeep Right side 270 25%
5 1 t 4 (Segment ID, aspect ratio) Human Left side 90 25%
TaBLE 9: Silhouette table of IN_3.
D Class Silhouette Silhouette aspect ratios with respect to segments Octet View Angle  Surety
Total segments Aspect ratios
1 . 3 (Segment ID, aspect ratio) Car Front 0 12.5%
2 . 3 (Segment ID, aspect ratio) Car Right side 270 12.5%
3 . 3 (Degment ID, aspect ratio) Car Back 180 12.5%
4 - 2 (Segment ID, aspect ratio) Bus Left side 90 12.5%
5 0 (vehicles) - 3 (Segment ID, aspect ratio) Bus Back 180 12.5%
6 ‘ 3 (Segment ID, aspect ratio) Jeep Right 270 12.5%
7 . 3 (Segment ID, aspect ratio) Jeep Front 0 12.5%
8 ~ 3 (Segment ID, aspect ratio) Car Tilt 315 12.5%
9 ' 3 (Segment ID, aspect ratio) Car Tilt 225 12.5%
10 ! 3 (Segment ID, aspect ratio) Man Left side 90 25%
1 (humans)
11 * 3 (Segment ID, aspect ratio) Man Front 0 25%

must be 25 frames per second in vehicle traffic areas [36].
Out of n frames captured by SN, every ith frame is processed
for MO recognition and tracking. Figure 9 demonstrates the
timeline of SNs sequential camera activation for At seconds.

After acquisition by image capturing submodule, the cap-
tured image is processed through the image change detection
module to find any change in prestored image with static
background to detect the presence of MO. We use Gaussian
Mixture Model (GMM) for this change detection for given
number of Gaussian components for “evolving” background.
The process of change detection can be influenced by

a number of factors at each node which include swaying back-
ground objects, slow moving foregrounds, and shadowing or
illuminating of light sources with their localized distinctive-
ness. This emphasizes the adaptation of the image change
detection module on each IN to become more sensitive in
case of activation of localized background process and less
sensitive otherwise. More sensitivity leads to counter the
effects of active backgrounds processes through higher num-
ber of Gaussian components in mixtures of Gaussians and
through correspondingly lesser number when background
is more stationary. However, the utilization of large number
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TasLE 10: Silhouette table with different aspect ratios stored in database.

Aspect ratios with respect to segments

ID Class Silhouette Octet View Angle  Surety
Segments Aspect ratios
1 ‘ 4 (Segment 1D, Car Front/left 45
aspect ratio)
2 - 1 (Segment .ID’ Car Left side/top 90
aspect ratio) Depends
(Segment ID, o on stored
3 0 * 3 aspect ratio) Jeep Left side/tilt 90 silhouettes
(Segment ID, Right
4 ‘ 3 aspect ratio) Car side/back 225
‘ (Segment ID,

aspect ratio) Car Right side/tilt 270

Head Head
Neck Neck
Shoulders Shoulders
Torso Torso
Hips

Lower limbs

Lower limbs

Human’s standing straight view Human’s standing side view
Head Head
Neck Gun
Shoulders
Body
Thigh
Torso
Baggage
Lower limbs
Lower limbs
Human’s standing straight view with luggage Human’s traditional ofthand shooting posture
(@
Roof
‘Wind screen Back glass
Front bonnet
B Hatch
umper Wheels
Wheels
Hatchback front view Hatchback back view
Back glass
[ —
Fender Back bumper
Wheels
Hatchback side view Saloon back view

(b)

FIGURE 7: (a) Human segmentation with different views based on prominent features. (b) Car segmentation with different views based on
prominent features.
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TABLE 11: SICS surety based transcoded image storage and corresponding power consumption analysis.

Image quality level

Surety level (%) Image transcoding level %) Power consumption in transcoding operation (mW)
0-25 Level 0 100 Nil
26-50 Level 1 75 68.8
51-75 Level 2 50 44.1
76-99 Level 3 25 24.7

Database silhouette Segmented parts  Aspect ratios (W: H) negatively signifying the fact that up-trajectory node is not

[ ) 0.9258 aptly sensitive or a higher number of Gaussian components

- 3.11 are needed to be fuelled. These false positives can also be

—— P 6.6 triggered by malfunctioning of an IN or Carrefour node

0.759 and can be alleviated by practicing a consensus and voting

algorithms among a group of neighboring inner nodes-

A based hysteresis loop which intertwines recursively in whole

0.605 network to avoid such malfunctions [37].

FIGURE 8: Aspect ratios calculation of human silhouette.

MO detected
1

t Camera 1

Camera 2

t, + At

1 1
t3 + At

Camera 3

FIGURE 9: Timeline of camera activation.

of Gaussian components is not suggested in CRAM because
of higher quantity of consequential energy drain with added
complexity.

For optimization of image change detection, we propose
an adaptive change detection scheme which is driven by a
feedback loop bridged between an up-trajectory and down-
trajectory node. The up-trajectory node refers to an EN
which activates an IN or an IN which activates another
IN while down-trajectory node stands for an IN which is
activated by an IN or EN. In the operational execution of this
scheme, when an object is sensed by an up-trajectory node,
it forwards a MOD message to its down-trajectory neighbor
expecting that its counterpart shall detect it. On successful
detection, the down-trajectory node replies with positive
feedback implying that the change detection at up-trajectory
node is sufficiently sensitive or adequate number of Gaussian
components are being used at it. In a situation where the
down-trajectory node does not detect the MO, it responds

The image captured by image capturing module is refined
and fine-tuned by image change detection module and is
compressed and stored by Image Compression and Storage
Module. In order to optimize the compression and storage, we
use Quality-Aware Transcoding [38] which offers a quality-
versus-size trade-off based scheme for dynamically changing
the image size. We further propose a compression and storage
scheme in which the image is compressed and stored based on
its corresponding MO’s surety level named as Surety Based
Image Compression and Storage (SICS). In this scheme, as a
MO attains more surety levels, its image is transcoded to more
elevated levels and is stored at lower image quality levels to
diminish the energy expenditure as the power consumption
of transcoding operation decreases with decline in image
quality level. We examine that as the low-quality stored
images are sufficient enough for further image processing and
MO recognition, the MO recognition process is not manipu-
lated by this low-quality image storage. Moreover, these low-
quality stored images occupy less space in the memory which
ultimately consumes less computational power for further
image processing and MO recognition processes. We justify
the proposed method through Table 11.

When a MO penetrates into the Rol for the first time,
its image is not transcoded as per the suggestions of SICS
and is stored with its original size for better identification.
Subsequently, when it passes through more SNs hops (IP)
in Rol, it consequently acquires elevated surety levels. At
a situation when the MO attains surety level more than
25%, it is assigned with the corresponding transcoding level.
For instance, at 50% surety, it achieves transcoding level
1, at 75% surely, it is transcoded at level 2, and when it
reaches more than 75% surety, it gets transcoded level 3
and is stored at 75, 50, and 25 percent image quality levels,
respectively. The entire power expenditure through image
capturing, compression, and storage modules can be given as

PT:PA+PC+PS’ (6)

where P; is the total power consumed while P,, P, and
Py are powers consumed by image capturing, compression,
and storage modules, respectively. Each of these constituents
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of power consumption is independently determined by the
algorithms used below.

Image subtraction submodule is used to extract the MO
silhouette by subtracting the silhouette from its image with
static background stored at SN through background subtrac-
tion submodule. Background subtraction can be optimized
in terms of power and time cost by applying Don't Care
operation on background image without affecting silhou-
ette extraction. In order to apply Don't Care operation
on selected parts of background image, silhouette infor-
mation of acquired-and-then-stored image is required. The
changed and unchanged regions can be then detected by
applying the following equation as suggested by Xu et al.
[39]:

Dxfj = xfj (t,) - xfj (t,)- (7)

The pixel-by-pixel change detection process is executed once
at first time entry of the MO in Rol while the change is
detected on successive hops. As Rol is based on Manhattan
model, the possible division of background image in four
portions is proposed in which few are Dont Cared and
few are used for background subtraction. It is found that
there possibly exist four cases which include the variation of
change detection regions and positions of changed regions
as shown in Table 12. Based on the total number of changed
regions and their positions, we assign a distinctive code to
each possible combination which is further used to transfer
background subtraction information to neighbor SNs. The
background subtraction operation is applied to the one, two,
or all parts at all SNs in which change is detected. We
also suggest ID-based split background image subtraction
which applies the background subtraction operation on some
portions of background image on the basis of ID of previous
SN. These portions are selected on the basis of scene entry
region information where scene entry information refers to
the mobile object navigation on last SN where the MO is lastly
seen and provides the entry direction of MO at a SN. SN store
this scene entry region information in their topology tables
with reference of their neighbor SNs IDs. We present the IN_4
from Figure 3 as an example to demonstrate the adequate
section of background image approaching it from neighbor
SNs while supposing that the change is detected in one
portion so the subtraction shall take place at corresponding
single portion (Table 13).

Further analysis shows that the total time consumed
during the image subtraction of one portion is 4.5 times less
than the time it takes to subtract whole image.

Silhouette comparator submodule compares the finally
extracted silhouette with prestored silhouettes in the sil-
houette table. In order to optimize energy utilization, we
present feature-dependent silhouette segmentation (FRILL)
procedure. In this segmentation technique, the acquired
silhouette is segmented in correspondence with the stored
silhouette such that both possess absolutely identical and
the same number of segments. Further, the aspect ratio of
each segment of extracted silhouette is computed and is
compared with the aspect ratios of corresponding segments

Journal of Sensors

TaBLE 12: Total possible changed regions with their positions.

Case Total number of Code Changed
number changed regions number region

1 4 0000 -
2.1 1 0001 BE
2.2 1 0010 iz
23 1 0011 Eﬂ
2.4 1 0100 Ei
3.1 2 0101 m
3.2 2 0110 m
33 2 0111 E
3.4 2 1000 E.
4.1 3 1001 E
4.2 3 1010 E
4.3 3 1011 ﬂ
4.4 3 1100 u

of stored silhouette. The silhouette comparison procedure is
done through the following expression:

3

Diff = Min (Y AR] - ARV, (8)

where AR, is aspect ratio of the extracted silhouette, AR,
is aspect ratio of the stored silhouette, j is total number
of silhouette segments, and k is total number of silhouettes
deployed on a SN.

Intuitively, this relation works out the extracted and
stored silhouettes’ aspect ratio difference one by one and then
returns the least difference value. The stored silhouette with
which it shows minimum difference is declared similar to
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TABLE 13: Split background table of IN_4 based on previous SN_ID. TABLE 14: Decision table of routing and decision module.
Scene entry Destination
Previous Node_id region Bagkégtrhoind External module Packet type decision
. . €Cl10
information Sonar-sleeping . Send to ENs in a
Sleeping schedules .
module triplet
IN_3 Northwest -sensi
Sonar-sensing Sleeping schedule Send to next hop
module only
Time .
IN.5 Southeast synchronization Beacon/time Send to subsequent
stamps node only
module
Image processing MO recognition Send to next hop
IN-6 Northeast module information SN/base station
IN-7 Southeast Ei generated sleeping schedules with destined foreground ENs
in a triplet. It further decides about the sonar-sleeping
module generated MOD destination where the MOD calls up
IN_8 Southwest . . C .
the camera of most optimal SN for timely acquisition of image
frame and MO recognition.
IN.9 Northwest E
4. CRAM Memory Management
and Processing
IN_10 Northeast
In this section, we present a mapping between human
memory structure and CRAM memory composition. The
IN-11 Northwest humans are in-built with a three-stage memory formation as

extracted one while the extent of similitude in percentage is
calculated through the following relationship:

percentage match

Ztotal segments
i=0

z;:;al MmN (AR of stored silhouette)

(AR of extracted silhouette) ( 1 ) )
k

x 100.

The proposed mechanism is presented with an exemplar
scenario in Figure 10. The silhouette of an unknown MO
is extracted and matched up with four stored silhouettes
of human with dissimilar views. The run timely harvested
silhouette is segmented in the same correspondence with
stored ones in the database. For instance, when this is
matched up with standing man’s side view, it is segmented in
six parts and consequently in five parts while being compared
with man’s armed view with the same width and height ratios.

After getting done with the matching up task, a packet is
generated by IP module in which all the fields are extracted
from database except surety as illustrated in Figure 11.

Routing Decision Module. This module destines the packets
generated by IP modules. The sonar-sleeping, sonar-sensing,
time synchronization, and image processing modules are
responsible for invoking it. Table 14 shows a variety of
decisions this module can take.

When the routing decision module is summoned by
sonar-sleeping module, it disseminates the background EN’s

illustrated in Figure 12. The first stage of memory in human
anatomy that interacts with the outside world through the
sensory receptors is sensory memory.

In CRAM, analogous to haptic and iconic sensory mem-
ory, we use sonar as an electromechanical receptor for sensing
of a MO in Rol. As discussed in sonar-sensing module
(Section 3.2.2), sonar sends beacons continuously in the
requisite region but reacts only when the MO presence is
detected on the basis of the RSSIypesporp information to
either commit the event for further processing or pay no heed
otherwise.

Short term memory is the second stage of human
memory structure which holds items that are of further
interest extracted from sensory memory. CRAM uses similar
approach for short storage when SICS-based transcoded
images are extracted by Image Compression and Storage
Module (Section 3.2.2).

For the permanent storage of items, the human anatomy
defines long term memory. Long term memory is further
subdivided into declarative (explicit) and nondeclarative
(implicit) memories. The declarative memory or explicit
memory refers to those memories which can be consciously
recalled such as facts and knowledge [40]. Declarative mem-
ory is further comprised of semantic and episodic memories
[41]. Episodic memory is a major constituent of declarative
memory that is the collection of previously experienced
events with their incidence at particular place, time, coupled
emotions, and additional context to figuratively remember
the event that took place at certain time and place [42].
Analogous to episodic memory in humans, CRAM uses
prestored topology and silhouette tables with their IDs,
positions, camera orientations, classes, octets, views, angles,
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FIGURE 10: Matchup of an unknown MO extracted silhouette with the prestored silhouette in database.
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Sequence number

SN_ID‘ Octet ‘ Angle ‘ Percentage match

Time stamp‘

17

TABLE 16: Parameters and situations for experiments.

FIGURE 11: Resultant MO information packet generated by IP
module.

TABLE 15: System specifications for performance evaluation.

Parameters Situations

Lighting effects Sunlight, artificial light, and shadow
Object types Human, cars

Angle Straight, side, and loaded
Background types Uniform, nonuniform

Specifications
R2012b

Features

Matlab (version)

Processor Intel corei5
Memory 4Gb

Camera Web camera Logitech Tessar
Processor speed 1.80 GHz

Dimension of the image 240 x 240 pixels
MO traversal (in hops) 12

and sureties. This information is recalled and utilized with
timing information as in CADETS through image processing
module (Section 3.2.2). The resulting surety and identified
class of the extracted image of MO are disseminated for
actuation. Concomitant to the operation in the episodic
(declarative) part of the memory, aspect ratio of the extracted
silhouette becomes the item of interest to be subsequently
passed on to and used by nondeclarative memory (implicit).
CRAM exploits the presence of nondeclarative memory
in which previous experiences aid the performance of a task
without conscious awareness of these previous experiences.
Such implicit memory is priming memory in which the
store is “primed” either through repetition of experiences
called imitations or the most recent experience and it lets
humans respond very promptly [43, 44]. As mentioned
in the preceding discussion on episodic memory, CRAM
simultaneously primes the nondeclarative memory (priming
memory) with the aspect ratio of extracted silhouette. When
a new MO is detected, the aspect ratio of its silhouette is
compared with the stored aspect ratio of the previous MO
in the priming memory. In case of a match, a recognition
message is disseminated to the sink without further activating
the downstream nodes. Such is the realization of reflex arc
that lets the first node observing MO respond while only
referring to the priming memory as shown in Figure 13.
Since, at the same time, episodic memory is also in
the process of computing and comparing aspect ratios of
individual segments of the newly detected MO, the results of
declarative (episodic) and nondeclarative (priming) memo-
ries are evaluated for determining the margin of error. In case
of discrepancy, nondeclarative memory processing may be
adjusted to yield closer results to those of declarative memory.

5. CRAM Performance Evaluation

In this section, we evaluate the performance of CRAM with
respect to context addition and reflex arc through prototype
implementation and compare its performance with VISTA.
It is important to note that an end to end comparison
can only exist between VISTA and CRAM because of the
common visual context cycle both of them execute. Table 15

shows the system specifications and features of the testbed.
Table 16 outlines the parameters and situations under which
the images were acquired.

5.1. Reflex Performance of CRAM. In order to analyze the
context added behavior and impulse response of CRAM,
a trajectory of 12 hops was implemented for MO. For
the first appearance of MO, CRAM demonstrates context
addition throughout the trajectory right from the second
node, whereas, in case of reappearance of the same MO
at the same node, CRAM takes the decision only on the
basis of priming memory at the very first node illustrating
an obvious imitation of learned reflex action. It is further
observed in the particular case of reappearance that CRAM
takes 11 times lesser time than VISTA (Table17). Itis due to the
fact that VISTA does not declare its recognition results before
complete processing of episodic memory for all the nodes in
the trajectory.

5.2. Accuracy of CRAM. With the implementation of priming
memory, it becomes important to be assured on the quality
of recognition that reflex arc provides. Table 18 shows that,
for multiple iterations of MO recognition, CRAM gave 80%
accuracy, the same as VISTA. In both cases, 1 and 4 CRAM
erred due to the presence of background objects adding noise.
It may also be noted that CRAM performs better than VISTA
in poor lighting conditions (case 9) because each preceding
process in episodic memory adds its own image processing
noise for the succeeding process.

6. CRAM Analytical Model

The analysis presented here develops an understanding of
context aware systems with regard to the execution of
processing and delays incorporated, etc. This section analyzes
these aspects with the inclusion of context addition and reflex
arc.

6.1. CRAM Provides Sublinear Bounds on Delay. In order
to verify the time sensitive and delay effective approach of
CRAM, we presume a trajectory of n nodes for a detected
MO, where N = {N;,N,,...,N,} as shown in Figure 14.
Each node N; contains a set S; whose elements are pieces
of silhouette information ranging up to m; elements, for
example, silhouette, aspect ratio, octets, angles, and surety
values. A; is subset of S; whose elements range from 1 to ¢;.
Then,
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l
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l Explicit memory
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l

!

| Priming memory | |Procedural memory|

| Semantic memory| | Episodic memory |

FIGURE 12: Human memory structure.

S, =1{1,2,3,....m;},
A =1{1,2,3,...,¢}, (10)

where A; CS;, ¢ <m;.

Time Taken at the First Node. Suppose, at node N, percentage
surety level of a detected MO is calculated as a value V. For
the calculation of V;, the set S; of silhouette information at
N, is traversed for comparison. Consider that a unit time ¢ is
consumed for each comparison.

The best-case time complexity is simply ¢ if the detected
MO matches with silhouette information of N in its very
first comparison. It is the realization of reflex arc for recurrent
systems where the elements of A; are repetitive for successive
MO detections.

The average-case time complexity is

m

1 m; +1
— Yt =——t, (11)
1i=1 2

where m, is the last object of set S;.
The worst-case time complexity of comparison is

m,
£y 1=mt (12)
i=1

if the detected MO matches with silhouette information of N,
in its very last comparison.

Time Taken at the Second Node. At node N,, the silhouette
information and surety value V; calculated by node Nj is
received as a new context according to our context addition
model. Therefore, at this stage, the comparison operation
does not traverse the entire silhouette information set S,
of node N,. Rather, through new context added from the
previous node N, only ¢, comparisons are performed in
the pertinent silhouette information part A,, a subset of the
entire set S, at node N, to yield V.

The best-case time complexity of comparison at this stage
is again simply ¢, if the detected MO matches with silhouette
information of N, in its very first comparison.

The average-case time complexity is
12 b+

— Yt t, 13
524" (13)

where ¢, is the last object of set A,.
The worst-case time complexity of comparison is

eZ
tY 1=t (14)
i=1

if the detected MO matches with silhouette information of N,
in its very last comparison.

Total Time Taken till the Second Node. Concluding both
nodes, the best-case time complexity is 2t.
Similarly, the average-case time complexity is
m;+4€,+2

m; +1 +€2+1t: " (15)
2 2 2

The worst-case time complexity is

mt+ &t = (m, +&,)t. (16)

In rare cases, if the comparison operation yields incorrect
result and a wrong object recognition message is sent to the
second node, subsequent comparison to a subset A; would
yield a mismatch. Consequently, the second node once again
has to traverse the entire silhouette information set S, of node
N,.

Then, the worst-case time complexity in this situation is

m; 2 my
tZl + tZl + tZl =m;t + &t + myt
i=1 i=1 i=1 (17)

= (my + &, +m,)t.
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FIGURE 13: Function of episodic memory and realization of reflex through priming memory.

@ @ @ Time Taken till nth Node. Similarly, for traversing n number

of nodes’ surety level as Y V; > Vi . q0q> the time com-
plexity of our model can be deduced through induction as
FIGURE 14: Trajectory of the detected MO. follows.

S ={L2,....m} S ={1,2,...,my} S, =1{L,2,...,m,}
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TABLE 17: CRAM reflex response.
Captured image Elapsed time Recognized image
VISTA CRAM VISTA CRAM
Human standing 16.87 sec 2.02 sec Human standing Human standing
Car front view 24.40 sec 2.05 sec Car front view Car front view
Car side view 25.20 sec 2.28 sec Car front view Car front view

Best-case time complexity is nt if the defined silhouette
information of all N; is matched in S; and all A; (i iterates
from 2 to n) in their very first comparisons.

Average-case time complexity is

m+1  £+1 ¢, +1
t+ t-+ t
2 2 2
¢ (18)
1 n
=—|m+n+ Za t.
2 a=¢t,
‘Worst-case time is
m; ZZ en
EY 1+t Tttty 1
i=1 j=1 k=1
(19)
en
=mt+ L+ ++8,)t=|m+ Za t.
a=¢,

In very rare cases, if the comparison operations yield incor-
rect results and wrong object recognition messages are sent
to every node, subsequent comparisons to pertaining subsets
A; would yield mismatches. Consequently, every node once
again has to traverse the entire silhouette information set S;
of node N;.

Then, the worst-case time complexity in this situation will
be

m 15 my 43 ms [
tZl+tZl+tZl+tZl+tZl +---+tZl
i=1 i=1 i=1 i=1 i=1 i=1
mrl
+tZl =mt +myt +myt + -+ mt + &t + 5t
i=1 (20)

tot Ot =(my+my+--+my)t

m, e,
+(€2+€3+---+€n)t=tza+t2a.

a=nmy a=t,

Equations (18) and (19) express the total time consumed by
a context added system in average and worst environment,
respectively, while (20) shows the time consumed by the
system in a very rare case. However, in such a situation, the
system will not generate a valid surety value. As we will see, it
is almost the result in case of a contemporary context aware
system under normal circumstances.

For a contemporary context aware system in average-case
circumstances, the time complexity is
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TaBLE 18: CRAM accuracy.
I ized?
Case MO aspect Tmage mage recognized
number VISTA CRAM
1 Car front view v Y
X
2 Car front view v (Object identified as
car back side view)
3 Car left side view v Y
X X
4 Car left side view Object identified as car Object identified as
right side car right side view
5 Human straight view v v
(good light conditions)
6 Human straight view v v
(good light conditions)
7 Human straight view v v
(good light conditions)
8 Human straight view v v
(bad light conditions)
Human straight view X
9 § Object identified as human Y

(bad light conditions)

loaded view
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TaBLE 18: Continued.

Case
number MO aspect Image
10 Human straight view

(bad light conditions)

Image recognized?

VISTA CRAM

m+1 my+1 m, +1
— 4+ ——t
2 2 2

1 e
=—|n+ Z a |t.
2 a=m;

For a contemporary context aware system in worst-case
circumstances, the time complexity is

(21)

m, m, m,
tZl+tZl+~--+tZl =(my +my+---+m,)t
=1 inl i=1

(22)
mn
(&)
a=m,
1 eﬂ mn
—| my+n+ Za t<—<n+ Za)t, (23)
2 a=¢, a=m,
£y my,
m1+Za t<<Za>t. (24)
a=e, a=m,

Equation (23) depicts the comparison of (18) and (21).
Similarly, (24) depicts the comparison of (19) and (22). It is
evident that the total time consumed by the context added
system comprising n nodes to track and recognize a MO is
much less than that of a context aware system.

6.2. Context Addition Is Recursive. In order to assess the
behavior of context addition, we consider the trajectory of
MO through the same set N of n nodes as discussed in
previous section. Suppose that, at node N, the percentage
surety level of the detected MO is calculated as a value V.
At node N,, its local surety value V, is calculated by adding
to it the received surety value V; of node N;. The context
addition of our architecture proceeds in this recursive way.
The recurrence equation for V,, received from # nodes is as
the following:

Vi, forn=1,
vV, = (25)
V,+V,, fornx2.

7. Conclusions and Future Work

In this paper, we present context aware systems that evolve
into autonomic, intelligent processing systems through the

incorporation of context addition. We have presented con-
ceptual, architectural, and deployment aspects of context
added system. Through establishing an analogy between
context added system and human anatomy of memory, we
have proposed the incorporation of reflex arc into context
aware systems. We have demonstrated that both context
awareness and reflex arc can be embedded into visual context
aware systems through prototype implementation.

As part of our future work, the recursive behavior of the
CARM will be analyzed more specifically to calculate and
compare the average performance variance of context added
versus context aware systems and a possible trade-oft between
latency, precision, and autonomicity. Finally, the authors are
quite optimistic to study and analyze the self-learning and
reflex response features of the proposed model in the domain
of Internet of Things to contribute towards the initiative of
Intelligent Civilization.
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