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Data collection is a fundamental operation in various mobile wireless sensor networks (MWSN) applications. The energy of nodes
around the Sink can be untimely depleted owing to the fact that sensor nodes must transmit vast amounts of data, readily forming
a bottleneck in energy consumption; mobile wireless sensor networks have been designed to address this issue. In this study, we
focused on a large-scale and intensive MWSN which allows a certain amount of data latency by investigating mobile Sink balance
from three aspects: data collection maximization, mobile path length minimization, and network reliability optimization. We also
derived a corresponding formula to represent the MWSN and proved that it represents an NP-hard problem. Traditional data
collectionmethods only focus on increasing the amount data collection or reducing the overall network energy consumption, which
is whywe designed the proposed heuristic algorithm to jointly consider cluster head selection, the routing path fromordinary nodes
to the cluster head node, and mobile Sink path planning optimization. The proposed data collection algorithm for mobile Sinks is,
in effect, based on artificial bee colony. Simulation results show that, in comparison with other algorithms, the proposed algorithm
can effectively reduce data transmission, save energy, improve network data collection efficiency and reliability, and extend the
network lifetime.

1. Introduction

In recent years, there has been considerable advancement in
research and development of wireless sensor networks, which
are now commonly used in military, intelligent medical, and
environmental monitoring fields [1]. Data collection is one of
the key technologies applied in wireless sensor networks and
as such has garnered particular attention from a large number
of experts and scholars [2]. In traditional data collection
program design, all nodes are fixed in position to collect data
before being forwarded to the Sink through routing protocol
[3]. Currently, the most challenging unsolved problems with
this process include (1) the energy hole problem, where data
streams follow a “many-for-one” mode which subjects nodes
near the Sink to greater traffic load, resulting in premature
energy depletion and the creation of an “energy hole” around
the Sink; (2) the communication overhead problem, where,
because the self-energy of sensor nodes is limited, there is

control overhead regardless of the routing protocol algorithm
and thus an inherent need to control the energy consumption
of network nodes; and (3) the communication constraint
problem, where the data from some certain nodes cannot be
transmitted and thus necessitates control strategies for com-
munication reliability, when the network is not connected.

Previous researchers have addressed the above problems
by means of node mobility. The mobile node acts as a data
collector, migrating through the network in accordance with
defined routes to conduct data collection in the monitoring
area. By taking advantage of mobile node features, the con-
nectivity, coverage, and energy distribution ofmobile wireless
sensor networks (MWSN) can be deployed dynamically or
adjusted according to real-time conditions so as to fill in
routing voids in the network and blind zones in the sensor.
ExistingMWSN can be roughly divided into three categories:
(1) those in which the Sink node moves and the common
node stands; (2) those in which the Sink node stands and
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the common node moves; and (3) those in which both the
Sink node and common nodes move. Wireless sensor net-
works with mobile Sinks are simple and practical and can
significantly increase the life cycle of the network, so they
are currently most popular with researchers out of the three
categories. Because the nodes around the Sink transmitmuch
more data than others, however, and are associated with
large energy consumption, the Sink’s moving path must be
designed very carefully to ensure that the network has a
sufficiently lengthy life cycle.

Previous researchers also have proposed a series of data
collection algorithms based on solutions for mobile Sinks [4–
8], which have partially solved the three problemsmentioned
above. It is difficult for these existing methods, however, to
successfully account for data collectionmaximization,mobile
path length minimization, and network reliability optimiza-
tion simultaneously. In this study, we focused on a large-scale
and intensiveMWSN that allows for a certain amount of data
latency, and through which partial nodes are selected as a
cluster head node; the Sink dynamically selects its moving
path so that, prior to its next data collection, the next hop
destination is calculated and selected according to the pre-
vailing network environment parameters and moving strat-
egy. The traveling salesman problem (TSP) of artificial bee
colony optimization is simultaneously employed to obtain the
shortest path to each cluster head node while the other nodes
transmit data to the nearest cluster head node for temporary
storage via multihop routing. When the mobile Sink has
reached the cluster head node, the cluster head node trans-
mits the previously stored data to the mobile Sink. Based on
this data collection program, we present a heuristic algorithm
that jointly considers cluster head selection, the routing path
from ordinary nodes to the cluster head node, and mobile
Sink path planning to formamobile Sink data collection algo-
rithm based on the artificial bee colony. The proposed algo-
rithm can effectively reduce data transmission and energy
consumption, improve network data collection efficiency and
network reliability, and extend the network’s lifetime.

Verified through extensive analysis, this paper presents
an efficient and reliable data collection mechanism, a MWSN
data collection program based on the artificial bee colony
algorithm. The main contributions of this paper can be
summarized as follows:

(1) The mobile Sink data collection process, cluster head
selection problems, routing path fromordinary nodes
to the cluster head node, and mobile Sink path
optimization, when considered synthetically, form an
NP-hard problem.

(2) The path optimization of the mobile Sink can be
formulated as a traveling salesman problem; then the
artificial bee colony algorithm can be used to seek
the features of the optimal solution and the shortest
path of themobile Sink so as to improve network data
collection efficiency.

(3) Extensive numerical results are provided belowwhich
demonstrate the usage and efficiency of the proposed
data collection algorithm.

(4) We also evaluated the performance of the proposed
algorithm by comparing it with random walk and ant
colony data collection algorithms.

The remainder of this paper is organized as follows:
Section 2 analyzes the application scenario model and dis-
cusses other relevant studies on mobile WSN. Section 3
explains the maximization of data collection, the shortest
moving path of the mobile Sink, and the NP-hard problem of
network reliability optimization. Section 4 describes the basic
principles of the artificial bee colony algorithm and presents
the applied mathematical models and optimization steps for
MWSN data collection. Section 5 provides the parameter
setting and simulation results which validate the performance
of the proposed algorithm, and Section 6 concludes the paper.

2. Application Scenario Analysis and
Related Works

2.1. Application Scenario Analysis. Mobile Sinks can signif-
icantly reduce network energy consumption and avoid the
energy hole caused by multihop transmission so that data
collection is unaffected even if there is no data path between
nodes. Mobile Sinks have particularly obvious advantages in
sparse or unconnected networks [9]. Nevertheless, because
the speed of the moving Sink node cannot be compared
to the speed of wireless transmission, there is a delay from
generation to transmission of sensor data. Figure 1 shows an
example of a typical MWSN data collection process, where
first themonitoring area is clustered and then the sensor node
transmits the collected data to the cluster head node via rout-
ing for buffer memory and themobile Sink only needs to visit
the cluster head nodes to realize data collection, so the mov-
ing path is truncated, data transmission latency is reduced,
and the network data collection efficiency and reliability are
improved compared to a network without a mobile Sink.

In this study, we assumed the following characteristic
application scenarios.

(1) Common sensor nodes are unmovable and the same
as the model, with the exact same initial energy. Sen-
sor nodes receive and transmit data consecutively
and the cache point has enough RAM to store the
necessary data.

(2) The Sink node has plenty of battery power, high stor-
age capacity, and an appropriate degree of mobility.
The communication distance of the Sink node is the
same as that of an ordinary node.

(3) The Sink node can move freely regardless of restric-
tions of real road conditions toward the moving path
of the nodes, assuming the ground in the monitoring
area is flat.

(4) The intensive network allows some data transmission
latency, and all nodes can be connected in a single- or
multihop manner.

(5) All member nodes transmit data to their respective
cluster head nodes along the shortest possible path.
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Figure 1: MWSN data collection.

2.2. Related Works. Currently, WSN data collection methods
in terms of mobile Sinks can be divided into two categories:
clustering schemes and mobile data collection. Clustering
schemes represent a simple and effective approach to routing
messages to the data Sink in aMWSN.Velmani andKaarthick
[10], for example, proposed the velocity energy-efficient
and link-aware cluster-tree (VELCT) scheme for WSN data
collection which effectively mitigates problems with coverage
distance,mobility, delay, traffic, tree intensity, and end-to-end
connection. Zhu et al. [11] proposed the tree-cluster-based
data gathering algorithm (TCBDGA) for WSN with mobile
Sinks and introduced a novel weight-based tree-construction
method; TCBDGA can significantly balance the load of the
entire network, reduce its energy consumption, alleviate the
hotspot problem, and prolong the network’s lifetime. Bai et
al. [12] divided the entire sensor field into small patches to
gather correlated data from each patch and proposed the
estimation technique based on the marginal value theorem
(EMVT), which maintains the fidelity of the interested data
with relatively fewer collected sensor observations.

Compared to clustering scheme data collection, introduc-
ing mobility for data collection benefits the network with
balanced energy consumption. Li et al. [13], for example,
studied the ubiquitous data collection problem of mobile
users in WSN and proposed a novel approach to collecting
network-wide data which ensures low data collection delay
and real-time data acquisition for the mobile user. In another
study, the authors established a theoretical model where
sensor nodes are uniformly distributed in a circular area;
when the mobile Sink along the radius is shorter than the
monitoring area radius the circle, results are optimal [14].
Zhao et al. [15] proposed a three-tier network architecture
forMWSNwhich includes a distributed load-balancing algo-
rithm that improves data collection efficiency and lengthens
network lifetime. Liu et al. [16] studied the relationship

between MADC (mobility-assisted data collection) during
the network life cycle and data collection efficiency and
analyzed the impact of a single node versus multiple Sinks’
node network in terms of data collection efficiency and
network lifetime. In another study, researchers investigated
the selection problem of the aggregation node on the fixed
straight track selection problem, where the Sink periodically
moves along a straight track for data collection and obtains
the shortest path to each cluster head node, while other
nodes transmit data to the nearest cluster head node for
temporary storage via multihop routing; when the mobile
Sink has reached the cluster head node, the cluster head
node transmits the previously stored data to the mobile Sink
[17]. He et al. [18] formulated a traveling salesman problem
with neighborhoods (TSPN) and, due to its NP-hardness,
proposed a combine skip substitute (CSS) scheme which was
proven efficient through extensive simulation.

As opposed to the above approaches, we would assert
that the problems of cluster head selection, the routing path
from ordinary nodes to the cluster head node, and mobile
Sink path planning optimization should be considered syn-
thetically and regarded as an NP-hard problem. Mobile Sink
path optimization can likewise be considered as a traveling
salesman problem; then the artificial bee colony algorithm
can be used to seek optimal solution features and search the
shortest path of themobile Sink so as to improve network data
collection efficiency.

3. Problem Description

The primary objective of this study was to develop a WSN
mobile Sink path optimization selection mechanism based
on the artificial bee colony algorithm which solves problems
related to data acquisition quantity, energy consumption,
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network reliability, and a few other technical indicators. This
included three specific optimization objectives:

(1) maximize system data acquisition quantity;
(2) ensure the shortest moving path of the mobile Sink

while collecting data;
(3) minimize the overall system power consumption and

optimize network reliability based onmaximized data
acquisition.

In order to minimize the maximum energy consumption
of each sensor node aswell as the total energy consumption in
the next round, the optimal location of Sink’s next hop can be
calculated under linear constraints. The target function (see
formula (1) for an example) takes minimizing the maximum
energy consumption of a single sensor node. 𝑋

𝑖𝑗
represents

the amount of information that node 𝑖 passes to node 𝑗 (𝑗 ∈
𝑁(𝑖)) in a round of data collection, Restrictive Constraint (2)
balances each node’s information, and the output information
of node 𝑖 is equal to the input information plus the informa-
tion produced by node 𝑖. 𝐸

𝑟
(resp., 𝐸

𝑡
) represents the energy

consumption of a sensor node for receiving (sending) a data
packet. Condition (3) ensures that the energy consumption
of node 𝑖 is less than 𝛼𝑅𝐸

𝑖
(0 < 𝛼 ≤ 1), and Condition

(4) ensures that the Sink has at most 𝐾max viable positions.
Constraint (5) ensures that node 𝑖with the Sink only can send
information at a viable position.The restrictions on the target
function and Constraint (6) minimize the maximum energy
consumption of each node in each round of data collection
[19]. See the following:

minimize 𝐸max (1)

∑

𝑗∈𝑁(𝑖)

𝑥
𝑖𝑗
− ∑
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𝑘𝑖
= 𝑇, 𝑖 ∈ 𝑉 (2)
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𝑥
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+ 𝐸
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𝑥
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𝑥
𝑖𝑗
≥ 0, 𝑖 ∈ 𝑉

𝑠
, 𝑗 ∈ 𝑉;

𝑦
𝑘
∈ {0, 1} , 𝑘 ∈ 𝑉𝑓.

(7)

During the data collection process, the mobile Sink can
find as many cluster head nodes and the shortest traversal
path it needs. Moreover, it can also find the shortest route
from the common sensor node to its own path. In effect,
MWSN data collection is an NP-hard problem. The function
combination, TSP path planning optimization, and other
problems have been addressed successfully when formulated
as NP-hard problems.

Asmentioned above, the artificial bee colony algorithm is
an intelligent, efficient, simple, and easily implemented opti-
mization algorithm characterized by fast speed and distrib-
uted computing. Here, we propose that the artificial bee col-
ony algorithm lends energy-saving and enhanced reliability
effects to MWSN data collection, as it optimizes the path of
the mobile Sink, reduces energy consumption, improves net-
work data collection efficiency and consistency, and prolongs
network lifetime.

4. Artificial Bee Colony (ABC) Algorithm and
Data Collection

4.1. ABC Algorithm. In a 2005 study, inspired by the foraging
behavior found in bee colonies, Zhang et al. [20] proposed
an innovative heuristicmethod called the artificial bee colony
(ABC) algorithm. In theABC algorithm, there are three “bee”
groups in the “colony”: onlookers, scouts, and employed bees,
where each bee represents a position in the search space;
the ABC algorithm employs populations of bees to identify
the optimal path. A bee waiting on the “dance” area to choose
a food source is an onlooker, a bee randomly searching is a
scout, and a bee going to a previously visited food source
is an employed bee. The positions of food sources represent
possible solutions to the optimization problem, and the
amount of “nectar” of a food source corresponds to the qual-
ity (fitness) of the associated solution. The first half of the
colony consists of employed bees and the second half consists
of onlooker bees.

The ABC algorithm can be split into four main steps [21].

(1) Initialization.Assume that population size is 𝑆𝑁, where𝑁
is the first generated food source of initial population 𝑋

𝑖
=

{𝑋
𝑖1
, 𝑋
𝑖2
, . . . , 𝑋

𝑖𝐷
} (𝑖 = 1, 2, . . . , 𝑁), with 𝐷 being the vector

dimension of the optimization problem. The random initial
population is then

𝑋
𝑖
= 𝑋min + rand (0, 1) ⋅ (𝑋max − 𝑋min) . (8)

(2) Population Updating. The initial positions of food sources
are randomly generated and each employed bee was assigned
to a food source; then every employed bee determines a
new neighboring food source of its currently associated food
source via (9) and then computes the nectar amount of the
new food source for each iteration. If the nectar amount of
the new food source is higher than the previous one, the
employed bee moves to the new food source; if not, it con-
tinues with the old one:

𝑉
𝑖𝑗
= 𝑋
𝑖𝑗
+ rand (−1, 1) ⋅ (𝑋𝑖𝑗 − 𝑋𝑘𝑗) , (9)

where 𝑘 ∈ {1, 2, 3, . . . , 𝑆𝑁}, 𝑗 ∈ {1, 2, 3, . . . , 𝐷}, and rand(−1,
1) is the numerical value between randomly produced (−1, 1),
which controls the producing range of 𝑋

𝑖𝑗
neighborhood.

The neighborhood scope gradually decreases as the search
approaches the optimum solution.

(3) Bee Source Selection. In this stage, the employed beesmove
according to the income rate (calculated according to fitness
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(1) Initialize the routing table
(2) While TRUE do
(3) Listen for packets;
(4) If Receive Broad Msg{0, 0, 0}
(5) Be selected as a cluster;
(6) Send Broad Msg{1, SNA, 0} //SNA is the network address of current node
(7) Else If Receive Broad Msg{1, srcNetwAddr, hop}
(8) Lookup routing table with destination srcNetwAddr;
(9) If no corresponding route item
(10) Add new item to the routing table {Destination = srcNetwAddr, Metric = hop + 1}
(11) Broadcast Broad Msg{1, srcNetwAddr, hop + 1}
(12) Else If Metric > hop + 1
(13) Update route item with new metric Metric = hop + 1
(14) Broadcast Broad Msg{1, srcNetwAddr, hop = 1}
(15) Else
(16) Ignore current broadcast message
(17) End If
(18) End If

Algorithm 1: Cluster selection algorithm.

value) of their sources. Food sources with high income rates
are more likely to be selected, according to the following
equation:

𝑃
𝑖
=

fit (𝑋
𝑖
)

∑
𝑆𝑁

𝑛=1
fit (𝑋
𝑛
)

, (10)

where fit(𝑋
𝑛
) is the fitness value of the solution 𝑛(𝑛) pro-

portional to the nectar amount of the food source 𝑛 ∈

{1, 2, 3, . . . , 𝑆𝑁}. Fitness is calculated as follows:

fit (𝑋
𝑛
) =

{{

{{

{

1

𝑓 (𝑋
𝑛
)
, 𝑓 (𝑋

𝑛
) ≥ 0

1 + abs (𝑓 (𝑋
𝑛
)) , 𝑓 (𝑋

𝑛
) < 0,

(11)

where 𝑓(𝑋
𝑛
) is the objective function value of bee source𝑋

𝑛
.

The followed bees search in the neighborhood of the sources,
which improves the local exploitative ability of the algorithm.

(4) Population Elimination. Suppose a certain solution gains
no obvious improvement after continuous limit cycling
updates; it is then assumed to be caught into local optimum
and is abandoned; then the corresponding onlooker bees turn
into scouting bees and randomly produce a new solution to
replace the eliminated solution by

𝑋
𝑖𝑗
= 𝑋min𝑗 + rand (0, 1) (𝑋max𝑗 − 𝑋min𝑗) . (12)

The new solution obtained by calculation replaces the old
and the optimum solution is output accordingly. 𝑗 ∈ {1, 2,
3, . . . , 𝐷}, rand(0, 1) is the numerical value between randomly
produced (−1, 1), and 𝑋max and 𝑋min are the maximum and
minimum values [22].

TheABC algorithm is a new type of intelligent population
optimization which shows the following advantages: (1) the
bee population algorithm is convergent to the whole and at
relatively quick convergence speed; (2) the application range

of the algorithm is quite wide; (3) it requires relatively few
parameters to be set compared to other optimum algorithms;
and (4) it is based upon population, so it is easily realized and
processed.

4.2. ABC Algorithm in Data Collection Applications. Consid-
ering that the mobile Sink energy source, storage source, and
algorithm source are not restricted, the Sink completes the
complicated centralized optimum algorithm in data collec-
tion communication protocol; said communication protocol
can be divided into two stages: the initialization phase and
data collection phase.

The initialization phase comes first, through which entire
network topology information is obtained, cluster head
nodes are selected, and member nodes join each cluster
head and node. The mobile Sink runs three respective
stages to complete this task. First, it gradually broadcasts
Broad Msg{0, 0, 0}ofType 0 and all the nodes receiving infor-
mation are automatically chosen as cluster heads. Cluster
heads broadcast Broad Msg information of Type 1; then other
member nodes continue broadcasting this information to
establish several shortest path trees which take the cluster
head as the root. In Broad Msg of Type 1, srcNetwAddr is
the address of the tree’s root node, and hops move to the
current route tree root cluster head (see Algorithm 1 for a
diagram). By the end of this process, all nodes have obtained
the shortest hop information from the cluster head; then they
send related information to the corresponding cluster head;
in the next stage, the latter send the shortest hop information
to the mobile Sink. During this first stage, cluster nodes also
record the first time they enter and last time they leave the
communication scope of the mobile Sink.

In the next stage, again, the cluster head and node
send the shortest hop information and communication time
information collected in the above stage to the mobile Sink.
According to this information, the mobile Sink calculates
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the communication time assigned to each cluster head. This
numeration of communication time and data collection is
expected to be completed by the mobile Sink with strong
calculating and storage ability in the offline mode.

In the third stage, the mobile Sink broadcasts the above
calculation results to the entire network, creating a series
of matching relationship lists between member nodes and
cluster heads. Each node receiving this broadcasting informa-
tion obtains its objective cluster head information and then
eliminates items related to itself in the broadcast information
and continues broadcasting, thus completing the optimum
cluster head selection process for the entire network.

Next comes the data collection phase. After initialization,
all network nodes continuously collect data and send it to
their objective cluster head along the route tree as established.
Each cluster head caches itself and the sensory information
of other member nodes before the arrival of the mobile Sink.
Similar tomobile route planning issues of the ABC algorithm
as it optimizes the traveling salesman problem, the Sink
dynamically selects its mobile route; in other words, before
it collects the next round’s data, it calculates and chooses the
next hop’s objective position according to current network
environment parameters and mobile strategy to obtain the
shortest route to each cluster head and node.

Asmentioned above, new cluster heads have higher prior-
ity in terms of communication with the mobile Sink. In order
to maintain balance in the amount of information exchanged
among member nodes, the cluster head is selected through
a roulette wheel method. Again, the Sink selects its mobile
route dynamically by calculating and selecting the next hop’s
objective position before collecting the next round of data
according to the current network environment parameters
and mobile strategy; it uses the ABC algorithm to solve the
traveling salesman problem to find the shortest route to each
cluster head from which it receives data (Figure 2).

5. Performance Analysis

5.1. Simulation Environment. We used the MATLAB simula-
tor to conduct performance analysis of the proposedmethod.
In our simulation scenarios, 200 sensor nodes and a mobile
Sink were deployed uniformly initially at random in a 500
× 500m2 square area; other parameter settings are listed
in Table 1 [23]. The ABC algorithm parameters included
population quantity of 50, limit value of 200, and iterations of
60. Sensor nodes generated 10 bytes of data every 1min and
sent it to the cluster head node for storage. The maximum
time delay permitted by the network was 20min, a round of
data collection was completed by the mobile Sink also every
20min, and the mobile Sink collected about 1.5 K bits of data
from each cluster head node. When mobile Sink moved at a
constant speed of𝑉Sink, the data-range of the totalmobile Sink
path length was 1000m–7000m.

For the purposes of this study, we built the energy con-
sumption model and radio model of transmitting a 𝑘-bit
packet transceiver according to the working energy model of
the sensor node, energy model, and MWSN communication
radio model shown in Figure 3.

Initialization

Deal with all the bees in the hive for each cycle
Onlooker bee Employ bee Scout bee

According to the transition

Calculates the benefit ratio, for the following:

Using improved local search strategy to

Abandonment of the path, role
conversion to employ bee

Accumulated number of iteration
cycles

Output optimal results

GenerateInitRole(Scout bee)
According to the transition

probability Pi generating path

probability Pi generating path

Cn ⩽ Maxcycle

Changes the role of scouts, the path of visits Vn++;
Calculated employ bees follow ratio, followed by scouts,
the path of visits Vn++;

find the path of visits Vn++

Scouts recruits employ bees;
Record the elite path;

Record the elite path

Vn > Food_limit

Figure 2: Data collection of mobile Sink based on ABC algorithm
flowchart.

Table 1: Simulation environment parameters.

Parameter Value
Network size 500 × 500m2

Node number 200
Radius 80m
𝑉Sink 5m/s
Initial energy 0.5 J
𝐸elec 50 nJ/bit
𝐸fs 10 pJ/bit/m2

𝐸mp 0.0013 pJ/bit/m4

Data size 4000 bits

In Figure 3, 𝐸elec represents the wireless communication
transmitting circuit and the receiving circuit, each of which
transmit/receive 1 bit of data packets to consume energy;𝐸amp
represents an enlarged section of transmitting circuit packet
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Figure 3: Energy model and MWSN communication radio model.

units required per bit of energy consumed. The WSN energy
consumption model combines two models of free space and
multipath attenuation, and the energy consumption of a node
as it sends data is calculated via (13) [23]. According to the
distance between the sending node and the receiving node,
different energy consumptionmodels can be used tomeasure
the energy required for the sending node to transmit data,
where the source node sends 𝑙 bytes of data to another node
from 𝑑. See the following:

𝐸Tx (𝑙, 𝑑) =
{

{

{

𝑙 × 𝐸elec + 𝑙 × 𝜀𝑓𝑠𝑑
2
, 𝑑 < 𝑑

0

𝑙 × 𝐸elec + 𝑙 × 𝜀amp𝑑
4
, 𝑑 ≥ 𝑑

0
,

(13)

where 𝑙 is the length of the data in bits and 𝑑 is the data
transmission distance in meters. 𝐸Tx(𝑙) is the power con-
sumption of the data sent by the sending circuit length of 𝑙,
𝐸Tx(𝑙, 𝑑) is the length of 𝑙 data sent to the distance of 𝑑
as energy is consumed, and the model gives a threshold
value of 𝑑

0
. After the node receives the message, the energy

consumption is as follows:

𝐸Rx (𝑙) = 𝑙 × 𝐸elec. (14)

The energy consumption of cluster head node during data
fusion is

𝐸
𝐴𝑥
= 𝑙 × 𝐸

𝐷𝐴
(1 +

𝑁

𝑘
− 1) = 𝑙 × 𝐸

𝐷𝐴
×
𝑁

𝑘
. (15)

The threshold 𝑑
0
is determined by the following formula:

𝑑
0
= √

𝜀
𝑓𝑠

𝜀amp
, (16)

where 𝐸elec is connected to the channel encoding, modula-
tion, filtering, spread spectrum signals, and other factors and
𝜀
𝑓𝑠
𝑑
2 and 𝜀amp𝑑

4 depend on the specific bit error rate con-
ditions.

We also performed simulation experiments to determine
the performance related to average energy consumption,
network lifetime, network latency, network connectivity, net-
work load balance, and network reliability. A schematic dia-
gram of the MWSN clustering process is shown in Figure 4.

From here on, “random walk” refers to the random walk
algorithm, “ACO” to the traditional ant colony algorithm,
and “ABC” to our proposed algorithm as they apply to the
mobile Sink.
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Figure 4: MWSN clustering.

5.2. Performance Analysis

5.2.1. Mobile Path Planning. Figure 5 shows a comparison
among the data collection mobile path algorithms in the
simulated MWSN. The total path length across which the
mobile Sink conducted data collection of all the nodes in the
monitoring area according to the three algorithms is shown
in Figure 6.

As shown in Figures 5(a), 5(b), and 5(c), the randomwalk
algorithm results in a highly disordered data collection path;
the ACO algorithm showed slightly better results, where the
ergodic path of themobile Sinkwas relatively short.TheACO
path did not identify the optimal routes across all cluster
head nodes, however, while the ABC algorithm consistently
identified the shortest path of movement for all nodes in
the simulated network. As shown in Figure 6, the moving
path of the randomwalk was sporadic and unpredictable and
path lengths fluctuated considerably, with an average around
4000m. The ACO algorithm found an optimal path around
40 iterations with average length of about 2400m. The ABC
algorithm found an optimal path at only 34 iterations and at
average length of only 1800m.

5.2.2. Energy Consumption. Energy consumption is an
important indicator of network performance. The total
energy consumption of the three network algorithms is
shown in Figure 7(a). As the number of simulation iterations
increased, network energy consumption gradually increased
for all three though randomwalk showed the largest increase
in energy consumption, followed by the ACO algorithm and
finally the proposed algorithm, which saved 18.2% energy
compared to random walk and 4.5% energy compared to
ACO.

We next simulated the same scenarios but iteratively
increased the number of nodes (100, 200, 300, . . . , 1000 sen-
sor nodes) in a 500m × 500m field, as shown in Figure 7(b).
As the number of nodes increased, the energy consumption
of all three algorithms gradually increased, but again, random
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(a) Random walk path planning
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Figure 5: Mobile Sink path planning.

walk consumed the most energy; and again, the ABC algo-
rithm consumed the least energy (and at a relatively stable
level), while the ACO algorithm performed second best. In
effect, the energy consumption of the ACO algorithm was
reduced considerably after the modifications we made to
create the ABC algorithm.

5.2.3. Network Load Balancing. Load balancing is an impor-
tant indicator of network lifetime, as a balanced load is essen-
tial to extending the life cycle of the entire WSN. The load
balancing factor (LBF) provides a convenient and effective
assessment for network performance analysis. 𝐿LBF is defined
as the reciprocal variance of sensing nodes (including cluster
head nodes) of members within the network, where the
greater the 𝐿LBF is, the better the network load is balanced.
See the following [24]:

𝐿LBF =
𝑛
𝑐

∑
𝑛𝑐

𝑖=1
(𝑥
𝑖
− 𝑢)
2
, (17)

where 𝑛
𝑐
is number of WSN sensor nodes, 𝑥

𝑖
is the number

of sensor nodes of the 𝑖th cluster head member, and 𝑢 is
the average number of nodes in all cluster head nodes. A
comparison between the load balancing properties of the
three algorithms is shown in Figure 8.

As shown in Figure 8, the load balance of the random
walkmobile Sink path planningmethod grew poorer and less
stable as the number of simulation iterations increased. The
ACOalgorithm consumed energymore uniformly andmain-
tained better network load balance, but the ABC algorithm
was most balanced; further, the load balance actually grew
increasingly better as the number of iterations increased.

5.2.4. Number of Cluster Heads. Too few cluster heads in
a network create cluster coverage areas that are too large,
requiring excessive energy to transmit data between member
nodes and cluster heads over the greater distance. Conversely,
too many cluster heads also lead to excess energy consump-
tion because cluster heads inherently consume much more
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Figure 6: Total length of mobile path.

energy than member nodes. The appropriate number of
cluster heads must be chosen to ensure minimum energy
consumption throughout the entire network. A comparison
of the number of cluster heads resulting from the three
algorithms is shown in Figure 9, where the proposed algo-
rithm selected more reasonable numbers of cluster heads
than random walk or ACO and thus led to a network that
consumed a more reasonable amount of energy.

5.2.5. Network Latency. We used the transmission delay (i.e.,
latency) of successfully received data packet to measure the
real-time performance of various protocols. Data transmis-
sion time at the source node was recorded as𝑇

𝑠
, the reception

time at the Sink node was recorded as 𝑇
𝑟
, and average

transmission delay was calculated as follows:

𝑇trans =
1

𝑁
𝑟

𝑁𝑟

∑

𝑖=1

(𝑇
𝑟𝑖
− 𝑇
𝑠𝑖
) , (18)

where𝑁
𝑟
is the total number of successfully received packets.

The network latency of the three algorithms is shown in
Figure 10(a); as expected, random walk showed the largest
delay (nearly 2 s) initially which then gradually decreased.
The latency of ACO and ABC algorithms was initially rela-
tively large, around 0.8 s, mainly because swarm intelligence
algorithms are random during the first iterations while
searching the optimal path. After subsequent learning and
optimization, the final delay of ACO was about 0.2 s, while
that of ABC algorithm was about 0.1 s.

We next simulated the same scenarios but increased the
number of nodes (100, 200, 300, . . . , 1000 sensor nodes) in
a 500m × 500m field, as shown in Figure 10(b). As the
number of nodes increased, the network latency of the three
algorithms again gradually increased, but again randomwalk

resulted in the largest network latency and ABC the smallest
and most stable.

5.2.6. Network Connectivity. The continuous motion dis-
cretization method is generally used to calculate the rate of
network connectivity in a mobile network. According to this
method, network topology does not changewithin a relatively
short time period. In the network at a given moment, the
node traversal method also can be used to calculate network
connectivity; first an initial node is selected and then directly
connected nodes, binary-hop connected nodes, and triple-
hop connected nodes are searched from it sequentially until
the node number connected to the initial nodes does not
further increase. See the following:

𝑁con =
𝑁
𝑙

𝑛
, (19)

where𝑁
𝑙
is the number of neighboring nodes in the commu-

nication range and 𝑛 is the number of nodes in the network. A
comparison of network connectivity results among the three
methods is shown in Figure 11.

As shown in Figure 11, as simulation iterations increased,
the network connectivity rate of random walk was low and
volatile, ranging between 0.2 and 0.75, while that of ACO
was higher and more stable, ranging between 0.5 and 0.75;
that of ABC was highest and most stable overall, but with
some sizable fluctuations at certain points, ranging between
0.45 and 0.8. On the whole, the network connectivity of the
artificial bee colony algorithm was best.

5.2.7. Network Integrated Reliability. The integrated network
reliability of 𝑅net is comprised of network node connectivity
reliability 𝐼

1
, network connectivity rate 𝐼

2
, and network

capacity 𝐼
3
and is expressed as follows:
𝑅net = 0.1667𝐼1 + 0.5𝐼2 + 0.3333𝐼3. (20)

Network node connectivity reliability 𝐼
1
refers to the inter-

connected reliability of end-to-end nodes, and the reliability
matrix is calculated in line with the distance between nodes.
According to the reliability matrix and the random edge
reliability matrix sample and after Monte Carlo Analysis,
we determined average node connectivity reliability after 50
simulation iterations. Network capacity 𝐼

3
is the network’s

probability of survival, which is usually obtained by dividing
the surviving nodes by the number of all network nodes. A
comparison of the network reliability of the three algorithms
is shown in Figure 12.

As shown in Figure 12, as simulation iterations increased,
the integrated network reliability of random walk gradually
decreased and was highly volatile (0.65 on average). That of
ACO was relatively stable, ranging from 0.72 to 0.88 with
an average of 0.78, while that of ABC was highly favorable,
ranging between 0.7 and 0.9 at an average of 0.83. Clearly (and
at this point, as expected), the ABC algorithm was the most
reliable of the three.

In short, the simulation results altogether showed that
the proposed algorithm has the highest collection efficiency,
lowest energy consumption, minimum latency, and most
reliability of the three algorithms tested.
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6. Conclusions and Future Research Directions

In this study, we explored the use of mobile Sinks to collect
data to solve the energy consumption bottleneck problem
inherent to static networks by analyzing the relationship
between mobile Sink data collection and energy consump-
tion. By accounting for the selection of the cluster head node,
the route from nodes to cluster heads, and shortest route
of the mobile Sink, we built a heuristic artificial bee colony
algorithm that can be applied to maximize data collection
and minimize total energy consumption while optimizing
network reliability. Simulation results show that, compared to
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Figure 9: Number of cluster heads.

similar existing algorithms, the proposed algorithm improves
WSN throughput, collects data more efficiently, and saves
energy.

In the future, we plan to extend this research from
various aspects. First, we intend to introduce a data fusion
mechanism into the sensor node and to combine it with the
mobile Sink data collection algorithm in order to even further
improve network performance and reliability while decreas-
ing data collection latency. In addition, because the method
proposed here only takes the mobility of a single Sink node
into account, in the futurewe plan to apply it to networkswith
multiple mobile Sinks. Though multiple Sinks increase the
maintenance cost of network routing, they also can further
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improve energy utility, fill the energy hole, increase network
communication capacity, and avoid extra communication
expense, thus prolonging network lifetime, which essentially
reflects the future of data collection in MWSN.
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