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Gamma Gaussian inverse Wishart cardinalized probability hypothesis density (GGIW-CPHD) algorithm was always used to track
group targets in the presence of cluttered measurements and missing detections. A multiple models GGIW-CPHD algorithm
based on best-fitting Gaussian approximation method (BFG) and strong tracking filter (STF) is proposed aiming at the defect that
the tracking error of GGIW-CPHD algorithm will increase when the group targets are maneuvering. The best-fitting Gaussian
approximation method is proposed to implement the fusion of multiple models using the strong tracking filter to correct
the predicted covariance matrix of the GGIW component. The corresponding likelihood functions are deduced to update the
probability of multiple tracking models. From the simulation results we can see that the proposed tracking algorithmMM-GGIW-
CPHD can effectively deal with the combination/spawning of groups and the tracking error of group targets in the maneuvering
stage is decreased.

1. Introduction

In many tracking applications such as maritime surveillance,
multiple targets formation, and ground moving convoys, the
tracking objects are usually constituted by a series of targets
in a coordinated fashion according to a certain constraint in
close space, which was called group targets tracking (GTT)
problems [1]. Usually, we track the group as a whole instead
of tracking all members of the targets in the group while
the number of group targets is large or the resolution of
sensor is limited which makes it unrealistic and unnecessary
to track the single target in the group. It should indicate that
the tracking objects in this paper are mainly pointed to the
group targets: they have a large number of members and
the group has a large distant to the sensor which enables
the measurement set be similar to a cluster rather than
a geometry structure. It indicates that group targets’ math
model is similar to its extension model while the group has
a large number of members, so as to the tracking methods in
[2].

Koch [3] proposed to describe the group’s entire motion
with the kinematic state and extension state of the group, the
extension state wasmodeled by randommatrix, and Bayesian
recursion of group targets was deduced on the assumption
that the sensor measurement error can be approximately
ignored compared to extension state error of the group.
Feldmann et al. [4] improved the estimate accuracy of
Bayesian recursive estimate algorithm by interactive multiple
models (IMM) in consideration of the measurement error
based on the frame of [3]. The kinematic state and shape
estimate can be acquired directly in the algorithms, but it
is limited to single group targets tracking and no clutter
environment. Mahler [5] deduced recursive equation of
extension targets in GM-PHD framework firstly, modeled
the amount of measurement which is submitted to Poisson
distribution with a certain measurement rate. Granström et
al. [6] proposed ameasurement clustered algorithm based on
distance partition and achieved tracking kinematic state of
extension targets using ET-GM-PHD algorithm. In [7] the
GIW-PHD filtering algorithm was proposed using random
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matrix in consideration of the extension state estimate which
was dismissed in the anterior literatures.The likelihood func-
tion of multitargets was deduced and the recursive process of
the extension state was able to achieve. GGIW-PHD filtering
algorithm was proposed to model measurement rate using
Gamma distribution and established the merging/deriving
judgment standard andmathmodel of group targets based on
Kullback-LeiblerDivergence (KL-DIV) [8]. In [9] theGGIW-
CPHD filtering algorithm was proposed to achieve better
tracking accuracy than GGIW-PHD filtering algorithm, but
the tracking error will increase apparently once the group
targets were maneuvering as group motion was formed by
singer model.

Multiple models could track maneuvering targets effec-
tively [10]. In [11, 12] multiple models PHD is applied to
multiple maneuvering targets tracking where model inter-
acting had not been brought into filtering process. To solve
this problem, BFG approximation method [13] was brought
in [14] where the prediction results of multiple models were
approximated to singlemodel in the prediction stage of PHD.
It was pointed out in [15] that models probability had not
been updated in [14] which resulted in the prior probability
of models solidified.

Therefore, the multiple models based on best-fitting
Gaussian approximation and strong tracking filter will be
introduced to GGIW-CPHD algorithm to trackmaneuvering
group targets with unknownnumber in this paper. In order to
improve the tracking accuracy when group targets maneuver,
the best-fitting Gaussian approximation method is used to
implement the fusion of multiple models in the CPHD
prediction stage and a fading factor of strong tracking filter
[16] is used to correct the prediction covariance matrix of the
GGIW component.

The rest of the paper is organized as follows: GGIW-
CPHD algorithm is introduced in Section 2; theMM-GGIW-
CPHD algorithm proposed in this paper is introduced in
Section 3; Simulations are given in Section 4; Conclusions are
drawn in Section 5.

2. GGIW-CPHD Group Targets
Tracking Algorithm

2.1. Math Model of GGIW Distribution. The purpose of
GGIW-CPHD is to estimate the group targets’ state set G𝑘 at
time 𝑘, on condition that there is a certain measurement set
Z𝑘 = {Z𝑡}𝑘𝑡=1. This process is completed by transforming the
prediction part𝐷𝑘|𝑘−1(⋅) and the update part𝐷𝑘|𝑘(⋅) of G𝑘.

Firstly, at time 𝑘 state set of group targets can be
represented as

G𝑘 = {𝜉(𝑖)𝑘 }𝑁𝜉,𝑘
𝑖=1

, 𝜉(𝑖)𝑘 ≜ (𝛾(𝑖)𝑘 , x(𝑖)𝑘 ,X(𝑖)
𝑘 ) , (1)

where𝑁𝜉,𝑘 is the unknown number of groups, 𝜉(𝑖)𝑘 is the state
which needs to be estimated of the 𝑖th group, measurement
rate 𝛾(𝑖)𝑘 > 0, kinematic state x(𝑖)𝑘 ∈ R𝑛x , and extension state
X(𝑖)
𝑘 ∈ S𝑑++. | ⋅ | denotes the potential of set, such that |G𝑘| =𝑁𝐺,𝑘.

The motion model of the target can be represented as

x(𝑖)𝑘 = F𝑘|𝑘−1x
(𝑖)
𝑘−1 + k(𝑖)𝑘 , (2)

where F𝑘|𝑘−1 = 𝐹𝑘|𝑘−1 ⊗ I𝑑, 𝐹𝑘|𝑘−1 is the state transition
matrix, I𝑑 is a unit matrix of 𝑑 × 𝑑 dimension, and k(𝑖)𝑘 is
white Gaussian noise with zeromean and covarianceΔ(𝑖)𝑘|𝑘−1 =
Q𝑘|𝑘−1⊗X(𝑖)

𝑘 .Q𝑘|𝑘−1 is the covariance matrix of the state space
with single dimension.

Measurement set of group targets at time 𝑘 can be
represented as

Z𝑘 = {z(𝑗)𝑘 }𝑁𝑍,𝑘
𝑗=1

, (3)

where𝑁𝑍,𝑘 = |Z𝑘| denotes the number of measurements. So,
measurement model of the target can be represented as

z(𝑗)𝑘 = H𝑘x
(𝑖)
𝑘 + w(𝑗)

𝑘 , (4)

whereH𝑘 = 𝐻𝑘⊗I𝑑;𝐻𝑘 is themeasurement transitionmatrix
of the state space with single dimension. For example, while𝑑 = 2, 𝐻𝑘 = [1, 0]. w(𝑗)

𝑘 is white Gaussian noise with zero
mean and covariance X(𝑖)

𝑘 + R. While measurement noise
covariance R is small enough compared to extension state
X(𝑖)
𝑘 , the impact of R can be ignored [2] and covariance turns

into X(𝑖)
𝑘 .

Then, assuming the generation of measurement is a
process of Poisson point and the measurement rate is 𝛾𝑘 at
time 𝑘, hence the predicted probability density function of 𝛾𝑘
is submitted toGammadistribution.Therefore,measurement
rate is modeled by GAM(⋅) in order to obtain the posterior
probability density function of 𝛾𝑘 [8]:

𝑝 (𝛾𝑘 | Z𝑘) = 𝑝 (𝛾𝑘 | Z𝑘−1) 𝑝 (𝑁𝑍,𝑘 | 𝛾𝑘)
= (𝛽𝑘|𝑘−1)𝛼𝑘|𝑘−1 (𝛾𝑘)𝛼𝑘|𝑘−1−1 𝑒−𝛽𝑘|𝑘−1 ⋅𝛾𝑘Γ (𝛼𝑘|𝑘−1)

⋅ (𝛾𝑘)𝑁𝑍,𝑘 𝑒−𝛾𝑘𝑁𝑍,𝑘!
= GAM (𝛾𝑘; 𝛼𝑘|𝑘−1 + 𝑁𝑍,𝑘, 𝛽𝑘|𝑘−1 + 1)

× Γ (𝛼𝑘|𝑘−1 + 𝑁𝑍,𝑘) (𝛽𝑘|𝑘−1)𝛼𝑘|𝑘−1Γ (𝛼𝑘|𝑘−1) (𝛽𝑘|𝑘−1 + 1)𝛼𝑘|𝑘−1+𝑁𝑍,𝑘 𝑁𝑍,𝑘!
= GAM (𝛾𝑘; 𝛼𝑘|𝑘, 𝛽𝑘|𝑘)

×L𝛾 (𝛼𝑘|𝑘−1, 𝛽𝑘|𝑘−1, 𝑁𝑍,𝑘) ,

(5)

where predicted likelihood function L𝛾(⋅) is a negative
binomial distribution and 𝛼𝑘|𝑘 = 𝛼𝑘|𝑘−1+𝑁𝑍,𝑘, 𝛽𝑘|𝑘 = 𝛽𝑘|𝑘−1+1. The expectation and variance of Gamma distribution are𝐸(𝛾𝑘) = 𝛼𝑘|𝑘/𝛽𝑘|𝑘, Var(𝛾𝑘) = 𝛼𝑘|𝑘/𝛽2𝑘|𝑘. Assume that the pre-
dicted probability density function is a Gamma distribution
presented as 0 < 1/𝜂𝑘 < 1 which is a form of index with a
fading factor, where 𝛼𝑘+1|𝑘 = 𝛼𝑘|𝑘/𝜂𝑘, 𝛽𝑘+1|𝑘 = 𝛽𝑘|𝑘/𝜂𝑘. The
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length of efficient window in each prediction is 𝑤𝑒 = (1 −1/𝜂𝑘)−1, and the expectation of predicted 𝛾𝑘 remains the same;
namely, 𝐸(𝛾𝑘+1|𝑘) = 𝛼𝑘|𝑘/𝛽𝑘|𝑘 = 𝐸(𝛾𝑘), and variance increases𝜂𝑘 times at each turn; namely, Var(𝛾𝑘+1|𝑘) = 𝛼𝑘+1|𝑘/𝛽2𝑘+1|𝑘 =𝜂𝑘(𝛼𝑘|𝑘/𝛽2𝑘|𝑘) = 𝜂𝑘Var(𝛾𝑘).

Therefore, N(⋅) and IW(⋅) are proposed to describe x𝑘
and X𝑘 separately [3], and the posterior probability density
function is a GGIW distribution; namely,

𝑝 (𝜉𝑘 | Z𝑘) = 𝑝 (𝛾𝑘 | Z𝑘) 𝑝 (x𝑘 | X𝑘,Z𝑘) 𝑝 (X𝑘 | Z𝑘)
= GAM (𝛾𝑘; 𝛼𝑘|𝑘, 𝛽𝑘|𝑘)N (x𝑘; 𝑚𝑘|𝑘, 𝑃𝑘|𝑘 ⊗ X𝑘)

×IW (X𝑘; V𝑘|𝑘, 𝑉𝑘|𝑘) = GGIW (𝜉𝑘; 𝜁𝑘|𝑘) ,
(6)

where parameters of GGIW component are 𝜁𝑘|𝑘 =(𝛼𝑘|𝑘, 𝛽𝑘|𝑘, 𝑚𝑘|𝑘, 𝑃𝑘|𝑘, V𝑘|𝑘, 𝑉𝑘|𝑘) and covariance (𝑃𝑘|𝑘 ⊗ X𝑘) ∈
S
𝑛𝑥
+ with 𝑃𝑘|𝑘 ∈ S𝑠+. Moreover, assuming that the amount

of clutter generated at each time is submitted to Poisson
distribution, the appearing positions of clutter are evenly
distributed in the monitoring region. So, the mean number
of clutter measurement is 𝛽𝐹𝐴,𝑘 ⋅ 𝑆while the monitored 𝑑 area
is 𝑆.

The combination of group target refers to multiple sub-
groups uniting to form a large group. The spawning of

group target refers to one group splitting into two or more
subgroups. The combination and spawning of group targets
will result in changes of the groups which has a significant
impact on the state estimation. We choose the combination
and spawning models in [8] based on the Kullback-Leibler
criterion.

2.2. Prediction Steps of GGIW-CPHD Filter. GGIW-CPHD
filter depends on the basis of assumptions in [9]. In accor-
dance with the PHD theory, the predicted part of PHD is [9]

𝐷𝑘|𝑘−1 (𝜉𝑘) = 𝐷𝑠
𝑘|𝑘−1 (𝜉𝑘) + 𝐷𝑏

𝑘 (𝜉𝑘)
= ∫𝑝𝑆 (𝜉𝑘−1) 𝑝𝑘|𝑘−1 (𝜉𝑘 | 𝜉𝑘−1)

× 𝐷𝑘−1|𝑘−1 (𝜉𝑘−1) 𝑑𝜉𝑘−1 + 𝐷𝑏
𝑘 (𝜉𝑘) ,

(7)

where 𝑝𝑆(⋅) is survival probability of the targets, 𝑝𝑘|𝑘−1(⋅) is
state transition density, 𝐷𝑠

𝑘|𝑘−1(𝜉𝑘) is the predicted PHD of
survival targets, and𝐷𝑏

𝑘(⋅) is the PHD of newborn targets.

2.2.1. The Predicted PHD of Survival Targets. It can be
concluded from assumptions 4 and 6 in [9] that

𝐷𝑠
𝑘|𝑘−1 (𝜉𝑘) = ∫𝑝𝑆 (𝜉𝑘−1) 𝑝𝑘|𝑘−1 (𝜉𝑘 | 𝜉𝑘−1) × 𝐷𝑘−1|𝑘−1 (𝜉𝑘−1) 𝑑𝜉𝑘−1

= 𝑝𝑆𝐽𝑘−1|𝑘−1∑
𝑗=1

𝑤(𝑗)

𝑘−1|𝑘−1∫GAM (𝛾𝑘−1; 𝛼(𝑗)𝑘−1|𝑘−1, 𝛽(𝑗)𝑘−1|𝑘−1) 𝑝𝛾𝑘|𝑘−1 (𝛾𝑘 | 𝛾𝑘−1) 𝑑𝛾𝑘−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Measurement rate

× ∫N (x𝑘−1; 𝑚(𝑗)

𝑘−1|𝑘−1, 𝑃(𝑗)𝑘−1|𝑘−1 ⊗ X𝑘) × 𝑝x
𝑘|𝑘−1 (x𝑘 | x𝑘−1,X𝑘) 𝑑x𝑘−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Kinematics

× ∫IW (X𝑘−1; V(𝑗)𝑘−1|𝑘−1, 𝑉(𝑗)

𝑘−1|𝑘−1) × 𝑝X
𝑘|𝑘−1 (X𝑘 | X𝑘−1) 𝑑X𝑘−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Extension

,

(8)

where 𝛼(𝑗)𝑘−1|𝑘−1 and 𝛽(𝑗)𝑘−1|𝑘−1 denote scalar shape parameter
and scalar inverse scale parameter of estimation at time 𝑘 − 1
separately,𝑚(𝑗)

𝑘−1|𝑘−1 and 𝑃(𝑗)𝑘−1|𝑘−1 denote mean and covariance
of estimation group kinematic state at time 𝑘 − 1 separately,
and V(𝑗)𝑘−1|𝑘−1 and𝑉(𝑗)

𝑘−1|𝑘−1 separately denote degree of freedom
and scalar inverse scale matrix that estimate group extension
state at time 𝑘 − 1 separately.

The predicted PHD can be obtained after integrating the
formula above:

𝐷𝑠
𝑘|𝑘−1 (𝜉𝑘) = 𝐽𝑘−1|𝑘−1∑

𝑗=1

𝑤(𝑗)

𝑘|𝑘−1GAM (𝛾𝑘; 𝛼(𝑗)𝑘|𝑘−1, 𝛽(𝑗)𝑘|𝑘−1)
×N (x𝑘; 𝑚(𝑗)

𝑘|𝑘−1, 𝑃(𝑗)𝑘|𝑘−1 ⊗ X𝑘)

×IW (X𝑘; V(𝑗)𝑘|𝑘−1, 𝑉(𝑗)

𝑘|𝑘−1) ,
(9)

where 𝑤(𝑗)

𝑘|𝑘−1 = 𝑝𝑆𝑤(𝑗)

𝑘−1|𝑘−1.

2.2.2. The Birth PHD. The birth PHD can be obtained in
accordance with assumption 7 in [9]:

𝐷𝑏
𝑘 (𝜉𝑘) = 𝐽𝑏,𝑘∑

𝑗=1

𝑤(𝑗)

𝑏,𝑘GAM (𝛾𝑘; 𝛼(𝑗)𝑏,𝑘, 𝛽(𝑗)𝑏,𝑘)
×N (x𝑘; 𝑚(𝑗)

𝑏,𝑘, 𝑃(𝑗)𝑏,𝑘 ⊗ X𝑘) ×IW (X𝑘; V(𝑗)𝑏,𝑘, 𝑉(𝑗)

𝑏,𝑘 ) .
(10)

Therefore,𝐷𝑘|𝑘−1(𝜉𝑘) equates to the sumof the predictedPHD
of survival targets (9) and the birth PHD (10) and contains a
total of 𝐽𝑘|𝑘−1 = 𝐽𝑘−1|𝑘−1 + 𝐽𝑏,𝑘 GGIW components.



4 Journal of Sensors

2.2.3. Predicted Cardinality Distribution of Group Targets

𝑃𝑘|𝑘−1 (𝑛) = 𝑛∑
𝑗󸀠=0

𝑝𝑏 (𝑛 − 𝑗)
× ∞∑
𝑙=𝑗

𝑙𝑖𝑗! (𝑙 − 𝑗)!𝑃𝑘−1|𝑘−1 (𝑙) 𝑃𝑗𝑆 (1 − 𝑃𝑆)𝑙−𝑖 ,
(11)

where 𝑝𝑏(𝑛−𝑗) denotes the probability for (𝑛−𝑗) new targets
to appear between scans 𝑘 − 1 and 𝑘.
2.3. Update Steps of GGIW-CPHDFilter. Update part of PHD
can be obtained according to PHD theory [8]:

𝐷𝑘|𝑘 (𝜉𝑘) = 𝐿Z𝑘 (𝜉𝑘)𝐷𝑘|𝑘−1 (𝜉𝑘) . (12)

Likelihood function 𝐿Z𝑘(𝜉𝑘) is given as

𝐿Z𝑘 (𝜉𝑘) ≜ 1 − (1 − 𝑒−𝛾𝑘) 𝑝𝐷 (𝜉𝑘) + 𝑒−𝛾𝑘𝑝𝐷 (𝜉𝑘)
× ∑
𝑝∠Z𝑘

𝜔𝑝 ∑
𝑊∈𝑝

𝛾𝑘|𝑊|

𝑑𝑊 L𝛾 (𝛼𝑘|𝑘−1, 𝛽𝑘|𝑘−1, |𝑊|)
⋅ ∏
z𝑘∈𝑊

𝜙z𝑘 (𝜉𝑘)𝜆𝑘𝑐𝑘 (z𝑘) ,
(13)

where estimation of measurement rate 𝛾𝑘 is the expectation
of Gamma distribution; namely, 𝛾̂𝑘 = 𝛼𝑘|𝑘/𝛽𝑘|𝑘. 𝜆𝑘 ≜𝛽𝐹𝐴,𝑘 ⋅𝑆 denotes themean number of clutteredmeasurements,
and 𝑐𝑘(z𝑘) = 1/𝑆. 𝑝∠Z𝐾 denotes the cluster consequence
of the pth nonempty measurement subset partitioned by
measurement set Z𝐾. 𝑊 ∈ 𝑝 denotes the 𝑊th measurement
subset in the cluster consequence of the pth partition; |𝑊|
denotes measurement number in subset W. 𝜔𝑝 and 𝑑𝑊 are
nonnegative normalization coefficients referring to partition𝑝 and subsetW, specified as

𝜔𝑝 = ∏𝑊∈𝑝𝑑𝑊∑𝑝󸀠∠Z𝑘∏𝑊󸀠∈𝑝󸀠𝑑𝑊󸀠 , (14)

𝑑𝑊 = 𝛿|𝑊|,1 + 𝐷𝑘|𝑘−1 [𝑝𝐷(𝛼𝑘|𝑘𝛽𝑘|𝑘)
|𝑊| 𝑒−(𝛼𝑘|𝑘/𝛽𝑘|𝑘)L𝛾 (⋅)

⋅ ∏
z𝑘∈𝑊

𝜙z𝑘 (⋅)𝜆𝑘𝑐𝑘 (z𝑘)] ,
(15)

whereL𝛾(⋅) denotes the likelihood function of measurement
rate and 𝜙z𝑘(⋅) denotes the likelihood function of measure-
ment. It should be illustrated that three methods about mea-
surement partition are proposed in [7]: distance partition,
prediction partition, and EM partition, in which the last two
methods were estimated on the basis of a relatively precise
consequence of first step prediction of group extension state,
but the condition cannot be satisfied while the targets are
maneuvering. Therefore, the distance partition method [7] is
used in this paper for measurement set partition.

According to the providedmodel, the likelihood function𝜙z𝑘(𝜉𝑘) can be obtained as

𝜙z𝑘 (𝜉𝑘) = 𝑝 (z𝑘 | 𝜉𝑘) = 𝑝 (z𝑘 | x𝑘,X𝑘)
= N (z𝑘; (𝐻𝑘 ⊗ I𝑑) x𝑘,X𝑘) , (16)

where 𝜉(𝑗)𝑘|𝑘 denotes the jth component of GGIW estimated
at time 𝑘; namely, 𝜉(𝑗)𝑘|𝑘 = (𝛼(𝑗)𝑘|𝑘, 𝛽(𝑗)𝑘|𝑘, 𝑚(𝑗)

𝑘|𝑘, 𝑃(𝑗)𝑘|𝑘, V(𝑗)𝑘|𝑘, 𝑉(𝑗)

𝑘|𝑘). In
addition, we can have [3]

𝑃̂(𝑗)𝑘|𝑘 = 𝑃(𝑗)𝑘|𝑘 ⊗ 𝑉(𝑗)

𝑘|𝑘

V(𝑗)𝑘|𝑘 + 𝑠 − 𝑠𝑑 − 2 ,

X̂(𝑗)

𝑘|𝑘 = 𝑉(𝑗)

𝑘|𝑘

V(𝑗)𝑘|𝑘 − 2𝑑 − 2 ,
(17)

where 𝑃̂(𝑗)𝑘|𝑘 denotes the covariance matrix of estimation con-
nected to the probability density function of x𝑘, 𝑃(𝑗)𝑘|𝑘 denotes
covariance matrix of estimation connected to marginalized
probability density function of x𝑘, and X̂(𝑗)

𝑘|𝑘 is the mean
estimation value of X𝑘 obeying inverse Wishart distribution.

In accordance with the fact whether the target can be
detected, the update part of PHD can be partitioned as

𝐷𝑘|𝑘 (𝜉𝑘) = 𝐷𝑁𝐷
𝑘|𝑘 (𝜉𝑘)

+ ∑
𝑝∠Z𝑘

∑
𝑊∈𝑝

𝜔𝑝,(𝑗,𝑊)

𝑘|𝑘 𝐷𝐷
𝑘|𝑘 (𝜉(𝑗)𝑘 ,𝑊) , (18)

where 𝐷𝑁𝐷
𝑘|𝑘 (𝜉𝑘) is the updated part of the target in leakage

alarm and 𝐷𝐷
𝑘|𝑘(𝜉(𝑗)𝑘 ,𝑊) is the update part of the target being

detected.

2.3.1. Update Part of the Target in Leakage Alarm. While the
target is in leakage alarm, namely, the emerged target has
not been detected, component parameters cannot be updated
by measurement at the moment, so it can be represented by
prediction of the target state, specified as

𝐷𝑁𝐷
𝑘|𝑘 (𝜉𝑘) = 𝐽𝑘|𝑘−1∑

𝑗=1

𝑤(𝑗)

𝑘|𝑘GAM (𝛾𝑘; 𝛼(𝑗)𝑘|𝑘, 𝛽(𝑗)𝑘|𝑘)
×N (x𝑘; 𝑚(𝑗)

𝑘|𝑘, 𝑃(𝑗)𝑘|𝑘) ×IW (X𝑘; V(𝑗)𝑘|𝑘, 𝑉(𝑗)

𝑘|𝑘) ,
(19)

where 𝑤(𝑗)

𝑘|𝑘 = (1 − (1 − 𝑒−(𝛼(𝑗)𝑘|𝑘/𝛽(𝑗)𝑘|𝑘))𝑝(𝑗)𝐷 )𝑤(𝑗)

𝑘|𝑘−1.
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2.3.2. Update Part of the Detected Target. When the target is
detected, component parameters can be updated bymeasure-
ment, specified as

𝐷𝐷
𝑘|𝑘 (𝜉(𝑗)𝑘 ,𝑊)
= 𝛽−|𝑊|

𝐹𝐴,𝑘L
(𝑗,𝑊),𝛾

𝑘 L
(𝑗,𝑊),x,X
𝑘 GAM (𝛾𝑘; 𝛼(𝑗,𝑊)

𝑘|𝑘 , 𝛽(𝑗,𝑊)

𝑘|𝑘 )
×N (x𝑘; 𝑚(𝑗,𝑊)

𝑘|𝑘 , 𝑃(𝑗,𝑊)

𝑘|𝑘 ⊗ X𝑘)
×IW (X𝑘; V(𝑗,𝑊)

𝑘|𝑘 , 𝑉(𝑗,𝑊)

𝑘|𝑘 ) .
(20)

The likelihood function of measurement rate L(𝑗,𝑊),𝛾

𝑘 is
expressed as

L
(𝑗,𝑊),𝛾

𝑘 = Γ (𝛼(𝑗,𝑊)

𝑘|𝑘 ) (𝛽(𝑗)𝑘|𝑘−1)𝛼(𝑗)𝑘|𝑘−1
Γ (𝛼(𝑗)𝑘|𝑘−1) (𝛽(𝑗,𝑊)

𝑘|𝑘 )𝛼(𝑗,𝑊)𝑘|𝑘 |𝑊|! . (21)

The likelihood function of measurement L
(𝑗,𝑊),x,X
𝑘 is

expressed as

L
(𝑗,𝑊),x,X
𝑘

= 1
(𝜋|𝑊| |𝑊| 𝑆(𝑗,𝑊)

𝑘|𝑘−1)𝑑/2
󵄨󵄨󵄨󵄨󵄨󵄨𝑉(𝑗)

𝑘|𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨V
(𝑗)

𝑘|𝑘−1
/2

󵄨󵄨󵄨󵄨󵄨󵄨𝑉(𝑗)

𝑘|𝑘

󵄨󵄨󵄨󵄨󵄨󵄨V
(𝑗,𝑊)

𝑘|𝑘
/2

Γ𝑑 (V(𝑗,𝑊)

𝑘|𝑘 /2)
Γ𝑑 (V(𝑗)𝑘|𝑘−1/2) ,

(22)

where 𝑆(𝑗,𝑊)

𝑘|𝑘−1 denotes the covariance of innovation, |𝑉|
denotes determinant of 𝑉, |𝑊| denotes the measurement
number of subset 𝑊, and Γ𝑑(⋅) denotes multiple Gamma
function. Assuming that there are 𝑝 kinds of measurement
partitions at 𝑘 time, |𝑝𝑝| denotes the number of the pth parti-
tion subsets𝑊.Therefore, the number of GGIW components
in the update step of CPHD is 𝐽𝑘|𝑘 = 𝐽𝑘|𝑘−1 + 𝐽𝑘|𝑘−1∑𝑃

𝑝=1 |𝑝𝑝|.
2.3.3. Posterior Cardinality Distribution of Group Targets [9]

𝑝𝑘|𝑘 (𝑛)
= ∑𝑝∠𝑍∑𝑊∈𝑝Ψ𝑝,𝑊𝐺𝑛

𝑘/𝑘−1 (0) (𝐺𝐹𝐴 (0) (𝜂𝑊 [0, 1] / 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨) (𝜌 [1]𝑛−|𝑝| / (𝑛 − 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨)!) 𝛿𝑛≥|𝑝| + 𝐺|𝑊|
𝐹𝐴 (0) (𝜌𝑛−|𝑝|+1/ (𝑛 − 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨 + 1)!) 𝛿𝑛≥|𝑝|−1)∑𝑝∠𝑍∑𝑊∈𝑝Ψ𝑝,𝑊𝑙𝑝,𝑊 . (23)

𝐺𝑛
𝑘/𝑘−1(⋅) and 𝐺𝐹𝐴(⋅) denote the predicted probability gen-

erating function of the state and the probability generating
function of the false alarms; the coefficients are defined as
follows:

𝜂𝑊 ≜ 𝑝𝑘/𝑘−1 [𝑃𝐷 (⋅) 𝐺(|𝑊|)
𝑍 (0⋅ )]∏

𝑍󸀠

𝑝𝑍 (𝑧󸀠/⋅)𝑝𝐹𝐴 (𝑧󸀠) ,
𝑙𝑝,𝑊 = 𝐺𝐹𝐴 (0) 𝐺(|𝑝|)

𝑘/𝑘−1 (𝜌) 𝜂𝑊󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨 + 𝐺|𝑊|
𝐹𝐴 (0) 𝐺(|𝑝|−1)

𝑘/𝑘−1 (𝜌) ,
Ψ𝑃,𝑊 ≜ ∏

𝑊󸀠∈𝑃−𝑊

𝜂𝑊󸀠 ,
𝜌 ≜ 𝑝𝑘/𝑘−1 [1 − 𝑃𝐷 (⋅) + 𝑃𝐷 (⋅) 𝐺𝑍 (0⋅ )] .

(24)

3. Multiple Models GGIW-CPHD Algorithm of
Group Tracking Based on BFG and STF

3.1. Best-Fitting Gaussian (BFG) Approximation Method.
BFG approximation method [15] is a function estimation
method of IMM on the condition of jump Markov linear
systems (JMLS). The basic thought is to approximate state
transition equation and covariance matrix of process noise
with a BFG distribution and keep the target’s mean value
and variance of prediction state to be the same in the
approximation model, so as to achieve rational transform

from multiple models to single model. Therefore, it can be
obtained according to BFG approximating method.

We take the following JMLS model into account:

x𝑘 = 𝐹𝑘−1 (𝑟𝑘) x𝑘−1 + 𝐺𝑘−1 (𝑟𝑘) k𝑘−1 (𝑟𝑘) , (25)

where 𝑟𝑘 denotes the target motion model in time interval[𝑘 − 1, 𝑘), 𝐹𝑘−1(𝑟𝑘) and 𝐺𝑘−1(𝑟𝑘) denote the state transition
matrix in model 𝑟𝑘 and k𝑘−1(𝑟𝑘) denotes white Gauss noise
whose mean value is zero and covariance matrix is Q𝑘−1(𝑟𝑘).
Model transition matrix is 𝜋𝑖𝑗 = Pr{𝑟𝑘 = 𝑗 | 𝑟𝑘−1 = 𝑖}.

BFG approximation is to replace the above formulas with
a BFG distribution:

x𝑘 = Φ𝑘−1x𝑘−1 + k𝑘−1, (26)

where k𝑘−1 ∼ 𝑁(0,Σ𝑘−1); Σ𝑘−1 is the process noise variance
after approximation.

Formulas (25) and (26) in JMLS are replaced by factor A
and factor B, respectively. The key of the BFG approximation
is to find out rational Φ𝑘−1 and Σ𝑘−1 to make the following
formulas established:

𝐸 {𝑥𝑘−1 | 𝐴} = 𝐸 {𝑥𝑘−1 | 𝐵} ,
cov {𝑥𝑘−1 | 𝐴} = cov {𝑥𝑘−1 | 𝐵} . (27)
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According to the conclusion in [14], set 𝜇𝑘−1 ≜ 𝐸{𝑥𝑘−1 |𝐴}, Θ𝑘−1 = cov{𝑥𝑘−1 | 𝐴}, and we can get

Φ𝑘−1 = 𝑀∑
𝑟=1

𝑝𝑘,𝑟𝐹𝑟𝑘−1,
Σ𝑘−1 = Θ𝑘 −Φ𝑘−1Θ𝑘−1Φ

𝑇
𝑘−1,

Θ𝑘 = 𝑀∑
𝑟=1

𝑝𝑘,𝑟 [𝐹𝑟𝑘−1 (Θ𝑘−1 + 𝜇𝑘−1𝜇𝑇𝑘−1) (𝐹𝑟𝑘−1)𝑇
+ 𝐺𝑟

𝑘−1Q
𝑟
𝑘−1 (𝐺𝑟

𝑘−1)𝑇] −Φ𝑘−1𝜇𝑘−1𝜇𝑇𝑘−1Φ𝑇𝑘−1,
𝜇𝑘 = Φ𝑘−1𝜇𝑘−1,
𝑝𝑘,𝑟 = 𝑀∑

𝑖=1

𝜋𝑖𝑟𝑝𝑘−1,𝑟,

(28)

where𝑀 is the number of tracking models, 𝑝𝑘,𝑟 is the occur-
rences probability of model 𝑟 at 𝑘 time, and 𝜋𝑖𝑟 represents the
model transition matrix.

3.2. Prediction Steps of Multiple Models GGIW-CPHD.
According to the theory described above, prediction part
of GGIW-PHD 𝐷𝑘|𝑘−1(𝜉𝑘) at time 𝑘 includes the GGIW-
PHD birth intensity 𝐷𝑏

𝑘(𝜉𝑘) at time 𝑘 and prediction part of
posterior GGIW-PHD intensity𝐷𝑠

𝑘|𝑘−1(𝜉𝑘) at time 𝑘 − 1.
3.2.1.𝐷𝑏

𝑘(𝜉𝑘). One-step prediction of parameter in𝐷𝑏
𝑘(𝜉𝑘) can

be obtained by the prior knowledge.

3.2.2. 𝐷𝑠
𝑘|𝑘−1(𝜉𝑘). One-step prediction of parameter in𝐷𝑠

𝑘|𝑘−1(𝜉𝑘) can be specified as

𝐷𝑠
𝑘|𝑘−1 (𝜉𝑘) = 𝐽𝑘−1|𝑘−1∑

𝑗=1

𝑤(𝑗)

𝑘|𝑘−1GAM (𝛾𝑘; 𝛼(𝑗)𝑘|𝑘−1, 𝛽(𝑗)𝑘|𝑘−1)
⋅N (x𝑘; 𝑚(𝑗)

𝑘|𝑘−1, 𝑃(𝑗)𝑘|𝑘−1 ⊗ X𝑘)
×IW (X𝑘; V(𝑗)𝑘|𝑘−1, 𝑉(𝑗)

𝑘|𝑘−1) ,
(29)

where 𝛼(𝑗)𝑘|𝑘−1 and 𝛽(𝑗)𝑘|𝑘−1, respectively, represent one-step
prediction of scalar shape parameter and scalar inverse
scale parameter of the jth component of the measurement
rate, 𝑚(𝑗)

𝑘|𝑘−1 and 𝑃(𝑗)𝑘|𝑘−1 ⊗ X𝑘, respectively, represent Gauss
mean value and one-step prediction of covariance of the
jth component, and V(𝑗)𝑘|𝑘 and 𝑉(𝑗)

𝑘|𝑘 , respectively, represent
inverse Wishart degree of freedom parameter and one-step
prediction of inverse scale matrix of the jth component.

Therefore, it can be obtained according to BFG approxi-
mating method.

As prediction probability density function of measure-
ment rate is a Gamma distribution, an index fading factor1/𝜂𝑘−1 is introduced specified as

𝛼(𝑗)𝑘|𝑘−1 = 𝑀∑
𝑟=1

(𝑝(𝑗)𝑘|𝑘−1,𝑟𝜂𝑘−1,𝑟 )𝛼(𝑗)𝑘−1|𝑘−1,
𝛽(𝑗)𝑘|𝑘−1 = 𝑀∑

𝑟=1

(𝑝(𝑗)𝑘|𝑘−1,𝑟𝜂𝑘−1,𝑟 )𝛽(𝑗)𝑘−1|𝑘−1,
(30)

where 𝜂𝑘−1,𝑟 > 1 and the length of effective prediction
window of the 𝑟th model is length𝑘−1,𝑟 = 1/(1 − 1/𝜂𝑘−1,𝑟) =𝜂𝑘−1,𝑟/(𝜂𝑘−1,𝑟 − 1).

The prediction part of kinematic state:

𝑚(𝑗)

𝑘|𝑘−1 = Φ(𝑗)𝑘|𝑘−1𝑚(𝑗)

𝑘−1|𝑘−1,
𝑃(𝑗)𝑘|𝑘−1 = Φ(𝑗)𝑘|𝑘−1𝑃(𝑗)𝑘−1|𝑘−1 (Φ(𝑗)𝑘|𝑘−1)𝑇 + Σ(𝑗)𝑘|𝑘−1,
Φ
(𝑗)

𝑘|𝑘−1 = 𝑀∑
𝑟=1

𝑝(𝑗)𝑘|𝑘−1,𝑟𝐹𝑟𝑘−1,
(31)

where

Σ
(𝑗)

𝑘|𝑘−1 = 𝑀∑
𝑟=1

𝑝(𝑗)𝑘|𝑘−1,𝑟 {𝐹𝑟𝑘−1 [𝑃(𝑗)𝑘−1|𝑘−1

+ 𝑚(𝑗)

𝑘−1|𝑘−1 (𝑚(𝑗)

𝑘−1|𝑘−1)𝑇] (𝐹𝑟𝑘−1)𝑇
+ 𝐺𝑟

𝑘−1Q
𝑟
𝑘−1 (𝐺𝑟

𝑘−1)𝑇}
−Φ(𝑗)𝑘|𝑘−1𝑚(𝑗)

𝑘−1|𝑘−1 (𝑚(𝑗)

𝑘−1|𝑘−1)𝑇 (Φ(𝑗)𝑘|𝑘−1)𝑇
−Φ(𝑗)𝑘|𝑘−1𝑃(𝑗)𝑘−1|𝑘−1 (Φ(𝑗)𝑘|𝑘−1)𝑇 .

(32)

The 𝑟th model of prediction probability 𝑝(𝑗)𝑘|𝑘−1,𝑟 is
𝑝(𝑗)𝑘|𝑘−1,𝑟 = 𝑀∑

𝑖=1

𝜋𝑖𝑟𝑝(𝑗)𝑘−1,𝑖. (33)

The prediction part of extension state:

V(𝑗)𝑘|𝑘−1 = 𝑀∑
𝑟=1

𝑝(𝑗)𝑘|𝑘−1,𝑟𝑒−𝑇𝑠/𝜏𝑘−1,𝑟V(𝑗)𝑘−1|𝑘−1,
𝑉(𝑗)

𝑘|𝑘−1 = V(𝑗)𝑘|𝑘−1 − 𝑑 − 1
V(𝑗)𝑘−1|𝑘−1 − 𝑑 − 1𝑉(𝑗)

𝑘−1|𝑘−1.
(34)

3.2.3. Fixed One-Step Prediction Covariance Using STF. It
should be indicated that it is available to adjust the filter
gain online by STF on the basis of measurement set partition
in order to prevent the problem of tracking model mis-
matched which eventually makes the discrepancy sequence
orthogonal. The adaptation of STF is mainly reflected in
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the identification of prediction variance, namely, fixing pre-
diction covariance with a fading factor [16]. In this paper,𝑃(𝑗,𝑊)

𝑘|𝑘−1 is fixed by a fading factor 𝜛(𝑗,𝑊)

𝑘 of STF where 𝑃(𝑗,𝑊)

𝑘|𝑘−1

represents one-step prediction covariance which means the
jth component of the Wth measurement subset. The GGIW
of survival targets is mainly modified and the specific calcu-
lation formula is

𝑃(𝑗,𝑊)

𝑘|𝑘−1 = 𝜛(𝑗,𝑊)

𝑘 Φ
(𝑗,𝑊)

𝑘|𝑘−1𝑃(𝑗,𝑊)

𝑘−1|𝑘−1 (Φ(𝑗,𝑊)

𝑘|𝑘−1)𝑇 + Σ(𝑗,𝑊)

𝑘|𝑘−1,
𝜛(𝑗,𝑊)

𝑘 = {{{
𝜂(𝑗,𝑊)

𝑘 , 𝜂(𝑗,𝑊)

𝑘 > 1
1, 𝜂(𝑗,𝑊)

𝑘 ≤ 1, 𝜂(𝑗,𝑊)

𝑘 = tr [G(𝑗,𝑊)

𝑘 ]
tr [L(𝑗,𝑊)

𝑘 ] ,

G(𝑗,𝑊)

𝑘 = N(𝑗,𝑊)
0 (𝑘) − 𝜉Y(𝑗)𝑘|𝑘−1|𝑊| −HΣ(𝑗,𝑊)

𝑘|𝑘−1H
𝑇,

L(𝑗,𝑊)

𝑘 = HΦ(𝑗,𝑊)

𝑘|𝑘−1𝑃(𝑗,𝑊)

𝑘−1|𝑘−1 (Φ(𝑗,𝑊)

𝑘|𝑘−1)𝑇H𝑇,
N(𝑗,𝑊)
0 (𝑘) = 𝐸[[[

( 1|𝑊| ∑
z(𝑖)
𝑘
∈𝑊

z(𝑖)𝑘 −H𝑚(𝑗,𝑊)

𝑘|𝑘−1)

⋅ ( 1|𝑊| ∑
z(𝑖)
𝑘
∈𝑊

z(𝑖)𝑘 −H𝑚(𝑗,𝑊)

𝑘|𝑘−1)
𝑇]]]

,

(35)

where 𝑧̃(𝑗,𝑊)

𝑘 = (1/|𝑊|)∑z(𝑖)
𝑘
∈𝑊 z(𝑖)𝑘 − H𝑚(𝑗,𝑊)

𝑘|𝑘−1 is innovation,𝜉 is a weakening factor, and 𝜉 ≥ 1. The single dimension
state space process in [8] is transformed to all dimensional
state space process due to the using of BFG approximation
method. Therefore, Y(𝑗)𝑘|𝑘−1 = X(𝑗)

𝑘|𝑘−1 can be obtained referring
to the all dimension process method in [3] and X(𝑗)

𝑘|𝑘−1 is the
jth component of one-step prediction of extension state.

3.3. Update Steps of Multiple Models GGIW-CPHD. In accor-
dance with the fact whether targets can be detected, the
updating part of PHD can be partitioned as two parts [17, 18].

𝐷𝑘|𝑘 (𝜉𝑘) = 𝐷𝑁𝐷
𝑘|𝑘 (𝜉𝑘) + ∑

𝑝∠Z𝑘
∑
𝑊∈𝑝

𝐷𝐷
𝑘|𝑘 (𝜉𝑘,𝑊) . (36)

3.3.1. Update Part of Targets in Leakage Alarm. 𝐷𝑁𝐷
𝑘|𝑘 (⋅) is the

update part of PHD while the targets are in leakage alarm,
specified as

𝐷𝑁𝐷
𝑘|𝑘 (⋅) = 𝐽𝑘|𝑘−1∑

𝑗=1

𝑤(𝑗)

𝑘|𝑘GAM (𝛾𝑘; 𝛼(𝑗)𝑘|𝑘, 𝛽(𝑗)𝑘|𝑘)
×N (x𝑘; 𝑚(𝑗)

𝑘|𝑘, 𝑃(𝑗)𝑘|𝑘) ×IW (X𝑘; V(𝑗)𝑘|𝑘, 𝑉(𝑗)

𝑘|𝑘) ,
(37)

𝑤(𝑗)

𝑘|𝑘 = (1 − (1 − 𝑒−(𝛼(𝑗)𝑘|𝑘/𝛽(𝑗)𝑘|𝑘))𝑝(𝑗)𝐷 )𝑤(𝑗)

𝑘|𝑘−1, (38)

𝛼(𝑗)𝑘|𝑘 = 𝛼(𝑗)𝑘|𝑘−1,
𝛽(𝑗)𝑘|𝑘 = 𝛽(𝑗)𝑘|𝑘−1,
𝑚(𝑗)

𝑘|𝑘 = 𝑚(𝑗)

𝑘|𝑘−1,
𝑃(𝑗)𝑘|𝑘 = 𝑃(𝑗)𝑘|𝑘−1,
V(𝑗)𝑘|𝑘 = V(𝑗)𝑘|𝑘−1,
𝑉(𝑗)

𝑘|𝑘 = 𝑉(𝑗)

𝑘|𝑘−1.

(39)

The formulas above indicate that the parameters cannot be
updated by measurement while the targets are in leakage
alarm, but its’ update parameters can be replaced by one-step
prediction.

3.3.2. Update Part of the Detected Targets. Firstly, in update
steps, kinematic measurement z𝑊𝑘 and 𝑍𝑊

𝑘 scattering matrix
of theWth measurement subset are

z𝑊𝑘 = 1|𝑊| ∑
z(𝑖)
𝑘
∈𝑊

z(𝑖)𝑘 ,
𝑍𝑊
𝑘 = ∑

z(𝑖)
𝑘
∈𝑊

(z(𝑖)𝑘 − z𝑊𝑘 ) (z(𝑖)𝑘 − z𝑊𝑘 )𝑇 . (40)

Update steps are also needed to be conducted in all
dimension state space which has been used in prediction
steps of BFG approximating method. Specified update steps
are

𝛼(𝑗,𝑊)

𝑘|𝑘 = 𝛼(𝑗)𝑘|𝑘−1 + |𝑊| ,
𝛽(𝑗,𝑊)

𝑘|𝑘 = 𝛽(𝑗)𝑘|𝑘−1 + 1,
𝑚(𝑗,𝑊)

𝑘|𝑘 = 𝑚(𝑗)

𝑘|𝑘−1 + K(𝑗,𝑊)

𝑘|𝑘−1𝜀(𝑗,𝑊)

𝑘|𝑘−1,
𝑃(𝑗,𝑊)

𝑘|𝑘 = 𝑃(𝑗)𝑘|𝑘−1 − K(𝑗,𝑊)

𝑘|𝑘−1𝑆(𝑗,𝑊)

𝑘|𝑘−1 (K(𝑗,𝑊)

𝑘|𝑘−1)𝑇 ,
V(𝑗,𝑊)

𝑘|𝑘 = V(𝑗)𝑘|𝑘−1 + |𝑊| ,
𝑉(𝑗,𝑊)

𝑘|𝑘 = 𝑉(𝑗)

𝑘|𝑘−1 + 𝑁(𝑗,𝑊)

𝑘|𝑘−1 + 𝑍𝑊
𝑘 ,

(41)

where K(𝑗,𝑊)

𝑘|𝑘−1 represents gain matrix, 𝜀(𝑗,𝑊)

𝑘|𝑘−1 represents the
innovation vector, 𝑁(𝑗,𝑊)

𝑘|𝑘−1 represents the innovation matrix,
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and 𝑆(𝑗,𝑊)

𝑘|𝑘−1 represents the innovation covariance. Specified
calculation formulas are

𝐾(𝑗,𝑊)

𝑘|𝑘−1 = 𝑃(𝑗)𝑘|𝑘−1H
𝑇
𝑘 (𝑆(𝑗,𝑊)

𝑘|𝑘−1)−1 ,
𝜀(𝑗,𝑊)

𝑘|𝑘−1 = z𝑊𝑘 −H𝑘𝑚(𝑗)

𝑘|𝑘−1,
𝑁(𝑗,𝑊)

𝑘|𝑘−1 = (𝑆(𝑗,𝑊)

𝑘|𝑘−1)−1 𝜀(𝑗,𝑊)

𝑘|𝑘−1 (𝜀(𝑗,𝑊)

𝑘|𝑘−1)𝑇 ,
𝑆(𝑗,𝑊)

𝑘|𝑘−1 = H𝑘𝑃(𝑗)𝑘|𝑘−1H
𝑇
𝑘 + X(𝑗)

𝑘|𝑘−1|𝑊| .
(42)

In addition, theweight of the jthGGIWcomponent of the
subset𝑊 is

𝑤(𝑗,𝑊)

𝑘|𝑘 = 𝜔𝑝𝑑𝑊 𝑒−(𝛼(𝑗,𝑊)𝑘|𝑘 /𝛽
(𝑗,𝑊)

𝑘|𝑘
)( 𝛼(𝑗,𝑊)

𝑘|𝑘𝛽(𝑗,𝑊)

𝑘|𝑘 𝛽𝐹𝐴,𝑘)
|𝑊|

⋅ 𝑝(𝑗)𝐷 L
(𝑗,𝑊)

𝑘 𝑤(𝑗)

𝑘|𝑘−1,
(43)

where

L
(𝑗,𝑊)

𝑘 = L
(𝑗,𝑊),𝛾

𝑘 ×L
(𝑗,𝑊),x,X
𝑘 ,

𝑑𝑊 = 𝛿|𝑊|,1 + 𝐽𝑘|𝑘−1∑
𝑗=1

𝑒−(𝛼(𝑗,𝑊)𝑘|𝑘 /𝛽
(𝑗,𝑊)

𝑘|𝑘
)( 𝛼(𝑗,𝑊)

𝑘|𝑘𝛽(𝑗,𝑊)

𝑘|𝑘 𝛽𝐹𝐴,𝑘)
|𝑊|

⋅ 𝑝(𝑗)𝐷 L
(𝑗,𝑊)

𝑘 𝑤(𝑗)

𝑘|𝑘−1,
(44)

where 𝜔𝑝 can be calculated by formula (14). Therefore, it
can be deduced that the update of PHD can be calculated
by formula (20) where the weight can be calculated by
formula (43), and Gamma parameters of measurement rate,
Gauss parameters of kinematic state, and inverse Wishart
parameters of extension state can be calculated by formulas
(41)∼(42) [17].

The updated cardinality distribution is specified:

𝑝𝑘|𝑘 (𝑛) = 𝑝𝑗𝑘|𝑘,𝑟 (𝑛) 𝑝(𝑗)𝑘,𝑟∑𝑀
𝑟=1 𝑝𝑗𝑘|𝑘,𝑟 (𝑛) 𝑝(𝑗)𝑘,𝑟 . (45)

3.4. Update of Models Probability. Here, the conducting of
updating is divided into two parts.

3.4.1. Newborn Target Component. Lacking the posterior
information, as model probability of newborn target com-
ponent is mainly influenced by posterior information, the
probability of model 𝑟 can be assumed as 𝑝(𝑗)𝑘,𝑟:

𝑝(𝑗)𝑘,𝑟 = 1𝑀, (46)

where𝑀 is the number of tracking models in model sets.

3.4.2. Existing Target Component. Model probability is
mainly updated by likelihood function, specified as

𝑝(𝑗)𝑘,𝑟 = 𝑝(𝑗)𝑘|𝑘−1,𝑟L(𝑗,𝑊)

𝑘,𝑟∑𝑀
𝑟=1 𝑝(𝑗)𝑘|𝑘−1,𝑟L(𝑗,𝑊)

𝑘,𝑟

, (47)

whereL(𝑗,𝑊)

𝑘,𝑟 is the likelihood function of the rth model and
can be specified as

L
(𝑗,𝑊)

𝑘,𝑟 = Γ (𝛼(𝑗,𝑊)

𝑘|𝑘,𝑟 ) (𝛽(𝑗)𝑘|𝑘−1,𝑟)𝛼(𝑗)𝑘|𝑘−1,𝑟
Γ (𝛼(𝑗)𝑘|𝑘−1,𝑟) (𝛽(𝑗,𝑊)

𝑘|𝑘,𝑟 )𝛼(𝑗,𝑊)𝑘|𝑘,𝑟 |𝑊|!
× 1

(𝜋|𝑊| |𝑊| 󵄨󵄨󵄨󵄨󵄨󵄨𝑆(𝑗,𝑊)

𝑘|𝑘−1,𝑟

󵄨󵄨󵄨󵄨󵄨󵄨)𝑑/2
󵄨󵄨󵄨󵄨󵄨󵄨𝑉(𝑗)

𝑘|𝑘−1,𝑟

󵄨󵄨󵄨󵄨󵄨󵄨V
(𝑗)

𝑘|𝑘−1,𝑟
/2

󵄨󵄨󵄨󵄨󵄨󵄨𝑉(𝑗,𝑊)

𝑘|𝑘,𝑟

󵄨󵄨󵄨󵄨󵄨󵄨V
(𝑗,𝑊)

𝑘|𝑘,𝑟
/2

⋅ Γ𝑑 (V(𝑗,𝑊)

𝑘|𝑘,𝑟 /2)Γ𝑑 (V(𝑗)𝑘|𝑘−1,𝑟/2) ,

(48)

where |𝑊| represents the measurement number of subsetW
and |𝑆| and |𝑉| denote the determinant of matrices 𝑆 and V.

One-step prediction parameters of the rth model are

𝛼(𝑗)𝑘|𝑘−1,𝑟 = 𝛼(𝑗)𝑘−1|𝑘−1𝜂𝑘−1,𝑟 ,
𝛽(𝑗)𝑘|𝑘−1,𝑟 = 𝛽(𝑗)𝑘−1|𝑘−1𝜂𝑘−1,𝑟 ,
V(𝑗)𝑘|𝑘−1,𝑟 = 𝑒−𝑇𝑠/𝜏𝑘−1,𝑟V(𝑗)𝑘−1|𝑘−1,
𝑉(𝑗)

𝑘|𝑘−1,𝑟 = V(𝑗)𝑘|𝑘−1,𝑟 − 𝑑 − 1
V(𝑗)𝑘−1|𝑘−1 − 𝑑 − 1𝑉(𝑗)

𝑘−1|𝑘−1.

(49)

Update formulas parameters of the rth model are

𝛼(𝑗,𝑊)

𝑘|𝑘,𝑟 = 𝛼(𝑗)𝑘|𝑘−1,𝑟 + |𝑊| ,
𝛽(𝑗,𝑊)

𝑘|𝑘,𝑟 = 𝛽(𝑗)𝑘|𝑘−1,𝑟 + 1,
V(𝑗,𝑊)

𝑘|𝑘,𝑟 = V(𝑗)𝑘|𝑘−1,𝑟 + |𝑊| ,
𝑉(𝑗,𝑊)

𝑘|𝑘,𝑟 = 𝑉(𝑗)

𝑘|𝑘−1,𝑟 + 𝑁(𝑗,𝑊)

𝑘|𝑘−1,𝑟 + 𝑍𝑊
𝑘 ,

𝑁(𝑗,𝑊)

𝑘|𝑘−1,𝑟 = (𝑆(𝑗,𝑊)

𝑘|𝑘−1,𝑟)−1 𝜀(𝑗,𝑊)

𝑘|𝑘−1,𝑟 (𝜀(𝑗,𝑊)

𝑘|𝑘−1,𝑟)𝑇 ,
𝑆(𝑗,𝑊)

𝑘|𝑘−1,𝑟

= H𝑘 [𝐹𝑟𝑘−1𝑃(𝑗)𝑘−1|𝑘−1 (𝐹𝑟𝑘−1)𝑇 + 𝐺𝑟
𝑘−1Q

𝑟
𝑘−1 (𝐺𝑟

𝑘−1)𝑇]H𝑇
𝑘

+ X(𝑗)

𝑘|𝑘−1|𝑊| ,
𝜀(𝑗,𝑊)

𝑘|𝑘−1,𝑟 = z𝑊𝑘 −H𝑘𝐹𝑟𝑘−1𝑚(𝑗)

𝑘|𝑘−1.

(50)
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It can be analyzed that the model probability is updated
by using the likelihood function of different models from
each GGIW component in the process of updating, namely,
introducing the newest measurement information to update
the model probability.

4. Simulations

4.1. Scene Settings. The cluttered group targets motion scene
is two dimensions. Monitoring area is [−1000, 1000]m ×
[−1000, 1000]m and the number of group targets is unknown
and time-varying, the simulation time is 30 s, and the sam-
pling interval of measurement data is 𝑇𝑠 = 1 s. Kinematic
state of group targets contains position and velocity; namely,
x𝑘 = [𝑥𝑘, 𝑦𝑘, 𝑥̇𝑘, 𝑦̇𝑘]. The time evolution model of group
targets’ kinematic state refers to formula (2); three motion
models are applied to describe the targets motion process in
the simulation scene of this paper including 1 CV model and
2CT models [19]. The two kinds of models are both satisfied
with the following state transform equation:

x𝑘 = 𝐹x𝑘−1 + 𝐺k𝑘−1. (51)

In CV model, there has been

𝐹CV = [[[[[[

1 0 𝑇𝑠 00 1 0 𝑇𝑠0 0 1 00 0 0 1
]]]]]]
,

𝐺 =
[[[[[[[[[

𝑇2𝑠2 0
0 𝑇2𝑠2𝑇𝑠 00 𝑇𝑠

]]]]]]]]]
.

(52)

In CT models, there have been

𝐹CT =
[[[[[[[[[

1 0 sin (Ω𝑇𝑠)Ω −1 − cos (Ω𝑇𝑠)Ω0 1 1 − cos (Ω𝑇𝑠)Ω sin (Ω𝑇𝑠)Ω0 0 cos (Ω𝑇𝑠) − sin (Ω𝑇𝑠)0 0 sin (Ω𝑇𝑠) cos (Ω𝑇𝑠)

]]]]]]]]]
,

𝐺 =
[[[[[[[[[

𝑇2𝑠2 0
0 𝑇2𝑠2𝑇𝑠 00 𝑇𝑠

]]]]]]]]]
,

(53)

where Ω denotes turning angular velocity of CT models
and sets Ω = ±0.5 rad/s. Observation model of group
targets refers to formula (4) where measurement equation
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Group 3
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Combination of
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Groups 1 and 2
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Figure 1: Trajectories of group targets.

𝐻 = [1 0]. In addition, transformation matrix of model
probability is

Π = [[[
0.9 0.05 0.050.05 0.9 0.050.05 0.05 0.9

]]]
. (54)

Observation location of sensor in the simulation was
assumed as (𝑥0, 𝑦0) = (0, 0)m, the generation of clutter is a
process of Poisson point which obeys a Poisson distribution
withmean value 𝜆𝑘 = 10, and 𝑐𝑘(𝑧𝑘) is the clutter distribution
and uniformly distributed in monitoring area. The detection
probability of group targets is 𝑝𝐷 = 0.99, and survival
probability of the target is 𝑝𝑆 = 0.95. The real extension
state of the ith group targets is 𝑋𝑖

𝑘 = 𝑅𝑖𝑘diag([𝑎2𝑖 𝑏2𝑖 ])(𝑅(𝑖)𝑘 )𝑇,
where 𝑅𝑖𝑘 represents a rotation matrix which is related to the
angle between long axis of the ellipse and coordinate axis,𝑎𝑖 represents long axis of the ellipse, and 𝑏𝑖 represents short
axis of the ellipse. The number of mixture components of
the newborn targets’ intension function is 𝐽𝑏,𝑘 = 3, 𝑤(𝑗)

𝑏,𝑘 =0.1; set the real originate position of the target to be the
random set of each newborn target’s components; variances
are 𝑃(𝑗)𝑏,𝑘 = diag([1002 452]). The extension state of new-
born group obeys inverse Wishart distribution and V(𝑗)𝑏,𝑘 =7, 𝑉(𝑗)

𝑏,𝑘 = diag([1 1]).Themeasurement rate of the newborn
targets state set is 𝛾𝑏,𝑘 = 10, 15, 20; parameters of Gamma
distribution are 𝛼𝑏,𝑘 = 10, 20, 30, 𝛽𝑏,𝑘 = 1, 1, 1. The fading
factors of Gamma distribution prediction of the 3 models set
in this paper are 𝜂𝑘 = 5, 6, 6. In addition, in the clipping and
merging of GGIW components, set the GGIW components
number maximally as 𝐽max = 100, pruning threshold is 𝑇𝑇ℎ =10−5, merging threshold is 𝑈𝑇ℎ = 102, and the picked state
threshold is 𝐸𝑇ℎ = 0.5.

Figure 1 describes motion status of 3 group tar-
gets in clutter, group 1 is initialed with kinematic state[−254m, 509m, 0m/s, −50m/s]𝑇, extension state (𝑎1, 𝑏1) =(10, 5), and measurement rate 𝛾(1)𝑘 = 20. Group 1 is generated
at time 𝑘 = 1, is extinct at time 𝑘 = 30, and is
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Figure 2: Single simulation of GGIW-CPHD algorithm.

motioned in CT model where Ω = 𝜋/16 rad/s during 1∼
9 s, Ω = −𝜋/8 rad/s during 10∼17 s, and Ω = 𝜋/8 rad/s
during 18∼30 s. Group 2 is initialed with kinematic state[−248m, 232m, 41.4m/s, 0m/s]𝑇, extension state (𝑎2, 𝑏2) =(15, 6), andmeasurement rate 𝛾(2)𝑘 = 10. Group 2 is generated
at time 𝑘 = 3, is extinct at time 𝑘 = 23, is motioned in
CV model during 3∼9 s, is motioned in CT model whereΩ = −𝜋/8 rad/s during 10∼17 s, and is motioned in CV
model during 18∼32 s. Group 3 is generated at time 𝑘 = 13,
is extinct at time 𝑘 = 28, is motioned in CV model during
13∼16 s, is motioned in CT model where Ω = −𝜋/10 rad/s
during 17∼21 s, and is motioned in CT model where Ω =𝜋/8 rad/s during 22∼25 s. Specified measurements are pre-
sented in Figure 1, where the black dots represent the group
targets’ real measurements, and black “∗” represents the
clutter.

4.2. Analysis. The MM-GGIW-CPHD algorithm in this
paper is mainly compared with GGIW-CPHD algorithm
in [9]. Single simulation results of the two algorithms are
presented in Figures 2 and 3. We can see from the sim-
ulation results that the two algorithms can track multiple
group targets well on the whole and can deal with the
merging and spawning factors. It can be deduced that
the tracking error of GGIW-CPHD algorithm increases
apparently while the group targets are maneuvering. How-
ever, MM-GGIW-CPHD can make full use of the posterior
measurement information in tracking process which can
decrease the tracking error while the group targets are
maneuvering.

200 orders of Monte-Carlo experiments are conducted.
OSPA missing distance is used to estimate the performance
of the two algorithms; specified calculation formulas are real
state finite sets: G𝑘 = {𝜉(𝑗)𝑘 }𝑁𝜉,𝑘𝑗=1 , 𝜉(𝑗)𝑘 ≜ (𝛾(𝑗)𝑘 , x(𝑗)𝑘 ,X(𝑗)

𝑘 ) and
estimation state finite sets Ĝ𝑘 = {𝜉̂(𝑖)𝑘 }𝑁̂𝜉,𝑘𝑖=1 , 𝜉̂(𝑖)𝑘 ≜ (𝛾̂(𝑖)𝑘 , x̂(𝑖)𝑘 ,
X̂(𝑖)

𝑘 ), where 𝑁𝜉,𝑘 and 𝑁̂𝜉,𝑘 separately represent the real and
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Figure 3: Single simulation of MM-GGIW-CPHD algorithm.
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Figure 4: OSPA distance of GGIW-CPHD algorithm.

estimation number of group targets. While𝑁𝜉,𝑘 ≤ 𝑁̂𝜉,𝑘, the 𝑝
order OSPA distance is defined [20]:

𝑑(𝑐)𝑝 = ( 1̂𝑁𝜉,𝑘

( min
𝜋∈∏𝑁̂𝜉,𝑘

𝑁𝜉,𝑘∑
𝑗=1

𝑑(𝑐) (𝜉(𝑗)𝑘 , 𝜉̂(𝑗)𝑘 )𝑝

+ 𝑐𝑝 (𝑁̂𝜉,𝑘 − 𝑁𝜉,𝑘)))1/𝑝 ,
(55)

where measurement rate 𝑑(𝑐)(𝛾(𝑗)𝑘 , 𝛾̂(𝑖)𝑘 ) = min(𝑐X, |𝛾(𝑗)𝑘 − 𝛾̂(𝑖)𝑘 |),𝑐𝛾 = 35, 𝑝 = 2; kinematic state 𝑑(𝑐)(x(𝑗)𝑘 , x̂(𝑖)𝑘 ) = min(𝑐x, ‖x(𝑗)𝑘 −
x̂(𝑖)𝑘 ‖2), 𝑐x = 60, 𝑝 = 2; extension state 𝑑(𝑐)(X(𝑗)

𝑘 , X̂(𝑖)

𝑘 ) =
min(𝑐X, ‖X(𝑗)

𝑘 − X̂(𝑖)

𝑘 ‖𝐹), 𝑐X = 120, 𝑝 = 2; ‖ ⋅ ‖ represents
the absolute value, ‖ ⋅ ‖2 represents 2-norm of vector, and ‖ ⋅ ‖𝐹
represents 𝐹-norm of vector.

Figures 4 and 5 represent the OSPA distance and the cor-
responding standard deviation (dotted line) of kinematical
states. We can know from the simulation results that while
the newborn group targets are emerging or the group targets
are maneuvering, the OSPA distances of kinematic state of
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Figure 5: OSPA distance of MM-GGIW-CPHD algorithm.
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Figure 6: OSPA distance of GGIW-CPHD algorithm.

GGIW-CPHD algorithm and MM-GGIW-CPHD algorithm
will both increase. Through the comparison of the results
we can find that while the algorithm is stable, the OSPA
distance of kinematic state of MM-GGIW-CPHD algorithm
is less than that of GGIW-CPHD algorithm on the whole.The
fluctuation range of estimation results is also smaller in the
MM-GGIW-CPHD algorithm due to the interactive fusion
of different models and the introducing of STF filter.

Figures 6 and 7 represent the OSPA distance and the
corresponding standard deviation (dotted line) of extension
states. We can know from the comparison of simulation
results that the OSPA distance of extension state of MM-
GGIW-CPHD algorithm is close to that of GGIW-CPHD
algorithm on the whole, but the fluctuation range of estima-
tion results of the MM-GGIW-CPHD algorithm is smaller
mainly due to the interactive fusion of different models to
estimate the extension state that make the stability of the
MM-GGIW-CPHD algorithm better.

Figures 8 and 9 represent the measurement rate estima-
tion (solid line) and the corresponding standard deviation
(dotted line) of the two algorithms. We can know from the
comparison of simulation results that the estimation accuracy
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Figure 7: OSPA distance of MM-GGIW-CPHD algorithm.
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Figure 8: OSPA distance of GGIW-CPHD algorithm.

ofMM-GGIW-CPHDalgorithm is better than that ofGGIW-
CPHD, and the former algorithm has a smaller standard
deviation of estimation results and a better robustness.

Figures 10 and 11 represent the number estimation of the
group targets (solid line) and the corresponding standard
deviation (dotted line) of the two algorithms. According
to PHD theory, the sum weight of GGIW components is
the estimation number of the group targets. We can know
from the comparison of simulation results that the estimation
results of MM-GGIW-CPHD algorithm are closer to the real
number of the group targets than GGIW-CPHD algorithm.
What is more, the standard deviation of MM-GGIW-CPHD
algorithm is smaller than that of GGIW-CPHD algorithm.

In order to contrast the calculation amount of MM-
GGIW-CPHD algorithm and GGIW-CPHD algorithm, we
take the comparison with the CPU time used in each step
into consideration. In 100 time Monte Carlo simulations,
the average time each step needed in single simulation of
GGIW-CPHD filter is 10.35 s, as to MM-GGIW-CPHD filter
proposed in this paper 13.69 s is needed. As the introduction
of the multiple models filter, the calculating time of the MM-
GGIW-CPHD algorithm will increase accordingly. With the
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Figure 9: OSPA distance of MM-GGIW-CPHD algorithm.
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Figure 10: Group number of GGIW-PHD algorithm.

applying of BFG approximation method in this paper, the
calculating amount decreases in a certain degree due to the
approximation of multiple models to single model.

5. Conclusions

The MM-GGIW-CPHD algorithm based on best-fitting
Gaussian approximation and strong tracking filter was pro-
posed to solve the large error problem in multiple maneuver-
ing group targets tracking. The best-fitting Gaussian approx-
imation method is proposed to implement the fusion of
multiple models using the strong tracking filter to correct the
predicted covariance matrix of the GGIW component. The
corresponding likelihood functions are deduced to update
the probability of multiple tracking models using the newest
measurement information. We can see from the simulations
that the tracking performance of the MM-GGIW-CPHD
algorithm is better than the GGIW-CPHD algorithm in the
estimation of kinematic state, extension state, and the number
of group targets.
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Figure 11: Group number of MM-GGIW-PHD algorithm.
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