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Because the sensor response is dependent on its operating temperature, modulated temperature operation is usually applied in
gas sensors for the identification of different gases. In this paper, the modulated operating temperature of microhotplate gas
sensors combined with a feature extraction method based on Short-Time Fourier Transform (STFT) is introduced. Because the
gas concentration in the ambient air usually has high fluctuation, STFT is applied to extract transient features from time-frequency
domain, and the relationship between the STFT spectrum and sensor response is further explored. Because of the low thermal time
constant, the sufficient discriminatory information of different gases is preserved in the envelope of the response curve. Feature
information tends to be contained in the lower frequencies, but not at higher frequencies. Therefore, features are extracted from
the STFT amplitude values at the frequencies ranging from 0Hz to the fundamental frequency to accomplish the identification
task. These lower frequency features are extracted and further processed by decision tree-based pattern recognition. The proposed
method shows high classification capability by the analysis of different concentration of carbon monoxide, methane, and ethanol.

1. Introduction

An electronic nose is an instrument that imitates the func-
tionalities of biological olfactory, which typically consists of
an array of chemical sensors (usually gas sensors) and a pat-
tern recognition system [1–3].The electronic noses have been
applied in some fields where odors or odorless volatiles and
gases are thought to play roles [4], such as disease diagnosis
[5], food quality [6, 7], agricultural applications [8], environ-
mental monitoring [9, 10], and automotive industry [11].

The selectivity and sensitivity of most gas sensors are dra-
matically dependent on the operating temperature, since the
reaction rate of different analytes and the stability of surface-
adsorbed oxygen species are a function of temperature. Oper-
ating temperature modes of sensors can be divided into two
categories: (i) the constant operating temperature (e.g., the
heating voltage is set to 5V) and (ii) temperature modulation

(e.g., the sensors are driven by self-adapted or periodic heat-
ing voltages) [12–15]. Temperaturemodulation alters reaction
kinetics at the sensor surface [16].Measuring the conductivity
of a metal-oxide chemical sensor at different temperatures
can provide a wealth of discriminatory information. The
previous works have showed that temperature modulation of
sensors can improve selectivity [17–19], while more compli-
cated algorithms are required [20]. In the last ten years, the
focus has been on analysis of dynamic sensor signals [21–
24], and the Fast Fourier Transform (FFT) or the Discrete
Wavelet Transform (DWT) [25, 26] for feature extraction has
been frequently used. Many scholars used the FFT transform
to extract the harmonic components as the features (e.g.,
Vergara and coworkers computed the absolute values of FFT
and extracted the values of six harmonics corresponding to
six modulating frequencies) [27]. However, these harmonic
components are heavily dependent on the frequency of
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Figure 1: The photos of microhotplate gas sensor arrays. (a) SEM photo of a four-element gas sensor array. Each sensor element is a square
freestanding membrane supported by four arms. A tungsten thin film resister is embedded in the membrane acting as both heater and
thermometer. The SnO

2
sensitive film is sputtered on the top of the microhotplate. (b) Microhotplate gas sensors packaged with DIP16 or

TO5.

the operating temperature [25]. Therefore, a more practical
method must be developed to overcome this problem.

In addition, gas molecules are carried by air flow and
distributed by turbulence [28]. Since the gas concentration
in the ambient air usually has high fluctuation over time, it
is difficult to extract transient features in this situation. The
sensing in both time and frequency domain is necessarywhile
it ismore complicated. Although there have beenmanyworks
in a single domain, a limited number of works have been
addressed to combine both domains.The Short-Time Fourier
Transform (STFT) is a way to extract the main features
from the time-frequency domain. For example, Nimsuk and
Nakamoto used the STFT method to improve the capability
of odor classification in dynamical change of concentration
using a quartz crystalmicrobalance (QCM) sensor array [29].
However, the applicability of STFT method for temperature
modulated microhotplate gas sensors has not been reported
yet.

In this paper, the STFT is calculated over the responses
of SnO

2
microhotplate gas sensors, and the relationship

between the STFT spectrum and sensor response is further
explored. The optimal features tend to be contained in the
lower frequency responses of the sensor close to direct
current (DC). Therefore, features are extracted from the
STFT amplitude values at the frequency ranging from 0Hz
to the fundamental frequency to fulfill the identification
task. The gas identification effect of the proposed method is
demonstrated by the analysis of carbon monoxide, methane,
and ethanol with different concentrations. Various waveform
types and periods of the heating voltage are studied, and
results show that it is possible to find the optimal features to
obtain excellent identification of the gases studied regardless
of their concentrations. The structure of the paper is as
follows. Section 2 introduces the experimental setup and

the dataset acquiring procedure. Section 3.1 presents the
methodology based on STFT to select the optimal features.
The recognition results are shown in Section 3.2, and the
conclusions of this work are outlined in Section 4.

2. Experimental

2.1. Microhotplate Gas Sensors. The four-element microhot-
plate gas sensor arrays are fabricated using complementary
metal-oxide semiconductor (CMOS) and post-CMOS tech-
nology [30]. Figure 1(a) shows the photo of a sensor microar-
ray and Figure 1(b) shows the packaged gas sensors.

The main body of the sensor is a square freestanding
membrane supported by four bridge arms. In the center
membrane, a tungsten thin film resister that has the snake
shape is designed to monitor the temperature of the micro-
hotplate as well as to heat up the membrane. The SnO

2
sen-

sitive film is sputtered on the top of the microhotplate, and Pt
catalyst with a thickness of 1 nm is sputtered for improving its
selectivity.

The thermal efficiency of the microhotplate is subse-
quently acquired by electrically heating with a digital source
meter (Keithley 2400) and measuring the resistance values.
The measurement results show that the thermal impedance
of the microhotplate with electrodes and sensitive materials
is about 16∘C/mW.The thermal response of the coated mem-
branes is near 8ms (10% to 90% rise time) when working at
300∘C [30].

2.2. Experimental Setup and Data Collection. Experimental
setup and the measurement circuit are showed in Figure 2.
The testing chamber containing a microhotplate sensor array
is connected to a gas mixer controlled by the mass flow
controllers (MFCs). The chamber volume is 300mL. The
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Figure 2: Experimental setup for data acquisition. (a) The gas mixture is injected to the testing chamber at a constant flow rate, with gas
components and concentrations controlled by the MFCs. The gas sensors are placed in the testing chamber, and the data is recorded by
computer. (b)Themeasurement circuit. Each gas sensor has two resisters.𝑅

𝐻
is acting as both heater and thermometer, and𝑅

𝑆
is the resistance

of the gas sensing film. 𝑉
𝐻
is the heating voltage for temperature modulation. 𝑅

𝐿
and 𝑉

𝐶
are constants and 𝑉

𝑂
is recorded as the sensor data.

target gas is injected to the chamber at a constant flow rate
of 330 sccm. The data acquisition is controlled by PC via a
LabVIEW program.The sampling rate is set to 1Hz.

The sensor microarray is used with dynamic modulation
of the heating voltage that is generated by a programmable
DC voltage source (HP6626A) to classify and identify three
reducing gases:

Methane: 1000 ppm, 2000 ppm, 3000 ppm, and
4000 ppm.
Carbon monoxide: 50 ppm, 100 ppm, 150 ppm, and
200 ppm.
Ethanol: 30 ppm, 40 ppm, 50 ppm, and 60 ppm.

Dynamic modulation waveforms of the heating voltage
are sinusoidal, rectangular, sawtooth, and triangular wave-
form. Each heating waveform has 8 modulation periods, 4 s,
10 s, 20 s, 30 s, 40 s, 50 s, 60 s, and 80 s, and the operating
temperature ranges from 200 to 300∘C. The test procedure is
described as follows.

Step 1. Dry air at a constant flow rate of 330 sccm by the flow
system is circulated through the testing chamber for 1200 s to
measure the baseline steady-state sensor response.

Step 2. Thegas with the desired concentration is injected into
the testing chamber for 600 s.

Step 3. The testing chamber is cleaned with dry air for 900 s.
Then, the measurement steps are replicated for subsequent
measurements.

Table 1 shows the dataset in detail. Figure 3 shows the
measured voltages when heating voltage is a sawtooth mod-
ulation waveform at period of 40 s. As shown in Figure 3, the
sensor has higher sensitivity to carbon monoxide compared
with methane and ethanol. Moreover, the measured voltages
are greatly influenced by the operating temperature. There
are two main reasons. (i) Microhotplate can reach a stable
temperature in several milliseconds, so the temperature of
the microhotplate will mostly follow the shape of the heating
voltage with frequency lower than 1Hz. (ii) The sensors take
about 1 to 2 minutes to reach a steady adsorption state and
about 2 to 3 minutes to reach a steady desorption state. As
a result, because of the low thermal time constant, the shape
of sensor response is similar to the heating voltage. A slight
modification of the response is found in the presence of three
reducing gases. In this work, similar results are obtained with
the other modulation waveforms.

3. Methodology and Results

3.1. Feature Extraction Based on STFT Method. Short-Time
Fourier Transform (STFT) is a method that FFT transform is
applied after the signal is cut out by the window function. For
an arbitrary signal 𝑥(𝑡) in the time domain, STFT is defined
as [31]

𝑌 (𝑡, 𝑓) = STFT (𝑥 (𝑡))

= ∫

∞

−∞

𝑥 (𝑢) ℎ
∗
(𝑢 − 𝑡) 𝑒

−𝑗2𝜋𝑓𝑢
𝑑𝑢,

(1)
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Table 1: The dataset in detail.

Heating waveform and period (s) Number of samples
Methane Carbon monoxide Ethanol Total

Sinusoid 128 128 128 384
4, 10, 20, 30, 40, 50, 60, and 80
Rectangle 128 128 128 384
4, 10, 20, 30, 40, 50, 60, and 80
Sawtooth 128 128 128 384
4, 10, 20, 30, 40, 50, 60, and 80
Triangle 128 128 128 384
4, 10, 20, 30, 40, 50, 60, and 80
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Figure 3:The typical output voltages and heating voltage. (a)The output voltages when the sensor is exposed in three analytes: 50 ppm carbon
monoxide, 2000 ppm methane, and 30 ppm ethanol, respectively. (b) The heating voltage is sawtooth modulation waveform at 40 s periods.

where𝑥(𝑡) is the original signal in time domain. ℎ(𝑡) is a STFT
window function with 𝑡 = 0 as the center, and the length of
ℎ(𝑡) is 𝐿, 0 < 𝐿 ≤ 1500. In this paper, 𝐿 is 1/4 of the total
length of 𝑥(𝑡). That is, 𝐿 = 375.

Then, 𝑌(𝑡, 𝑓) can be described by the following matrix:

𝑌 (𝑡, 𝑓) =

[
[
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𝑦
𝑚,2

⋅ ⋅ ⋅ 𝑦
𝑚,𝑛

]
]
]
]
]
]

]

, (2)

where 𝑦
𝑖,𝑗
is the STFT value. The frequency of 𝑖th row is 𝑓

𝑖
=

𝑖/𝑁. In this paper, a 1024-point FFT transform is used. That
is, 𝑁 = 1024, 𝑚 = 1024, 𝑛 = 1500.

In order to reduce the drift of the sensors and the back-
ground noise, the sensor responses need to be preprocessed
by 𝑥(𝑡) = (𝑉gas(𝑡) − 𝑉air)/𝑉air, where 𝑉gas(𝑡) and 𝑉air are the
measured voltages in gas and in air, respectively.

Figure 4 shows the STFT amplitude spectrum of the
sensor response with rectangularmodulation waveform at 4 s
period.The STFT amplitude values vary with time at different
frequencies. The 𝑥-coordinate of 600 s is the dividing line of
feature vectors. The curve rises up fast on the left side and
descends down quickly on the right side. The essence of this
phenomenon is mainly related with the sensor resistance.
The reducing gas is injected into the chamber in the first
600 s, which leads to the decrease of the sensor resistance.The
dry air is injected into the chamber from the time of 600 s
to 1500 s, and sensor resistance gradually increases. At the
same time, Figure 4 shows the distribution of frequency. It is
mainly composed of a 0.25Hz fundamental wave frequency
and some lower frequency responses close to DC, and, with
the increasing of frequency, the amplitude spectrum rapidly
decreases to 0.

In order to extract the optimal features, the frequency dis-
tribution of the sensor responses should be clearly analyzed.
As seen from Figure 5, the frequency distribution obtained
by STFT shows that the DC component (𝑓 = 0Hz) is
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Figure 4: The STFT amplitude spectrums of sensor responses to three analytes modulated with the rectangular modulation waveform at 4 s
period. Hann window is used as the window function.The length of the window function is 375. (a) 150 ppm carbonmonoxide; (b) 3000 ppm
methane; (c) 50 ppm ethanol.
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Figure 5:The frequency distributions of sensor responses (150 ppm
carbonmonoxide) are mainly composed of a fundamental wave and
some harmonic waves.

heavily dependent on the steady-state response associated
with the gas concentration. This coefficient is not used for
identification task among different gases, since the system
aims at identifying the gas regardless of its concentration.

Suppose 𝑓
0
is the fundamental frequency and 𝑇 is the

period of heating voltage, the fundamental frequency will
be 𝑓
0

= 1/𝑇, and the harmonics have frequencies of 2𝑓
0
,

3𝑓
0
, 4𝑓
0
, . . ., and so forth. Harmonic frequencies are equally

spaced by the width of the fundamental frequency and can
be found by repeatedly adding that frequency. As shown
in Figure 5, the harmonic frequency depends much on the
period of the heating voltage. Therefore, when the period of
the heating voltage changes dynamically, for example, self-
adapted operating temperature, the harmonics are not used
for the recognition task.

In fact, because of the low thermal time constant, the
sufficient discriminatory information is preserved in the
envelope of the response curve, but not at higher frequencies.
The optimal features tend to be contained in the lower
frequency responses of the sensor close to DC. Therefore,
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Table 2: The recognition accuracy for the rectangle waveform (decision tree classifier and 12-fold cross-validation are applied to the iden-
tification of gases) (%).

Frequency selected (mHz) Feature selected Window function
Boxcar Triangle Blackman Taylor Tukey Hann Hamming Gaussian

0.97 𝑉
2

96.88 96.88 94.79 93.75 96.88 94.79 90.63 95.83
1.94 𝑉

3
97.92 93.75 95.83 96.88 97.92 92.71 95.83 96.88

2.91 𝑉
4

97.92 95.83 95.83 97.92 97.92 94.79 97.92 94.79
3.88 𝑉

5
95.83 97.92 88.54 97.92 96.88 90.63 96.88 93.75

4.85 𝑉
6

94.79 95.83 92.71 97.92 92.71 98.96 94.79 96.88
5.82 𝑉

7
93.75 95.83 98.96 100 95.83 97.92 100 96.88

6.79 𝑉
8

92.71 94.79 97.92 92.71 91.67 96.88 90.63 96.88
7.76 𝑉

9
96.88 85.42 100 92.71 86.46 89.58 94.79 96.88

8.73 𝑉
10

83.33 86.46 95.83 84.38 87.5 95.83 85.42 94.79
9.7 𝑉

11
87.5 90.63 91.67 84.38 81.25 86.46 94.79 88.54

10.67 𝑉
12

79.17 90.63 88.54 76.04 84.38 84.38 87.5 84.38

features are extracted from the STFT amplitude values at the
frequency ranging from 0Hz to the fundamental frequency
𝑓
0
to finish the identification task.
The 𝑥-coordinate of the fundamental frequency is 𝑙 =

𝑁/(𝑇 ⋅ 𝑓
𝑠
), where 𝑇 is the period of heating voltage and 𝑓

𝑠

is the sampling rate. In this work, 𝑓
𝑠

= 1Hz, 𝑁 = 1024.
Because themaximummodulation period is 80 s, the smallest
fundamental frequency 𝑓

0
is 12.5mHz, and the correspond-

ing 𝑥-coordinate value is 𝑙 = 12. As a result, 11 frequencies
that range from 0.97 to 10.67mHz with 0.97mHz interval
can be selected, and the corresponding feature vectors are
𝑉
𝑖
= [|𝑦𝑖,1| |𝑦

𝑖,2
| ⋅ ⋅ ⋅ |𝑦

𝑖,𝑛
|], 2 ≤ 𝑖 ≤ 12. Figure 6 shows the

feature vectors of 11 frequencies for 3 analytes.

3.2. Decision Tree-Based Pattern Recognition. Decision tree is
one of themost well-knownmethods used for extracting clas-
sification rules from data [32]. As for classification problems,
decision tree is a top-down process, finding classification
rules according to the nodal path to a leaf node. Firstly, get
the branches down from the node, and then get the labels of
the samples at the leaf node by comparing the attributes of the
internal nodes. Each child node is divided again according
to the comparison of attribute values. Repeat the above steps
until it reaches the classification criteria [33, 34].

There are many window functions with different shapes.
Short-Time Fourier Transform is also defined as Gabor
Transform if Gaussian window function is selected. Window
function makes the STFT observe the features of the sensor
responses from time-frequency domain. Aimed at high time
resolution, a narrow window function should be selected.
Aimed at high frequency resolution, a wide window function
should be selected. Hence, it is very important to select the
shape and length of the window function. In this work, 𝐿 is
1/4 of the total length of the measured voltage (𝐿 = 375).

The effects of 8 window functions are tested.The window
functions are Boxcar window, Hamming window, Hann win-
dow, Gaussian window, Taylor window, Blackman window,
Tukey window, and Triangle window.

The specific process of the algorithm for each heating
waveform is summarized as follows: (1) select a desired

window function (e.g., the hamming window function), and
calculate the optimal feature vectors 𝑉

𝑖
, (2 ≤ 𝑖 ≤ 12) of all

samples by STFT method; (2) reduce the dimensions of the
vector 𝑉

𝑖
, (2 ≤ 𝑖 ≤ 12) by PCA, and only retain the first

10 principal components; (3) put each feature vector into the
decision tree classifier for pattern recognition, respectively;
(4) the process described is replicated for the other window
functions.

Meanwhile, the classifier uses 12-fold cross-validation
method to test the robustness of the algorithm. The original
sample is randomly partitioned into 12 equal sized sub-
samples. Of the 12 subsamples, a single subsample is retained
as the validation data for testing themodel, and the remaining
11 subsamples are used as training data. The cross-validation
process is then repeated 12 times, with each of the 12 sub-
samples used exactly once as the validation data. The 12
results from the folds can then be averaged to produce a single
estimation.

Tables 2–5 show the recognition accuracy of the first 11
feature vectors for 4 heating waveforms. For the rectangular
waveform, the best window function is Hamming or Taylor
window function and the selected frequency is 5.82mHz. For
the sawtooth waveform, the best choice is Taylor window
function and frequencies range from 3.88 to 7.76mHz. For
the sinusoidal waveform, we can select Hann window and
frequencies range from 3.88 to 4.85mHz orGaussianwindow
and frequencies range from 5.82 to 7.76mHz.

In order to analyze the effect of operating temperature
waveform, the selected frequencies are extended to the first
50 frequencies that are 𝑓

𝑖
= 𝑖/1024, (0 ≤ 𝑖 ≤ 49). Their

corresponding feature vectors are 𝑉
𝑖
, (1 ≤ 𝑖 ≤ 50). Then, we,

respectively, put 𝑉
𝑖
into decision tree system to identify three

kinds of gases. In the end, the average accuracy rate of each
frequency with 8 window functions is calculated in order to
avoid the influence of the window function waveform. The
average accuracy rates of four modulated operating temper-
ature waveforms are showed in Figure 7. If the selected fre-
quency is lower than 2.91mHz, the accuracy of the rectangle
waveform is highest. If the selected frequency is higher than
2.91mHz, the accuracy of the sawtooth waveform is highest.
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Figure 6: Continued.
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Figure 6: The feature vectors for three analytes (150 ppm carbon monoxide, 3000 ppm methane, and 50 ppm ethanol) with sawtooth
modulated operating temperature (𝑇 = 40 s) at the first 11 frequencies: (a) 𝑓
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Table 3: The recognition accuracy for the sawtooth waveform (decision tree classifier and 12-fold cross-validation are applied to the iden-
tification of gases) (%).

Frequency selected (mHz) Feature selected Window function
Boxcar Triangle Blackman Taylor Tukey Hann Hamming Gaussian

0.97 𝑉
2

93.75 96.88 93.75 94.79 94.79 94.79 94.79 96.88
1.94 𝑉

3
97.92 95.83 95.83 93.75 90.63 92.71 94.79 94.79

2.91 𝑉
4

96.88 96.88 95.83 92.71 93.75 93.75 97.92 95.83
3.88 𝑉

5
94.79 96.88 90.63 100 97.92 93.75 94.79 94.79

4.85 𝑉
6

97.92 98.96 92.71 100 97.92 94.79 96.88 95.83
5.82 𝑉

7
97.92 95.83 97.92 100 90.63 100 100 96.88

6.79 𝑉
8

91.67 91.67 93.75 100 97.92 96.88 95.83 96.88
7.76 𝑉

9
98.96 93.75 96.88 100 98.96 97.92 97.92 100

8.73 𝑉
10

96.88 91.67 97.92 96.88 91.67 97.92 94.79 100
9.7 𝑉

11
88.54 98.96 96.88 97.92 98.96 91.67 95.83 96.88

10.67 𝑉
12

97.92 98.96 92.71 94.79 91.67 84.38 88.54 85.42

Table 4: The recognition accuracy for the sinusoidal waveform (decision tree classifier and 12-fold cross-validation are applied to the iden-
tification of gases) (%).

Frequency selected (mHz) Feature selected Window function
Boxcar Triangle Blackman Taylor Tukey Hann Hamming Gaussian

0.97 𝑉
2

89.58 89.58 89.58 90.63 87.5 89.58 92.71 93.75
1.94 𝑉

3
93.75 87.50 90.63 86.46 88.54 91.67 90.63 92.71

2.91 𝑉
4

98.96 91.67 85.42 97.92 96.88 92.71 91.67 85.42
3.88 𝑉

5
94.79 93.75 92.71 97.92 100 100 96.88 96.88

4.85 𝑉
6

86.46 95.83 94.79 98.96 91.67 100 97.92 92.71
5.82 𝑉

7
97.92 92.71 95.83 93.75 94.79 92.71 97.92 100

6.79 𝑉
8

90.63 96.88 97.92 89.52 92.71 97.92 94.79 100
7.76 𝑉

9
84.38 92.71 93.75 94.79 95.83 95.83 95.83 100

8.73 𝑉
10

82.29 88.54 95.83 89.58 86.46 96.88 92.71 95.83
9.7 𝑉

11
85.42 95.83 93.75 90.63 88.54 91.67 94.79 91.67

10.67 𝑉
12

90.63 98.96 92.71 92.71 87.5 96.88 96.88 96.88

Table 5: The recognition accuracy for the triangular waveform (decision tree classifier and 12-fold cross-validation are applied to the
identification of gases) (%).

Frequency selected (mHz) Feature selected Window function
Boxcar Triangle Blackman Taylor Tukey Hann Hamming Gaussian

0.97 𝑉
2

84.38 96.88 95.83 91.67 87.5 92.71 96.88 94.79
1.94 𝑉

3
87.50 89.58 96.88 92.71 91.67 96.88 94.79 96.88

2.91 𝑉
4

95.83 88.54 90.63 82.29 90.63 91.67 93.75 91.67
3.88 𝑉

5
92.71 91.67 84.38 88.54 97.92 85.42 88.54 85.42

4.85 𝑉
6

86.46 94.79 87.5 91.67 87.5 89.58 93.75 86.46
5.82 𝑉

7
89.58 97.92 89.58 92.71 88.54 87.50 95.83 93.75

6.79 𝑉
8

93.75 91.67 85.42 89.58 93.75 90.63 82.29 86.46
7.76 𝑉

9
88.54 88.54 81.25 86.46 92.71 93.75 82.29 86.46

8.73 𝑉
10

91.67 86.46 83.33 87.5 93.75 79.17 76.04 76.04
9.7 𝑉

11
89.58 75 70.83 70.83 81.25 84.38 93.75 88.54

10.67 𝑉
12

92.71 77.08 68.75 76.04 71.88 78.13 79.13 83.33

A feature combination that describes the original data
perfectly can make the classifier work more efficiently. In this
work, the optimal combinations of 11 features are optimised
by Genetic Algorithm (GA). GA is adaptive heuristic search
algorithm premised on the evolutionary ideas of natural

selection and genetics [35]. The basic concept of GA is
designed to simulate processes in natural system necessary
for evolution, specifically those that follow the principles first
laid down by Charles Darwin of survival of the fittest. As such
they represent intelligent exploitation of a random search
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Figure 7: The recognition accuracy rates of four modulation
waveforms. Decision tree classifier and 12-fold cross-validation are
applied for the pattern recognition system.

within a defined search space to solve a problem.The specific
algorithm is as follows.

Step 1. Randomly generate initial population 𝑀(0), and the
size of 𝑀(0) is set to 20.

Step 2. Compute and save the fitness 𝑢(𝑚) for each individual
𝑚 in the current population 𝑀(𝑡):

𝑢 (𝑚) =
1

sse (𝑇̂ − 𝑇)

=
1

∑
𝑛

𝑖=1
(̂𝑡
𝑖
− 𝑡
𝑖
)
2
, (3)

where 𝑇̂ = {̂𝑡
1
, 𝑡̂
2
, . . . , 𝑡̂

𝑛
} is the prediction set and 𝑇 = {𝑡

1
, 𝑡
2
,

. . . , 𝑡
𝑛
} is the testing set.

Step 3. Selection, crossover, and mutation are set to roulette
wheel selection, single point crossover, and single point
mutation, respectively.

Step 4. Generate 𝑀(𝑡 + 1) by probabilistically selecting indi-
viduals from𝑀(𝑡) to produce offspring via genetic operators.

Step 5. Repeat Step 2 until satisfying solution is obtained.

Tables 6–9 show the optimal feature combinations
selected by GA and their classification accuracies. The clas-
sification accuracies of the optimal feature combinations are
100% in all cases.

The recognition accuracy of the presented method is
compared against the standard Fast Fourier Transform
(FFT) and the Discrete Wavelet Transform (DWT). For FFT
method, a 1024-point FFT is computed and the absolute
values of the eight harmonics corresponding to the modu-
lating frequencies are extracted. Eight harmonic frequencies
are 250mHz, 100mHz, 50mHz, 33mHz, 25mHz, 20mHz,
17mHz, and 12.5mHz. Put 8 features into the decision tree
classifier for pattern recognition. When analyzing Discrete

Table 6: The optimal feature combination selected by GA and the
recognition accuracy for the rectangle waveform (%).

Window function Feature selected Accuracy (%)

Boxcar 𝑉
3
+ 𝑉
4

100
𝑉
2
+ 𝑉
3
+ 𝑉
4

100

Triangle 𝑉
6
+ 𝑉
7

100
𝑉
5
+ 𝑉
7

100

Hamming 𝑉
6
+ 𝑉
7

100
𝑉
5
+ 𝑉
7

100
Hann 𝑉

6
+ 𝑉
8

100

Blackman 𝑉
7
+ 𝑉
8

100
𝑉
6
+ 𝑉
9

100
Taylor 𝑉

4
+ 𝑉
5

100

Gaussian 𝑉
6
+ 𝑉
10

100
𝑉
7
+ 𝑉
10

100

Tukey
𝑉
5
+ 𝑉
10

100
𝑉
6
+ 𝑉
10

100
𝑉
4
+ 𝑉
5

100

Table 7: The optimal feature combination selected by GA and the
recognition accuracy for the sawtooth waveform (%).

Window function Feature selected Accuracy (%)
Boxcar 𝑉

3
+ 𝑉
4

100

Triangle 𝑉
4
+ 𝑉
6

100
𝑉
5
+ 𝑉
6

100

Hamming 𝑉
4
+ 𝑉
9

100
𝑉
6
+ 𝑉
9

100
Hann 𝑉

4
+ 𝑉
7

100

Blackman
𝑉
3
+ 𝑉
5
+ 𝑉
9

100
𝑉
3
+ 𝑉
9

100
𝑉
7
+ 𝑉
9

100

Taylor

𝑉
4
+ 𝑉
5

100
𝑉
5
+ 𝑉
9

100
𝑉
6
+ 𝑉
8
+ 𝑉
9

100
𝑉
5
+ 𝑉
7

100

Gaussian

𝑉
3
+ 𝑉
5
+ 𝑉
10

100
𝑉
3
+ 𝑉
4
+ 𝑉
10

100
𝑉
3
+ 𝑉
6
+ 𝑉
10

100
𝑉
4
+ 𝑉
10

100
Tukey 𝑉

4
+ 𝑉
5

100

Wavelet Transform, 3-level decomposition and the fourth-
order Daubechies (db4) are selected. The third-level decom-
position coefficients are extracted as features. PCA is used to
reduce the dimensionality of features and keep only the first
10 principal components. Decision tree classifier and 12-fold
cross-validation are applied for all of the pattern recognition
systems. The recognition accuracy of three reducing gases is
showed in Table 10.

As seen from Table 10, three reducing gases could be
identified by FFT method with the highest accuracy rate of
79.17%, which is significantly worse than the identification
rate reached when STFT method is used. DWT method
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Table 8: The optimal feature combination selected by GA and the
recognition accuracy for the sinusoidal waveform (%).

Window function Feature selected Accuracy (%)
Boxcar 𝑉

2
+ 𝑉
4
+ 𝑉
5

100

Triangle
𝑉
2
+ 𝑉
6
+ 𝑉
10

100
𝑉
5
+ 𝑉
6
+ 𝑉
10

100
𝑉
3
+ 𝑉
6
+ 𝑉
10

100

Hamming
𝑉
2
+ 𝑉
6
+ 𝑉
12

100
𝑉
3
+ 𝑉
6
+ 𝑉
12

100
𝑉
6
+ 𝑉
12

100

Hann 𝑉
6
+ 𝑉
12

100
𝑉
4
+ 𝑉
6
+ 𝑉
12

100

Blackman 𝑉
4
+ 𝑉
8
+ 𝑉
9

100
𝑉
2
+ 𝑉
6
+ 𝑉
12

100

Taylor 𝑉
3
+ 𝑉
12

100
𝑉
2
+ 𝑉
5
+ 𝑉
12

100

Gaussian
𝑉
6
+ 𝑉
9
+ 𝑉
11

100
𝑉
2
+ 𝑉
6
+ 𝑉
10

100
𝑉
6
+ 𝑉
8
+ 𝑉
11

100

Tukey
𝑉
4
+ 𝑉
5
+ 𝑉
7

100
𝑉
4
+ 𝑉
5
+ 𝑉
6

100
𝑉
2
+ 𝑉
5
+ 𝑉
6

100

Table 9: The optimal feature combination selected by GA and the
recognition accuracy for the triangular waveform (%).

Window function Feature selected Accuracy (%)
Boxcar 𝑉

2
+ 𝑉
4

100

Triangle
𝑉
2
+ 𝑉
6
+ 𝑉
8

100
𝑉
2
+ 𝑉
5
+ 𝑉
6

100
𝑉
2
+ 𝑉
6

100

Hamming
𝑉
2
+ 𝑉
6
+ 𝑉
8

100
𝑉
2
+ 𝑉
5
+ 𝑉
6

100
𝑉
2
+ 𝑉
6

100

Hann 𝑉
2
+ 𝑉
5
+ 𝑉
7
+ 𝑉
9

100
𝑉
2
+ 𝑉
7
+ 𝑉
9

100

Blackman 𝑉
2
+ 𝑉
5
+ 𝑉
8

100
𝑉
2
+ 𝑉
8

100
Taylor 𝑉

2
+ 𝑉
5
+ 𝑉
6

100

Gaussian
𝑉
2
+ 𝑉
8
+ 𝑉
9

100
𝑉
2
+ 𝑉
3
+ 𝑉
9
+ 𝑉
12

100
𝑉
2
+ 𝑉
7

100
Tukey 𝑉

2
+ 𝑉
5

100

Table 10: The recognition accuracy when FFT and DWT ap-
proaches are used (%).

Sawtooth Triangle Rectangle Sinusoid
FFT 77.5 52.08 79.17 58.33
DWT 93.75 94.79 93.75 93.75

outperforms FFT but obtains worse gas identification perfor-
mance than STFT method. Meanwhile, the STFT is not only

accurate, but also easy to understand compared with DWT
method.

4. Conclusions

This paper introduces a novel method to extract optimal
features of microhotplate gas sensors that modulated with
different frequency operating temperature. The lower fre-
quency amplitudes are extracted by STFT method, and the
optimal feature combinations are selected by GA, since gas
information tends to be contained in the lower frequencies,
but not at higher frequencies.

We then evaluate the performance of our method by
using the decision tree classifier and obtain high classification
capability. Moreover, it is found that the proposed method is
robust against not only dynamical heating frequency changes,
but also different concentration levels.Therefore, we conclude
that the proposed method could improve the recognition
performance of temperature modulated microhotplate gas
sensors.
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