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In the scenario where an underwater vehicle tracks an underwater target, reliable estimation of the target position is required.While
USBL measurements provide target position measurements at low but regular update rate, multibeam sonar imagery gives high
precision measurements but in a limited field of view. This paper describes the development of the tracking filter that fuses USBL
and processed sonar image measurements for tracking underwater targets for the purpose of obtaining reliable tracking estimates
at steady rate, even in cases when either sonar or USBL measurements are not available or are faulty. The proposed algorithms
significantly increase safety in scenarios where underwater vehicle has to maneuver in close vicinity to human diver who emits air
bubbles that can deteriorate tracking performance. In addition to the tracking filter development, special attention is devoted to
adaptation of the region of interest within the sonar image by using tracking filter covariance transformation for the purpose of
improving detection and avoiding false sonar measurements. Developed algorithms are tested on real experimental data obtained
in field conditions. Statistical analysis shows superior performance of the proposed filter compared to conventional tracking using
pure USBL or sonar measurements.

1. Introduction

Tracking underwater targets presents a great challenge in
marine robotics due to absence of global positioning signals
that are usually available in areas reachable by satellites.
In order to tackle this problem, acoustic based sensors
such as LBL (long-baseline), SBL (short-baseline), and USBL
(ultrashort-baseline) are used for underwater localization
and navigation, by triangulating responses obtained from
acoustic beacons. While LBLs require inconvenient deploy-
ing of underwater beacons around the operational area,
USBLs that enable relative underwater localization using
acoustic propagation are most often used for tracking under-
water objects. The greatest advantage of USBL systems is
their easy deployment (the system consists only of two nodes,
a transmitter and a transducer) and relatively long range.
On the other hand, the precision of USBLs deteriorates
with distance and multipath issues may arise. In addition to
that, due to acoustic wave propagation, measurements are
sparse (arriving at intervals measured in seconds) and time

is delayed depending on the distance between the receiving
and the transmitting node.

Besides using USBL devices, multibeam sonar devices
(also known as acoustic cameras) are commonly used under-
water in order to get relative position measurements. While
state-of-the-art multibeam sonars provide almost real-time
acoustic image at high frequency with high precision, they
are characterized with limited field of view and usually
lower range.UnlikeUSBLs, sonars require additional acoustic
image processing in order to obtain position of an object
within the field of view, which can often result in false
measurements due to noise.

The objective of work presented in this paper is to exploit
the advantages of both USBL and sonar devices by fusing
their measurements for the purpose of achieving precise and
reliable underwater object tracking. The main contributions
of this paper are

(i) development of the tracking filter that fusesUSBL and
processed sonar image measurements with diverse
characteristics, for the purpose of obtaining reliable
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tracking estimates at steady rate, even in cases when
either sonar or USBL measurements are not available
or are faulty;

(ii) adaptation of the region of interest within the sonar
image by using tracking filter covariance transfor-
mation for the purpose of improving detection and
avoiding false sonar measurements;

(iii) experimental validation (in field conditions) of the
developed tracking algorithms together with com-
parative analysis that demonstrates the quality of the
obtained results.

The main motivation for the presented work arises from
the FP7 “CADDY-Cognitive Autonomous Diving Buddy”
project that has the main objective to develop a multicom-
ponent marine robotic system comprising of an autonomous
underwater vehicle (AUV) and an autonomous surface
marine platform that will enable cooperation between robots
and human divers. Three main functionalities of the envi-
sioned system include “buddy slave” that assists divers during
underwater activities, “buddy guide” that guides the diver to
the point of interest, and “buddy observer” that monitors the
diver at all times by keeping at a safe distance from the diver
and anticipating any problems that the diver may experience.

In the context of the CADDY project one of the main
prerequisites for executing envisioned control algorithms
and ensuring diver safety during human-robot interaction
is precise diver position estimation. In order to achieve this
requirement, multibeam sonar imaging is used. However,
the main problem that arises when using multibeam sonars
is limited field of view. If the observed target (diver or an
underwater vehicle) would leave the sonar’s field of view,
it would be impossible to track it or even distinguish the
tracked object from another target that might enter the field
of view. To cope with this problem, fusion between USBL
and sonar measurements is incorporated. The low precision
USBL measurements are used by the estimator to provide
target position, albeit with higher variance. This information
is used by the sonar target detector to set the region of interest
in which the target is located. Finally, if the sonar detector
finds the target in this region of interest, estimator is updated
with the high precision (low variance) sonar measurement.
The combination of the two sources ofmeasurements ensures
reliable target tracking.

The USBL is usually used in vehicle localization and
navigation, with a very limited number of papers dealingwith
target tracking. Fusion of USBL measurements with inertial
sensors data and/or vehicle dynamics, used for accurate
vehicle localization, is shown in [1, 2]. In [3] the authors
have used USBL to track white sharks with an autonomous
underwater vehicle, and in [4] USBL tracking was used to
track the diver with an autonomous surface vehicle.

Several papers have been published on the use of imaging
sonars for object detection and tracking. A method based on
the particle filter, shown in [5], was proposed to resolve the
problem of target tracking in forward-looking sonar image
sequences. In [6] image processing algorithms as well as the
tracking algorithms used to take the imaging sonar data and
track a nonstationary underwater object are presented. In [7]

the real-time sonar data flow collected by multibeam sonar
is expressed as an image and preprocessed by the system.
According to the characteristics of sonar images, an improved
method has been carried out to detect the object com-
bining with the contour detection algorithm, with which
the foreground object can be separated from background
successfully. Then the object is tracked by a particle filter
trackingmethod based onmultifeature adaptive fusion. In [8]
the authors explore the use of such a sonar to detect and track
obstacles. In [9] authors provide algorithms for detection of
man-made objects on sea floor, where they mostly focus on
target-seabed separation issue. The most similar attempt to
our work was done in [10], where the sonar was used to detect
a human diver. The authors used a similar image processing
approach as us, followed by a hidden Markov model-based
algorithm for candidate classification.

The papers mentioned above are also mostly focused on
the use of image processing and contour based algorithms
to detect object. However, they are not directly comparable
to our approach as they focus more on the detection part
inside the sonar image. Our approach differs from all of the
above as it is based on fusion of sonar and USBL. This allows
target tracking even when the target is outside of the sonar’s
very narrow field of view. It also helps eliminate false positive
detections which would cause tracking of the wrong object if
multiple objects are present.

The rest of the paper is organized as follows: Section 2
describes deployed sonar image processing algorithms. In
Section 3 tracking filter kinematic model is defined. Section 4
gives insight into region of interest adaptation by using trans-
formed position covariance matrix. Experimental results are
given in Section 5. The paper is concluded with Section 6.

2. Sonar Image Processing

In order to determine target position within the sonar field
of view, the sonar image has to be processed. This section
is devoted to the description of algorithms used to detect
the object in the multibeam sonar image and determine its
position within the sonar image.

2.1. Multibeam Sonars. Multibeam sonars are also known as
acoustic cameras because they, like a video camera, produce
a two-dimensional image, although with very different geo-
metric principle. They emit a number of acoustic beams,
each one formed to cover a certain horizontal and vertical
angle.

2.2. Target Detection. Some of the most widely usedmethods
and algorithms for object detection and recognition in images
are Haar cascades [11], histograms of oriented gradients [12],
and, especially recently, artificial neural networks [13, 14].
Even though these are commonly used in video imagery,
they have limited application in sonar-based target detection
mostly due to the fact that sonar imagery is usually of very low
quality, with incomplete target visualization, preventing even
a human observer to reliably detect or recognize the target.
In addition to that, our tests with OpenCV implementations
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Figure 1: First step in sonar image processing demonstrated on an image with a diver in the field of view. (a) Original sonar image; (b) image
after blurring; and (c) image after binarization.

of feature descriptors have shown that conventional image
descriptors are highly susceptible to noise in sonar image,
thus giving poor results.

Due to these reasons, the implemented target detection
algorithm relies on clustering contours and finding the ones
that are most likely to belong to the target. In order to
increase reliability of object detection in sonar image, only
the region of interest (ROI) obtained by USBLmeasurements
is searched.

The tracking algorithm implemented can be split into
three steps. The first step involves basic image processing,
blurring, and binarization of the image. The second step is
finding the contours in the obtained binarized image and
clustering them together.The final step includes searching for
the best candidate inside the region of interest.

2.2.1. Step 1: Image Processing. In the first step, a Gaussian
blur filter is applied to the image to remove the noise in the
image. Often the image is very noisy and has many very little
white contours consisting of only a few pixels which we want
to ignore. Gaussian blurring is performed by convolving the
image with a 2-dimensional Gaussian function:

𝐺 (𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−(𝑥
2
+𝑦
2
)/2𝜎
2

. (1)

A similar result could be obtained by eroding and dilating
the white areas after binarization, as performed in [10].
After blurring, binarization of the image is performed with
adaptive thresholding. Each pixel is compared to the mean
value of its neighbouring pixels and is set to white if it is
above that value, or black otherwise. Equation (2) describes
the binarization algorithm, where Vbefore is the pixel value

between 0 and 255 before applying binarization and Vafter
takes the value of either 0 or 255 after binarization:

Vafter (𝑥, 𝑦) =
{

{

{

255 if Vbefore > 𝑇 (𝑥, 𝑦)

0 otherwise,
(2)

where
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Vbefore (𝑥 + 𝑖, 𝑦 + 𝑗) . (3)

The results of image blurring and binarization are dis-
played in Figure 1.

2.2.2. Step 2: Contour Detection and Clustering. In the second
step, all white contours in the image are clustered together if
they are closer than some predefined distance. This distance
is chosen depending on the target tracked. For example, if a
human diver is tracked, we can expect that the diver’s head or
limbs appear disjoint from the torso. To cluster them together,
it is reasonable to allow contours that are closer than half a
meter to be clustered together.

To achieve the clustering, a graph approach could be
taken by using Kruskal’s minimum spanning tree algorithm
with early termination. However, simple union find algo-
rithm with disjoint set data structure can achieve the same
with even lower complexity: while Kruskal’s algorithm runs
in 𝑂(𝐸 log V), where 𝐸 is the number of edges in the graph
and𝑉 is the number of vertices, union find runs in𝑂(𝑛𝛼(𝑛)),
where 𝑛 is the number of items and𝛼(𝑛) is the extremely slow-
growing inverse of the Ackermann function [15].

The results of the implemented clustering algorithm are
displayed in Figure 2. The diver’s body is disconnected, but
with the clustering algorithm the pieces are merged together
into the same cluster and marked with the same color.
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Figure 2: (a) Original sonar image; (b) image after binarization; and (c) contours clustered into three clusters.

2.2.3. Step 3: Finding Target inside the ROI. The final steps
assumes that the approximate area where the target should be
already familiar; that is, it is estimated by an extendedKalman
filter that uses USBLmeasurements and sonar measurements
from the previous step, as explained in the following chapter.
This assumption is required due to the fact that accurate
tracking using only sonar image is difficult, especially if there
are other similar objects present in the image, for example
multiple divers or autonomous underwater vehicles.

All the clusters that are inside the ROI are given a quality
score based on a criterion that consists of two parts:

(1) Distance from the ROI center: the closer the cluster to
the ROI center is, the higher its score is.

(2) Visual similarity of each cluster and the target: even
though very little training data is available, similarity
of the cluster is compared with known target’s prop-
erties (by comparing the size and shape and applying
a simple template-based object detector or a small
neural network).

The object with the highest score above the (empirically
set) threshold is then selected as the most likely target. This
allows us to score multiple objects and reliably choose the
one that fits best both the current estimated position of the
target (obtained from the tracking filter) and the known
characteristics of the target.

3. Tracking Filter

Once the target position within the sonar field of view is
known, it can be used as ameasurement for the tracking filter.
In order to estimate underwater target position fromavailable
measurements, extended Kalman filter (EKF) is deployed.
Only kinematic model is used for target position estimation
since target dynamics are usually unknown. Equations for

the vehicle’s translatory motion are given with (4) where p =
[𝑥 𝑦 𝑧]

𝑇 is the position vector and 𝜓 is the orientation of
the vehicle in the earth-fixed coordinate frame. Input k =

[𝑢 V 𝑤]
𝑇 is speed vector and input 𝑟 is orientation rate in

body-fixed coordinate frame:

ṗ = R (𝜓) k,

𝜓̇ = 𝑟.

(4)

Rotation matrix R(𝜓) is given with

R (𝜓) = [[
[

cos𝜓 − sin𝜓 0

sin𝜓 cos𝜓 0

0 0 1

]
]

]

. (5)

The vehicle tracking the underwater target and carrying the
imaging sonar is modeled as an overactuated marine surface
vehicle; that is, it can move in any direction by modifying
the surge, sway, and heave speed, while attaining arbitrary
orientation in the horizontal plane. Kinematic model of the
target is given with the following set of equations:

ṗ
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(6)

where p
𝐵
is target position vector and k

𝐵
is speed vector

consisting of surge speed 𝑢
𝐵
and heave speed 𝑤

𝐵
. State 𝛼

𝐵
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denotes target course and 𝑟
𝐵
course rate. Process noise for

respective states is denoted by 𝜉. Finally, state vector of target
absolute position tracking filter is

x = [p𝑇 𝜓 k𝑇
𝐵

p𝑇
𝐵
𝑟
𝐵
𝛼
𝐵
]
𝑇

, (7)

where subscript 𝐵 denotes target related states. Measurement
vector is given with

y = [p𝑇
𝑚
𝜓
𝑚
𝑧
𝐵𝑚

𝑟
𝑚USBL Θ

𝑚USBL 𝑟
𝑚𝑠

Θ
𝑚𝑠
]
𝑇

. (8)

Vectorp
𝑚
denotes vehicle positionmeasurement,𝜓

𝑚
heading

measurement, and 𝑧
𝐵𝑚

target depth measurement, while
𝑟
𝑚(⋅)

and Θ
𝑚(⋅)

denote USBL and sonar range and bearing
measurements, where respective measurement equations are

𝑟
𝑚
= √Δ𝑥2 + Δ𝑦2 + Δ𝑧2 + ]

𝑟
, (9)

Θ
𝑚
= arctan (Δ𝑦, Δ𝑥) − 𝜓 + ]

Θ
. (10)

Parameter ] denotes measurement noise which is, in this
case,modeled as zeromeanGaussian noise. Note that bearing
measurement is relative; therefore, there is a heading state 𝜓
included in (10).

The target depth measurement 𝑧
𝐵𝑚

can be acquired using
elevation angle and range measurements between two units
provided by the USBL device. Also, acoustic communication
can be used to transmit depth measurements taken directly
on board the target if they are available.

It was already noted that sonar measurements arrive with
high frequency and small delay while USBL measurements
are low frequency and delayed; therefore, Kalman filter
measurement matrixH is changed every time step, according
to availablemeasurements. Also, to account formeasurement
delays methods of backward recalculation can be applied.

4. Region of Interest Adaptation

In order to improve detection and avoid false sonar measure-
ments, region of interest (ROI) is defined by using tracking
filter estimates covariance. Sonar image processing can be
performed in relative Cartesian or polar coordinates; there-
fore, it is necessary to transform absolute position covariance
accordingly.

4.1. Covariance Transformation. By definition, covariance
matrix of vehicle and target relative position can be written
as

Σ = E [(p
𝑝
− E (p

𝑝
)) (p
𝑝
− E (p

𝑝
))
𝑇

] , (11)

where p
𝑝
= [Δ𝑥 Δ𝑦]

𝑇.The assumption is that the position of
the vehicle carrying the sonar is known without uncertainty
and that all uncertainty stems from unknown target position.
The assumption is made that the vehicle and the target are at
the same depth when the target is visible in the sonar image,
since sonar vertical field of view is quite small. For this reason,
target depth is considered to be known and is omitted from
p
𝑝
.

4.1.1. Covariance Transformation between Two Cartesian
Coordinate Systems. Covariance transformation between rel-
ative position in earth-fixed NED coordinate frame and
relative position in body-fixed frame is given with (12) where
Σ is NED coordinate covariancematrix andR

𝑝
is the rotation

matrix given with (13) [16]:

Σrel = R
𝑝
ΣR𝑇
𝑝
, (12)

R
𝑝
= [

cos𝜓 sin𝜓
− sin𝜓 cos𝜓

] . (13)

4.1.2. Covariance Transformation betweenCartesian and Polar
Coordinate Systems. Relationship between relative Cartesian
and polar coordinate system is given with the nonlinear
equation expression:

[
𝑟

Θ
] = [

[

√Δ𝑥
2

rel + Δ𝑦
2

rel

arctan (Δ𝑦rel, Δ𝑥rel)
]

]

. (14)

In order to transform the covariance matrix, Jacobian of
Cartesian-to-polar covariance transformation is written as
[17]

J =
[
[
[

[

𝜕𝑟

𝜕Δ𝑥rel

𝜕𝑟

𝜕Δ𝑦rel
𝜕Θ

𝜕Δ𝑥rel

𝜕Θ

𝜕Δ𝑦rel

]
]
]

]

=
[
[
[

[

Δ𝑥rel
𝑟

Δ𝑦rel
𝑟

−
Δ𝑦rel
𝑟2

Δ𝑥rel
𝑟2

]
]
]

]

. (15)

Finally, covariance matrix in relative polar coordinates Σpol is
calculated as

Σpol = JΣrelJ
𝑇
. (16)

4.2. Using the Tracking Filter Covariance for Region of Interest.
After transforming the filter covariance in relative coordinate
frames (Cartesian or polar), it is used to define a region of
interest used in sonar tracking as described in Section 2.
More specifically, given covariances 𝐷

𝑥
and 𝐷

𝑦
in relative

coordinate frames, estimated object size along these axes 𝑆
𝑥

and 𝑆
𝑦
, and tracking filter estimate position (𝑇

𝑥
, 𝑇
𝑦
), region

of interest is defined as follows:

ROI
𝑥
= [𝑇
𝑥
−
𝑆
𝑥

2
− 3√𝐷

𝑥
, 𝑇
𝑥
+
𝑆
𝑥

2
+ 3√𝐷

𝑥
] ,

ROI
𝑦
= [𝑇
𝑦
− 𝑆
𝑦
− 3√𝐷𝑦, 𝑇𝑦 +

𝑆
𝑦

2
+ 3√𝐷𝑦] ,

ROI = ROI
𝑥
× ROI

𝑦
,

(17)

where covariances 𝐷
𝑥
and 𝐷

𝑦
are members Σrel1,1 and Σrel2,2

from relative covariancematrix (12). Similarly, in case of polar
coordinates, line segments are defined for radius 𝑟 and angle
𝜙, and the region of interest is the Cartesian product between
the two.

Figure 3 illustrates the size of the region of interest and
the estimated location of the target (center of the ROI).
Figure 3(a) shows the case when only USBL measurements
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(a) Target outside sonar FOV (b) Target inside sonar FOV

Figure 3: Sonar image with region of interest (ROI).

are available, while Figure 3(b) shows results with both USBL
and sonar measurements. The ROI (covariance) is much
smaller when sonar measurements are available. However, it
is worth noting that tracking is possible even when the target
is outside of sonar field of view, due to the fact that USBL
measurements are fused within the tracking filter.

Minimum area of the ROI can be set by adjusting
measurement noise variance ], while the rate of ROI growth
when there are no measurements available can be defined by
adjusting process noise parameters, especially 𝜉

𝑝𝑏
.

5. Experimental Results

5.1. Experimental Setup. Experiments related to target track-
ing using sonar and USBL data were conducted in Octo-
ber 2015 in Biograd na Moru, Croatia, during CADDY
project validation trials. The experimental setup consisted of
an autonomous underwater vehicle BUDDY AUV and an
autonomous overactuated marine surface platform PlaDy-
Pos, both developed in the Laboratory for Underwater Sys-
tems and Technologies [4, 18]. Multibeam sonar was installed
horizontally and forward-looking on the BUDDY AUV here
referred to as the vehicle, while PlaDyPos vehicle played
the role of the target to be tracked. Buddy AUV, shown in
Figure 6, has been developed in the scope of CADDY project.
It is equipped with six thrusters that allow omnidirectional
motion in the horizontal plane, thus ensuring decoupled
heading and position control. Among other sensors, it is
equipped with a multibeam sonar and a USBL used for
positioning and communication. Overall dimensions of the
BUDDY AUV are 1220 × 700 × 750mm and the weight is
about 70 kg. PlaDyPos vehicle, used as a target, is a small scale
overactuated unmanned surface marine vehicle capable of
omnidirectional motion. It is equipped with four thrusters in
“X” configuration. This configuration enables motion in the
horizontal plane under any orientation. The vehicle is 0.35m
high and 0.707m wide and long and weighs approximately
25 kg.

The sonar used for experiments reported in this paper is
Soundmetrics ARIS 3000 [19], with 128 beams, covering 30∘

angle in horizontal and 14∘ in vertical plane. It supports two
operatingmodes: high frequency at 3MHz for higher detail at
ranges up to 5meters and low frequency at 1.8MHz for ranges
up to 15 meters. Also, during experiments, Seatrec X150
and X110 USBL modem pair was used [20]. The combined
modem/USBL units are designed as a very compact assembly.
They operate in the frequency band 24–32 kHz and the
communication rate of 100 bps can be achieved.

USBL modems were installed on both the vehicle and
the target object. During experiments, it was assumed that
the vehicle and the target are in the same horizontal plane
when the target is visible in the sonar image; that is, the
vehicle and the target have the same depth. Filtered GPS
measurements, from the measurement units installed aboard
the vehicle and the target, are taken as ground truth. It
should be noted that errors in ground truth measurements
are present due to inherent GPS measurement covariance
and the fact that different GPS modules were installed on the
vehicle and the target, which induced small variable drift. By
visual inspection of sonar images it was observed that when
image processing algorithm detects correct target, acquired
relative sonar measurements are more accurate and precise
than relative distance calculated from GPS measurements.

5.2. Results. During validation trials, a large number of
target tracking experiments were conducted. In this paper,
the analysis of results is performed on two datasets, each
describing one experimental scenario. In Scenario 1, the
vehicle is moving while the target is static or slowly drifting
(Figure 4). In Scenario 2, the vehicle is static while the
target is moving (Figure 5). In both scenarios, three different
filter configurations are investigated, defined by available
measurements: (i) “Sonar” configuration where only sonar
measurements are available, (ii) “USBL” configuration where
only USBL measurements are used, and, finally, (iii) “Sonar
+ USBL” configurationwhere both sonar and USBLmeasure-
ments are available.

The dataset corresponding to Scenario 1 is shown in
Figure 4, while Figure 5 shows the dataset of Scenario 2.
In both figures, first two subplots show north and east



Journal of Sensors 7

100 150 200 250 300 350 400 450
−20
−18
−16
−14

Sonar
USBL

Sonar + USBL
GPS

Sonar
USBL

Sonar + USBL
GPS

100 150 200 250 300 350 400 450
16
18
20

100 150 200 250 300 350 400 450
0
2
4

Sonar
USBL
Sonar + USBL

Sonar available
USBL available

N
or

th
 (m

)
Ea

st 
(m

)
Er

ro
r (

m
)

t (s)

t (s)

t (s)

Figure 4: Scenario 1: vehicle moving, stationary target.

Table 1: Distance error comparison.

Scenario Sonar availability
[%]

USBL availability
[%]

(1) Vehicle moving, target
static 31.7 4.5

(2) Vehicle static, target
moving 28.0 5.7

coordinates, while the third subplot shows the errors
(Euclidean distance) between the estimated positions and the
ground truth obtained via GPS measurements from both the
vehicle and the target. Red line shows the results obtained
from the tracking filter that uses only sonar measurements
(filter configuration “Sonar”), green line is obtained from
tracking filter that uses only USBL measurements (filter
configuration “USBL”), and the blue line is the results
obtained from the tracking filter that utilizes both sources of
measurements as they become available (filter configuration
“Sonar +USBL”). Black line shows the ground truth position.

5.2.1. Frequency of Measurements. In the third subplot of
both Figures 4 and 5, one can appreciate magenta and
yellow circles that mark the time instances in which sonar
and USBL measurements were available. Table 1 gives a
comprehensive analysis on the amount of time when sonar
and USBLmeasurements were available. Taking into account
that the tracking filter provides estimates at 10Hz sampling
frequency, it can be seen that, in both scenarios, sonar
measurements were available at around 30% of sampling
instances, whether due to lower running frequency of
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Figure 5: Scenario 2: stationary vehicle, moving target.

Figure 6: BUDDY AUV in water seen from above. The front end
has a waterproof casing with a tablet.

the sonar image processing algorithms or due to the fact that
someof the time the targetwas not present in the sonar image.
On the other hand, USBL measurements are available at only
5% of time instances. It can be seen from Figures 4 and 5
that USBL measurement availability is consistent during the
whole duration of both scenarios; however, the update rate
of USBL measurements is around 2 s which corresponds to
approximately 5% availability taking into consideration the
10Hz tracking filter sampling frequency.

5.2.2. Comparison of Filter Configurations. Datasets shown
in Figures 4 and 5 instantly show the disadvantage of filter
configuration “Sonar”—whenever sonar measurements are
not available, the position estimate drifts from the true value.
One can appreciate this more clearly in Figure 7(a) which
shows a 45-second segment of the full-time response. The
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Figure 7: Tracking filter data inset.

fact that position estimates quickly drift when the target is
not in the sonar field of view can have serious consequences,
especially in situations where a human diver is the target to
be tracked and the position estimate is used to control the
vehicle position relative to the diver.

On the other, using only USBL measurements (as in
filter configuration “USBL”) enables tracking even when the
target is outside field of view, as long as there is a clear
path between the target and the vehicle, ensuring obstruc-
tion-free propagation of the acoustic wave. However, USBL
measurements arrive at a low update frequency.

Fusion of sonar and USBL measurements combines the
best features of both types ofmeasurements: high precision of
sonar measurements and availability of USBLmeasurements.
This is also clear from Figure 7(b) which shows tracking filter
position variance for each filter configuration. Using both
USBL and sonar measurements, filter estimated variance is
more stable regardless of which measurements are available.
In the case when only USBLmeasurements are used, variance
grows between two measurements. In the case when only
sonar measurements are used, variance grows unboundedly
when measurements are not available.

5.2.3. Statistical Analysis of Results. In order to quantify
the result that the sonar and USBL fusion approach gives,
the most reliable results metrics is defined based on the
localization error obtained as Euclidean distance between the
ground truth position (obtained using GPS on board both
the vehicle and the target) and position estimates using all
three filter configurations. These errors are shown in the
form of a boxplot, where Figure 8(a) gives the analysis for
Scenario 1 (shown in Figure 4), and Figure 8(b) gives analysis
for Scenario 2 (shown in Figure 5). Both boxplots show
results for filter configurations “Sonar,” “USBL,” and “Sonar

+ USBL.” In addition to that, the results are shown for the
filter configuration “Sonar”, taking only into account position
estimates when sonar measurements were available, that is,
when the target was within the sonar field of view—this is
labeled with “Sonar (available).”

As expected, the “Sonar (available)” data gives the most
precise results for both scenarios. However, this measure
does not represent the real situation, since it was shown that
the target was available within the sonar field of view only
around 30% of time in both scenarios. This measure should
be regarded as the best possible results that can be obtained
using the measuring devices available in the setup.

Localization error boxplot for filter configuration “Sonar”
over the whole dataset shows that the results are the least
precise as it can be seen in Figures 8(a) and 8(b). This is a
result of the fact that all the data is included, even the data
when target is lost from the sonar FOV and there is no way to
estimate target position since the filter presumes that target
continues in the direction it was going before leaving sonar
FOV.

In both scenarios, filter configuration “USBL” provides
the least accurate mean position error, but the variance
over the whole dataset is much lower than in the filter
configuration “Sonar.”

As it can be seen from Figures 8(a) and 8(b), in both
scenarios, filter configuration “Sonar + USBL” gives mean
localization error lower than filter configurations “Sonar” and
“USBL.” The same can be said for position error variance.
It should be noticed that this filter configuration provides
results which are very close to our “ideal” situation where the
target is always present in the sonar image, that is, the “Sonar
(available)” case.

In Scenario 2 (the case of the static target), all the obtained
localization error statistical results are smaller but the same
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pattern can be observed as in Scenario 1 (the case of the
moving target).

5.2.4. Video. Video representing the results with target posi-
tion estimate obtained by fusing sonar and USBL measure-
ments can be found in [21].

6. Conclusions

The paper addresses the issue of underwater target tracking
by using sonar andUSBLmeasurements.The results thatwere
used to analyze the tracking quality were obtained from data
gathered using BUDDY AUV, an autonomous underwater
vehicle developed for diver-robot interaction that served
as the tracking vehicle in the experiments, and PlaDyPos
autonomous surface marine platform that played the role of
the target to be tracked.

The experiments have shown that sonar measurements,
when available, are very accurate and precise, but there
is always a possibility of detecting false targets especially
in cluttered environments. Also, when tracking divers false
measurements due to bubbles are common. Using USBL
measurements evenwhen the target is in the sonar FOVhelps
reduce number of false detection incidents. For example, in
Figure 4we can see false detection at time instants 280 s, 360 s,
and 450 s. Using USBL and sonar sensor fusion discards such
measurements since they are out of ROI, and there are no
abrupt changes of position estimate. As a consequence, mean
localization error is the lowest as seen in Figure 4. Finally, the
developed tracking filter that fuses USBLmeasurements with
position measurements obtained from the processed sonar
image shows superior performance.

Future work will focus on exploiting knowledge gained
through these experiments for designing algorithms in which
underwater vehicle actively tracks the underwater target
while trying to keep it in the sonar FOV as often as possible.
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