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Secure localization under different forms of attack has become an essential task in wireless sensor networks. Despite the significant
research efforts in detecting themalicious nodes, the problemof localization attack type recognition has not yet beenwell addressed.
Motivated by this concern, we propose a novel exchange-based attack classification algorithm. This is achieved by a distributed
expectation maximization extractor integrated with the PECPR-MKSVM classifier. First, the mixed distribution features based
on the probabilistic modeling are extracted using a distributed expectation maximization algorithm. After feature extraction, by
introducing the theory from support vector machine, an extensive contractive Peaceman-Rachford splitting method is derived
to build the distributed classifier that diffuses the iteration calculation among neighbor sensors. To verify the efficiency of the
distributed recognition scheme, four groups of experiments were carried out under various conditions. The average success rate
of the proposed classification algorithm obtained in the presented experiments for external attacks is excellent and has achieved
about 93.9% in some cases. These testing results demonstrate that the proposed algorithm can produce much greater recognition
rate, and it can be also more robust and efficient even in the presence of excessive malicious scenario.

1. Introduction

The location information of the sensor node performs a
critical role for numerous applications in wireless sensor
networks (WSNs) such as environment monitoring, target
tracking, and automatic surveillance. It also helps some fun-
damental techniques in sensor networks (e.g., geographical
routing protocol and topology control) to be aware of where
the messages are located. Driven by those demands, earlier
research efforts have resulted in many localization schemes,
with most assuming that the sensors are deployed in a
benign scenario. But when the sensor nodes are deployed
in malicious environments, it is prone to different forms
of threats and risks. A simple malicious attack can disturb
the accurate position estimating and even make the entire
network functioning improperly [1]. The existing attacks
in localization can generally be divided into internal and
external attack. Internal attackers usually are compromised
nodeswhose encryption key has been extracted, which can be
prevented by using advanced cryptography techniques. The

external attack is launched by one ormoremalicious nodes to
distort the informationwithout system’s authorization, which
means that traditional security mechanism like cryptography
is limited to defend against this type of attack. In this paper,
we will mainly analyze the recognition of the external attacks
on the localization procedure.

In recent years, designing secure localization schemes
that provide valid location information resistant to externals
attacks has received much research attention [2–8]. Most of
these secure location mechanisms can be broadly divided
into two categories: cheating node detection and robust
localization algorithms. The former such as [3, 5, 7] are
characterized by verifying some location-related parameters
like distance or time during positioning process to detect the
inconsistency and then eliminating abnormal nodes, while
the latter [2, 4, 6, 8] depend on designing robust localization
schemes to tolerate attacks rather than detecting them.

Most existing works for WSN localization security
focused on either achieving high detection ratio under
different types of attacks or developing robust positioning

Hindawi Publishing Corporation
Journal of Sensors
Volume 2016, Article ID 8672305, 18 pages
http://dx.doi.org/10.1155/2016/8672305



2 Journal of Sensors

methods. Unfortunately, none of these techniques can explic-
itly differentiate those attacks. This may make the network
defense fall into the passive situation and have a negative
effect in preventing future repeated attacks. If the network
only detects localization attacks without type classification
and analyzing, the possible consequence can be implied as
follows. One of the main results is that it is not convenient
for network to restore location-related information.Theother
is that it could make the network difficult to provide more
information services and evidence in security event process-
ing. Only after alert information is collected and analyzed can
we determine the dangerous region where attack frequently
takes place and then design targeted localization scheme
according to certain threat. Therefore, attack classification in
localization is not only the premise and foundation of threat
analysis, but also a crucial component in network security
situation awareness. And attack recognition algorithm should
be executed as second line of protection against attacks
before the location information can be used by other applica-
tions.

In this work, we proposed a localization attack classifica-
tion method based on the distributed expectation maximiza-
tion algorithm followed by support vector machines called
PECPR-MKSVM. The classification mechanism consists of
two phases: the feature extraction phase and the classification
phase. The techniques developed in our solutions offer
the advantage of classifying various kinds of attacks. More
specially, our approach possesses the following contributions.

(1) To extract more efficient attack features, an Expo-
nential-Gaussian (EG) mixture distribution is firstly
modeled by investigating the common properties of
initial features based on their probability distribution.
The initial features are composed of distance and
topology-related measurements.

(2) A distributed version of expectation maximization
(EM) algorithm which exchanges information with
neighbor sensors is implemented for density estima-
tion and feature extraction, where one term for time
dependent information averaging is combined with
another term for iterative information propagation.

(3) In order to recognizemultiple attacksmore accurately
and adapt to the distributed characteristics of sen-
sor networks, we design an exchange-based classi-
fier called proximal extension contractive Peaceman-
Rachford splitting-multiple kernel support vector
machines (PECPR-MKSVM).

(4) To identify the effectiveness of our distributed recog-
nition approach, comprehensive designed experi-
ments are conducted by testing the attacks dataset
under different conditions. Compared with other
similar schemes, we find that the results obtained in
these comparisons clearly show that the distributed
classification algorithm achieves better recognition
performance and has stronger robustness, with very
competitive runtime.

The remainder of the paper is structured as follows.
Some related works on secure localization and recognition

algorithms are reviewed in the next section (Section 2). In
Section 3, we describe the attack assumptions and model the
initial features with a joint Exponential-Gaussian distribu-
tion, while Section 4 presents the distributed EM algorithm
based feature extraction method by employing the dis-
tributed averaging approach. In Section 5, by improving the
contractive Peaceman-Rachford splitting method algorithm,
a novel distributed classifier PECPR-MKSVM is presented.
In Section 6 we verify the performance of the classification
algorithm by means of extensive experiments. Finally, some
conclusions are devoted to Section 7.

2. Related Work

To investigate the scheme for classifying localization attack
in WSN, a necessary literature survey on secure localization
mechanism is firstly provided. Moreover, we provide a suc-
cinct summary of research on two essential components of
the proposed method, that is to say, the EM algorithm for
feature extraction and support vector machines for classi-
fier.

2.1. Secure Localization Mechanism. In the prior work about
the secure localization, one theme is able to discover and
eliminate the suspicious nodes. In [9], the authors proposed
a beacon-based securing localization method, which is also
used by a Minimum Mean Square approach to filter out
suspicious nodes. This work was implemented by observing
the inconsistency in location references between the mali-
cious beacon nodes and the benign ones [10]. Similarly,
Du et al. [11] created a general scheme by using network
deployment knowledge to detect localization anomalies if
the level of inconsistency in expectations of the derived
positions exceeds the certain threshold. Recently, another
detection-based secure localization algorithm by Han et al.
was proposed, which has two steps. The anchor nodes first
identified the suspicious node if it sends abnormal reference
information.Then a mesh generation method was developed
to separate suspicious nodes [12].

The other theme is an error-intolerant localization when
there exist malicious adversaries and great measurement
inaccuracy. Li et al. in [13] employ an improved LM approach
to achieve the goal of securing localization in a scenario
where the fraction of the malicious nodes is less than 50%.
Based on candidate locations identifying, a similar method
called random sample consensus (RANSAC) algorithm was
proposed in [14]. This method used picked subsets of
sensors to detect and choose the value which minimizes
the median of the remains as its solution. Alternatively, by
using the Taylor-series least squares scheme with different
weighting, Yu et al. developed two-stage secure localiza-
tion method which applied beta distribution function to
tolerate the presence of malicious beacons [15]. Some other
approaches try to realize the secure location estimation
by expressing it as a global optimization problem. For
instance, by taking advantage of improved least median
squares, a robust statistical method was developed to make
positioning attack tolerant. In [16], Doherty et al. designed
a feasible secure localization methodology using convex
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optimization based on pairwise angles and connectivity
between nodes. Bao et al. extended the work from static
to mobile scenario with the help of a game-based strategy
[17].

According to our current knowledge, the problem of
localization attacks recognition for sensors network, which
is our focus here, has not been well studied.

2.2. EM Algorithm for Feature Extraction. Unsupervised fea-
ture selection/extraction techniques are generally classified
into three categories as wrappers, filters, and integrated-
learning approaches. Several integrated-learning feature
extraction algorithms like EMhave been developed in various
fields. In [18], the features were extracted from the contin-
uous-valued dataset by using a primary integrated-learning
strategy. In another algorithm of feature extraction, the fea-
ture saliency is firstly regarded as relevant features, and the
pruning behavior is then outlined by using EM optimiza-
tion. Moreover, a double-loop EM algorithm was applied in
medical detection such as epileptic seizure so that the super-
vised learning could fit well with the mixture of experts net-
work structure [19]. In [20], EM algorithm was applied in
image feature extraction to identify parameters for general-
izedGaussianmixturemodel. Subsequently, aKullback diver-
gence-based similarity measure was presented and analyzed.
However, the fact that class of texture distribution is under
the influence of its neighborhood is neglected. To address the
issues of information loss, a shuffled frog-leaping method is
added to the EM algorithm to enhance the performance of
crack image segmentation [21]. According to an evaluation
threshold 𝜑, neighborhood of each pixel was classified into
three types, respectively. Because the value threshold 𝜑 is sel-
ected by the experience, it may lead to inaccurate segmenta-
tion.

2.3. Support Vector Machines (SVM) for Classifier. SVM, the
most popular branch of machine learning theory to address
classification and regression problems, was firstly presented
from research in statistical learning theory. Then the intro-
duction of kernel skill breeds a new group of techniques for
nonlinear program with high-dimensional or small-sample
data [22, 23]. Based on MK-SVM, Yeh et al. proposed a new
compositemultiple kernel in a formof a linear weighted com-
bination.They combine multiple kernel with SVMs to design
a counterfeit banknotes detection system [24]. Although
all of these centralized learning approaches have been well
preformed in various scenarios, they also increased memory
and computational resource consumption, especially for low
energy constrainedWSN.Therefore, some new algorithms on
the topic of distributed SVM have recently been presented.
In [25], Forero et al. proposed a distributed SVM scheme
that combines alternating direction method of multipliers
(ADMM) with consensus-based SVM to reduce the training
time cost. This algorithm enhanced the prediction perfor-
mance with the help of ADMM optimization. However, the
collaborative pattern may face risk from shortage of local
processors with the increment of the multiple kernel num-
ber.

3. Network Assumptions and Statistic Based
Feature Model

It is considered that there exist three classes of nodes dis-
tributed randomly in the sensing area: sensors, anchors, and
malicious nodes. The random network topology is modeled
as Erdös-Rényi (ER) random graph denoted by 𝐺 = (𝑉, 𝐸),
where 𝑉 symbolizes node set and 𝐸 indicates edge set. The
node set 𝑉 consists of 𝑁 sensors and 𝐶 anchors, in which
the sensor is expressed by {𝑆1, . . . , 𝑆𝑛, 1 ≤ 𝑛 ≤ 𝑁} and the
anchor is indicated by {𝐴1, . . . , 𝐴𝑐, 1 ≤ 𝑐 ≤ 𝐶}, respectively.
The malicious node, labelled by {𝑀1, . . . ,𝑀ℎ, 1 ≤ ℎ ≤ 𝐻},
is included in sensor set. We define the distance between
sensors 𝑖 and 𝑗 as 𝑑𝑠𝑖𝑗 and the distance from sensor 𝑖 to anchor𝑗 as 𝑑𝑎𝑖𝑗. The total number of links through sensor 𝑖, which is
calculated by the shortest path, is equal to𝑁+𝐶. The sensors
are in charge of data-gathering and are not aware of their own
coordinates. The anchor is a node that knows and broadcasts
its location reference in advance, equipped with localization
hardware such as GPS.The malicious nodes exist singly or in
pairs to launch various attacks. We assume that the sensors’
communication range is assumed to be a circle with the same
value 𝑅 while the malicious nodes’ communication range is
unlimited. The distance between two sensors is estimated
by the received power strength, whose background noises
are Gaussian distributed. Likewise, the distance between the
sensor and the anchor can be provided by the measurement
from anchor. We also assume that each sensor has its own
ID and can broadcast it with distances between its neighbors,
passively collects adjacent sensors’ broadcast, and thenmakes
one list of ID and position which is also called the sensor’s
neighborhood observation.When all the sensors receive such
multiple kinds of packets from neighbors, they transport the
information to nearest sensor node with the most energy in a
multihop fashion, and the node is engaged in the calculation
of feature extraction and recognition and so on in WSNs.

The WSN is assumed to be deployed in an adversarial
attacking environment.The adversary launches only external
attacks to disrupt the localization procedure, which means it
implements malicious behaviors without right cryptographic
key. Moreover, the presence of malicious nodes is a small
number compared with the benign number in local area.
The attack type of the malicious node is divided into
three categories including wormhole, replay, and interference
attack [26].Wormhole attack can eavesdrop on the packets of
location reference at one position and then create a tunnel
and send to other sensors that are far apart, thus causing
inaccurate location estimating [27]. As illustrated in Figure 1,
sensor 𝑆1 could only capture the beacon signal of anchor 𝐴1
in normal conditions. When a wormhole attack is launched,
the malicious node 𝑀2 copies the message from anchor 𝐴2
and sensor 𝑆2 and then tunnels it through a bidirectional link
and replays it at the location𝑀1. Eventually, the node 𝑆1 will
determine its location based the positions of 𝐴1 and 𝐴2; it
may consider sensor 𝑆2 as neighbor at the same time. In inter-
ference attack, the hostile sensor may be an obstacle between
signal sender and receiver to distort the signal measurement
or time of arrival for ranging. For example, if a signal
strength based localization process suffers range enlargement
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Figure 1: Sensor localization under a wormhole attack.

attack, attackersmay attenuate the node’s transmission power.
Replay attack is another common type of attack which is
more likely to appear under the circumstance that energy
and computing resources are limited to the adversary. The
location message will be captured by the malicious nodes
from one anchor. Then an incorrect location reference will
be retransmitted to the receiving sensor later. The position
calculation in sensors can be frequently affected by the invalid
information. In addition to the above characteristics, the
adversarial node of wormhole or replay attack in practical
environment also has the same ability of data communicating
and processing as other normal sensors, which means that
this malicious node can be capable of overhearing other
types of packet and then modifies and broadcasts it [28,
29]. Again, in order to acquire more accurate attack related
information, it is inappropriate to use encryption techniques
to eliminate all the adversaries in advance. Furthermore,
these attacks might be launched with irregular schedule
during the whole classification process. But, in this study,
the problem of recognition for localization attacks is more
concerned, and, thus, it is required that the proportion and
extent of modification in other types of packets do not exceed
those in distance related information.

Because there is no single variable to directly characterize
the external localization attack, it is necessary to build the
original feature set. From the above-mentioned description
of external attacks, we find that it might interact directly or
indirectly with distance between nodes.The value of distance𝑑𝑠 and 𝑑𝑎, which is closely associated with whether the node
suffers fromattacking, could be considered as onemain initial
feature for recognition. And thus the distance feature vector
VD for sensor 𝑖 is gained as VD𝑖 = [𝑑𝑠𝑖1, . . . , 𝑑𝑠𝑖𝑁, 𝑑𝑎𝑖1, . . . ,𝑑𝑎𝑖𝐶]. While the distance value could describe some infor-
mation about external attacks, it is still insufficient to classify
those external attacks by this single feature. To handle
this problem, the complex network theory is introduced to
express feature information more comprehensively. Because
WSN is comprised of large amounts of sensors, it belongs to
complicated network structure. Furthermore, the topological
properties will vary with the fluctuation of sensor’s location
and distance. It implies that these properties can reveal
the impact of localization attack from a complex network
perspective. Up to now, a number of indexes have been
developed to measure the behavior in complex network
such as degree and clustering coefficient, which also supply
a framework that reflects various features of network. In
this work, the indexes considered are degree, clustering

coefficient, betweenness centrality (normalized), and core-
ness. The topological feature based vector VT for sensor 𝑖
is defined as VT𝑖 = [𝑡𝑑𝑖, 𝑡𝑐𝑖, 𝑡𝑏𝑖, 𝑡𝑐𝑜𝑖], where 𝑡𝑑𝑖, 𝑡𝑐𝑖, 𝑡𝑏𝑖,
and 𝑡𝑐𝑜𝑖 represent degree, clustering coefficient, betweenness
centrality (normalized), and coreness, respectively.

It seemingly makes sense that the value of the original
feature will vary when sensors are under attacks. However,
we found that the difference of change in original features
between some types of localization attack is not significant,
which cannot be classified by a threshold. Furthermore, this
change will be expanded under multiple attacks. Thus an
effective feature extraction method needs to be explored.
We note that the above-mentioned original features can be
described by statistics modeling. If a distribution model is
constructed to represent the original features obtained by
each sensor, the different attack type can be described more
accurately by the model parameters extracted.

For each single element such as 𝑑𝑠𝑖𝑗 in feature vector
VD𝑖, the probability of it can be modeled into the Gaussian
distribution with mean 𝜇 and variance Σ according to [30],
which is analyzed from the point of error measurement:

𝑑 (𝑑𝑠𝑖𝑗 | 𝜇, Σ)
= (2𝜋 ⋅ |Σ|)−1/2 exp {−12 (𝑑𝑠𝑖𝑗 − 𝜇)𝑇 |Σ|−1 (𝑑𝑠𝑖𝑗 − 𝜇)} . (1)

Moreover, the feature vector VD𝑖 is constituted by the
shortest path length, which also possesses the property of
complex network. In [31, 32], the length of shortest path is
investigated as a negative exponential distributed variable
with rate parameter 𝑙𝑎𝑚𝑏𝑑𝑎𝑑:
𝑑 (𝑑𝑠𝑖𝑗 | 𝑙𝑎𝑚𝑏𝑑𝑎𝑑) = ( 1𝑙𝑎𝑚𝑏𝑑𝑎𝑑) 𝑒−(1/𝑙𝑎𝑚𝑏𝑑𝑎𝑑)𝑑𝑠𝑖𝑗0 < 𝑙𝑎𝑚𝑏𝑑𝑎𝑑 < ∞. (2)

Thus, in order to obtainmore detailed properties, the distance
vector VD𝑖 is modeled as a mixed distribution as

𝑑 (𝑑𝑠𝑖𝑗) = 𝑑 (𝑑𝑠𝑖𝑗 | 𝜇, Σ) + 𝑑 (𝑑𝑠𝑖𝑗 | 𝑙𝑎𝑚𝑏𝑑𝑎𝑑) . (3)

For the topology-related feature, the probability distribu-
tion is further investigated to model the irregular deviation
along with the normal and attack scenario. Because of limited
space, two representative parameters that form the mixture
distribution were chosen to analyze the impact of external
attacks.

The first parameter analyzed is the node degree. It is
expressed by the total amount of neighbors connected to a
picked sensor. Degree distribution is defined by a probability𝑃(𝑘), which is the proportion of the sensors with the same
amount of 𝑘 connections. A graph of Erdös-Rényi random
WSN has a vertex degree following the Poisson distribution
as [33]

𝑑 (𝑘) ∼ 𝑙𝑎𝑚𝑏𝑑𝑎𝑔𝑘𝑒−𝑙𝑎𝑚𝑏𝑑𝑎𝑑𝑔𝑘! , 𝑘 ≥ 1. (4)

In this formula, 𝑙𝑎𝑚𝑏𝑑𝑎𝑔 indicates the expectation value
of number of sensors with degree 𝑘. Meanwhile, we observe
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(d) Replay attack

Figure 2: Degree distribution of sensors network and the probability density function of its Gaussian distribution approximation for different
external attacks scenario.The parameters in Gaussian distribution are estimated as (a) 𝜇 = 15.14 and Σ = 26.96, (b) 𝜇 = 14.16 and Σ = 27.43,
(c) 𝜇 = 15.71 and Σ = 45.32, and (d) 𝜇 = 15.77 and Σ = 57.05.

that the mixture distribution of the distance feature is
known as a continuous probability distributionwhile Poisson
distribution in degree feature is discrete. It is formidable
to construct a unified model by using these two diverse
variables. Moreover, if only employing the single parameter𝑙𝑎𝑚𝑏𝑑𝑎𝑔 in Poisson distribution, it may be hard to dis-
tinguish between multiple attacks. It has been found that,
according to the limit form when 𝑙𝑎𝑚𝑏𝑑𝑎𝑔 → ∞ using
central limit theorem [34], the Poisson probability density
function tends to be excellently achieved by a Gaussian
distribution with a high mean value in Poisson distribution.
The mean 𝑙𝑎𝑚𝑏𝑑𝑎𝑔 of node degree in Poisson distribution
under normal condition, calculated by maximum likelihood
estimation, is equal to 14.72, which is not fairly satisfactory.
But, for the sake of reducing computational complexity
and realization of a feasible mixture model, the Gaussian
probability density function is still applied in approximating
Poisson distribution.

Figure 2 exhibits the degree distribution of the WSN and
its variation under different external attacks.The curves of the
probability density function (pdf) with Gaussian distribution
approximation are also added. As seen in Figure 2(a), we
notice that, for unassailed scene, the degree distribution
approximately agrees with a Gaussian distribution. However,
the measured distances by RSSI in real-world are affected
by the multipath fading or data modification by attackers.
Therefore, the value of probability for each degree varies
with a fluctuation. Figures 2(b)–2(d) compare the variation
of degree distribution and the probability density function of
their Gaussian distribution approximation under three types
of external attack, respectively. As depicted by Figure 2(b), a
peak of probability emerges around degree 14, while another
weak intensity probability peak appears around the degree
of 35. And the mean 𝜇 in Gaussian approximation function
decreases to 14.16.The reason for this change is thatwormhole
tunnel makes some nodes far away be identified incorrectly
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as neighbors. When under interference attack, the maximum
probability in the degree distribution is lower than that
in Figure 2(a). The proportion of sensors with low degree
value increases. And under the approximation of Gaussian
distribution with 𝜇 = 15.71 and Σ = 45.32, the spread of
shape in probability density function looks wider than that in
Figure 2(a). As shown in Figure 2(d), the degree distribution
has similar variation as Figure 2(c). We also note that the
variance Σ in the approximated Gaussian distribution has the
highest value, which may correspond to the fact that relayed
packets from malicious node increase the nonexistent con-
nections.The above results demonstrated that the parameters
in Gaussian distribution approximating help to differentiate
these external attacks. Then, using the similar analysis as
mentioned above, another feature clustering coefficient is also
fitted by Gaussian distribution.

The second property analyzed is normalized betweenness
centrality. The betweenness centrality [35], denoted by 𝐵𝑖, is
used to examine the potential of a sensor on the connection
control with other sensors and evaluate ratio summation
of shortest paths passing through sensor 𝑖. Therefore, the
betweenness centrality 𝐵𝑖 of sensor 𝑖 is formulated as

𝐵𝑖 = ∑
𝑠 ̸=𝑑 ̸=𝑖

[𝑁𝑠𝑑 (𝑖)𝑁𝑠𝑑 ] , (5)

where 𝑁𝑠𝑑 represents the entire quantity of shortest paths
from sensor 𝑉𝑠 to sensor 𝑉𝑑 and𝑁𝑠𝑑(𝑖) represent the shortest
paths quantity from 𝑉𝑠 to 𝑉𝑑 including sensor 𝑖. For conve-
nience, the normalization form of 𝐵𝑖 is obtained by

𝑁𝐵𝑖 = 𝐵𝑖 −min (𝐵)
max (𝐵) −min (𝐵) . (6)

Figure 3 plots the normalized betweenness centrality
distribution and its probability density function of exponen-
tial distribution approximation with the same scenarios as
node degree. It is noticed that the normalized betweenness
centrality distribution in all scenarios are peaked at initial
part and then decrease monotonically. Previous works found
that normalized betweenness centrality tends to obey a
power-law distribution [36]. However, the descending speed
of the normalized betweenness centrality distribution for
each scenario does not appear so sharply. Furthermore, in
order to build the mixture model, the remainder of features
should be also presented as a continuous function. Based
on these considerations, the distribution of the normalized
betweenness centrality is alternatively approximated by a
negative exponential distribution which is of the form

𝑑 (𝑁𝐵𝑖 | 𝑙𝑎𝑚𝑏𝑑𝑎𝑏) = ( 1𝑙𝑎𝑚𝑏𝑑𝑎𝑏) 𝑒−(1/𝑙𝑎𝑚𝑏𝑑𝑎𝑏)𝑁𝐵𝑖0 < 𝑙𝑎𝑚𝑏𝑑𝑎𝑏 < ∞, (7)

where 𝑙𝑎𝑚𝑏𝑑𝑎𝑏 is a rate parameter. In addition, it can be
observed in Figure 3(b) that the proportion of𝑁𝐵 with high
probability value is increased by a small amount because
the malicious nodes indirectly enhance the communication
capability of their neighbors. Andunder the approximation of

Table 1:Mean square error (MSE) of the distribution approximation
curve for all topological features under different external attacks.

Feature category Unassailed Wormhole Interference Replay
Degree 0.0552 0.0376 0.0475 0.0437
Clustering coefficient 0.0195 0.0285 0.0124 0.0122
Normalized
betweenness
centrality

0.0153 0.0150 0.0146 0.0143

Coreness 0.0246 0.0232 0.0280 0.0273

negative exponential distribution with 𝑙𝑎𝑚𝑏𝑑𝑎𝑏 = 0.007114,
the decay of pdf looks more rapid than that of Figure 3(a).
Comparing to Figure 3(b), the variation of distribution
for the interference attack case (Figure 3(d)) is analogous
to that for wormhole case, but it has milder decreasing,
whose rate parameter 𝑙𝑎𝑚𝑏𝑑𝑎𝑏 in exponential distribution
approximation reaches the value of 0.007020. Referring to
Figure 3(c), the distribution varies slightly, which leads to
the change of approximation distribution parameter 𝑙𝑎𝑚𝑏𝑑𝑎𝑏
being not significant. In general, the introduction of the new
parameter 𝑙𝑎𝑚𝑏𝑑𝑎𝑏 will contribute to distinguishing certain
attacks and improving the performance of classification too.
The last topological feature coreness has similar distribu-
tion characteristics with normalized betweenness centrality.
Accordingly its distribution is also approximated by negative
exponential function.

For demonstrating the capability of the distribution
approximation, the mean square error (MSE) of the approx-
imation curve related to the probability of observed data
for all topological features is calculated by setting different
attack scenarios and the result is listed in Table 1. In general,
the MSE basically maintains at the same magnitude even
under attacks, except for some values in the wormhole attack.
Secondly, it can be seen that the feature of normalized
betweenness centrality yields the smallest MSE value com-
pared with other topological features, which suggests that the
exponential distribution is the best approximation. However,
from the point of fitting accuracy, it is not easy to say that
these approximation distributions precisely fit the feature
data, even for normalized betweenness centrality. The reason
is that, in the simulated localization of WSN, the distance
related message and other data are influenced by some other
factors such as channel fading, internode interference, and
packet modification by malicious sensors. These elements
will bias the true measurement and further increase the
approximation error, which will also affect the recognition
performance. Therefore, it is indispensable to integrate other
approaches like classifier to strengthen the recognition ability
in later processing.

For a set of 𝑁 features collected by one sensor, with dis-
tribution of Gaussian and negative exponential, respectively,
the probability density function for the mixed features 𝑙may
be divided into two parts. One part is associated with node
degree and clustering coefficient denoted by 𝑑𝑔(𝑙 | 𝜑1), and
the other part is associated with normalized betweenness
centrality and coreness, denoted by 𝑑𝑒(𝑙 | 𝜑2). Combining (1)



Journal of Sensors 7

Pr
ob

ab
ili

ty

0.2

0.15

0.1

0.05

0
0 0.2 0.4 0.6 0.8 1

Betweenness centrality

(a) Unassailed

Pr
ob

ab
ili

ty

0.2

0.15

0.1

0.05

0
0 0.2 0.4 0.6 0.8 1

Betweenness centrality

(b) Wormhole attack

Pr
ob

ab
ili

ty

0.2

0.15

0.1

0.05

0
0 0.2 0.4 0.6 0.8 1

Betweenness centrality

(c) Interference attack

Pr
ob

ab
ili

ty

0.2

0.15

0.1

0.05

0
0 0.2 0.4 0.6 0.8 1

Betweenness centrality

(d) Replay attack

Figure 3: Normalized betweenness centrality distribution of sensors network and the probability density function of its exponential
distribution approximation for different external attacks scenario. The parameter in exponential distribution is estimated as (a) 𝑙𝑎𝑚𝑏𝑑𝑎𝑏 =0.006963, (b) 𝑙𝑎𝑚𝑏𝑑𝑎𝑏 = 0.007114, (c) 𝑙𝑎𝑚𝑏𝑑𝑎𝑏 = 0.006892, and (d) 𝑙𝑎𝑚𝑏𝑑𝑎𝑏 = 0.007020.
with (7), the probability density of features vector observation𝑙 is modeled in the following manner [37]:𝑑 (𝑙 | 𝜑) = 𝑝1𝑑𝑔 (𝑙 | 𝜑1) + 𝑝2𝑑𝑒 (𝑙 | 𝜑2)(0 < 𝑝1 < 1, 0 < 𝑝2 < 1) ,
𝑑𝑔 (𝑙 | 𝜑1)

= (2𝜋 ⋅ |Σ|)−1/2 exp {−12 (𝑙 − 𝜇)𝑇 |Σ|−1 (𝑙 − 𝜇)} ,𝑑𝑒 (𝑙 | 𝜑2) = 𝜆𝑒−𝜆𝑙,
(8)

where 𝑑(𝑎 | 𝜑) represents the mixture probability density
of a features vector. The vector of distribution parameters to
be estimated is 𝜑. The mixing weights are represented by 𝑝1
and 𝑝2, which satisfies that 𝑝1 + 𝑝2 = 1. The means and
variances of theGaussians are represented by 𝜇 andΣ, respec-
tively, corresponding to 𝑑𝑔(𝑙 | 𝜑1). 𝜆 is the rate para-
meter corresponding to 𝑑𝑒(𝑙 | 𝜑2).

4. Distributed Feature Extractor Design

In order to explore the statistical properties embedded in
the mixture density function and to describe the behavior
of attack more completely, the EM algorithm can be adopted
for calculating unknownmodel parameters [38]. However, in
face of hostile environments, it is unable to confirm whether
the sensors for computing and recognition are malicious or
not. The data may be ruined or viciously modified by adver-
sary itself if only the centralized computation is used, and the
correctness of feature extracted and classifier recognition will
be further decreased. Consequently, the issues of security in
computation should be taken into consideration. The great
success that has been made currently on the research of
distributed computing attracts our attention [39]. The pri-
mary benefit of this technique is that the multiple consistent
intermediated variables updated at each incremental step can
be conveyed to several adjacent nodes; the records kept on
these nodes will help to detect and separate the attacker.



8 Journal of Sensors

Depending on this merit, a distributed scheme of feature
extraction based on information exchange is presented, and
then a verification policy is added.

The exchange-based distributed EMmethodwe proposed
is to calculate and update the parameters in classic EM
method by using the neighbors’ information, which is based
on the idea of distributed averaging approach in [40]. We use𝑛𝑐𝑖 to denote set of nodes that communicate with sensor 𝑖;
that is, there exists an edge {𝑥, 𝑦} between 𝑖 and any sensor
or anchor 𝑗. A distributed linear iteration problem for value𝑥 among sensor 𝑖 and 𝑗 could be described as

𝑥𝑖 (𝑡 + 1) = 𝑈𝑖𝑖𝑥𝑖 (𝑡) + ∑𝑗∈𝑁𝑖𝑈𝑥𝑖𝑗 (𝑡) , 𝑖 = 1, . . . , 𝑛, (9)

where 𝑡 is a time variable and 𝑈 denotes a weight matrix
where 𝑈 ∈ 𝑅𝑁×𝑁 and 𝑈𝑖𝑗 ̸= 0 only if 𝑗 ∈ 𝑛𝑐𝑖 and 𝑖 ∈ 𝑛𝑐𝑖.
In order to solve problem (10) asymptotically by average con-
sensus, 𝑈 should be assumed symmetric and ensure the
necessary and sufficient constraints as follows [40]:

1𝑇𝑈 = 1𝑇,𝑈1 = 1,
𝜌(𝑈 − 11𝑇𝑛𝑐 ) < 1,

(10)

where 1 ∈ 𝑅𝑁 represents one vector whose elements are all
equal to 1. 𝜌(⋅) is known as the spectral radius for the given
matrix. 11𝑇/𝑁 denotes the averaging matrix.

Then, based on the probability density in Section 3, the
mixture distribution for𝑁 features is

𝑑 (𝑙𝑖 | 𝜑) = 𝑁∑𝑖=1 [𝑝1𝑑𝑔 (𝑙 | 𝜑1) + 𝑝2𝑑𝑒 (𝑙 | 𝜑2)] . (11)

Then the log-likelihood for the features vector satisfies

𝐿 (𝜑 | 𝑦) = log
𝑁∑𝑖=1 [𝑝1𝑑𝑔 (𝑙 | 𝜑1) + 𝑝2𝑑𝑒 (𝑙 | 𝜑2)] . (12)

After initializing 𝑝01 , 𝑝02 , 𝜇0, Σ0, 𝜆0, the distributed EM
algorithm can be written as follows.

(A) Expectation Process. Let ℎ be the binary hidden variable
vectors of having observed the 𝑗th density given 𝑙𝑖. For
one feature 𝑙𝑖, we calculate the a posteriori probabilities ofℎ𝑗 using Bayes rule and the previous values of parameters𝑝𝑘−11 , 𝑝𝑘−12 , 𝜇𝑘−1, Σ𝑘−1, 𝜆𝑘−1:
𝜏𝑖𝑗 = 𝑃 (ℎ𝑗 | 𝑙𝑖, 𝜑) = 𝑝𝑗𝑑 (𝑙𝑖 | 𝜑𝑗)𝑝1𝑑𝑔 (𝑙𝑖 | 𝜑1) + 𝑝2𝑑𝑒 (𝑙𝑖 | 𝜑2) ,𝑗 = 1, 2. (13)

Then the condition expectation with respect to the actual
observed feature 𝑙 is defined by 𝐿(𝜑 | 𝑦):

𝑄(𝜑, 𝜑(𝑘−1)) = 𝐸 [log 𝑑 (𝑙, ℎ | 𝜑) | 𝑙, 𝜑𝑘−1]
= 𝑁∑𝑖=1𝐸 [log 𝑑 (𝑙𝑖, ℎ | 𝜑) | 𝑥𝑖, 𝜑𝑘−1]
= 𝑁∑𝑖=1 (𝜏𝑖1 log (𝑝1𝑑𝑔 (𝑙𝑖 | 𝜑1))+ 𝜏𝑖2 log (𝑝2𝑑𝑒 (𝑙𝑖 | 𝜑2))) .

(14)

(B) Maximization Process. In the maximization process, the
model parameters are updated by maximizing 𝑄(𝜑, 𝜑(ste−1)),
which compute the intermediate variables alongwith iterative
step 𝑘 = 1, . . . , 𝐾:
𝑄𝑖 (𝑘) = 𝛾𝑘𝑄𝑃𝑖 (𝑘) + (1 − 𝛾𝑘) 𝑄𝑊𝑖 (𝑘)

= 𝛾𝑘 [[𝛿𝑀𝑄𝑊𝑖 (𝑘) +
𝑀−1∑𝑗=1 𝛿𝑗𝑄𝑗 (𝑘 −𝑀 + 𝑗)]]

+ (1 − 𝛾𝑘) [[𝑈𝑖𝑖𝑄𝑖 (𝑘 − 1) + ∑𝑗∈𝑁𝑖𝑈𝑖𝑗𝑄𝑗 (𝑘 − 1)]] .
(15)

Note that the calculation of current intermediate state𝑄𝑖(ste) at the 𝑖th sensor at its ste time exchanges information
with its neighbors by application of averaging matrix 𝑈,
where𝑄𝑖(𝑘) is nonzero for 𝑗 ∈ 𝑛𝑐𝑖. It became a weighted com-
bination of a prediction and the value derived from neigh-
borhood averaging. By this mean, the local information of𝑄𝑖(𝑘) gradually spread over the network. Thus, each sensor
can update its prediction values 𝑝𝑘1 , 𝑝𝑘2 , 𝜇𝑘, Σ𝑘, and 𝜆𝑘
using the intermediate variable 𝑄𝑖(𝑘) until all nodes reach a
fixed point on their values. The mixing parameter 𝛾𝑘 in (15)
determines the influence of information transmitted across
the network, whereas the predictor parameter 𝛿𝑘 associated
with the convergence rate.These two step-size coefficients are
predecided real constants. It is necessary to investigate the
choice for the value of 𝛾𝑘 and 𝛿𝑘 for our scenario. The time-
related mixing parameters 𝛾𝑘 and 𝛿𝑘 are defined as [41]

𝛾𝑘 = 1𝑘 ,
𝛿𝑘 = 1𝑘𝜏 , 0 < 𝜏 < 1, (16)

where 𝜏 is a growth rate parameter. And, based on the
analysis in [42], the convergence rate of distributed averaging
algorithm is going to speed with a large value of 𝜏 when
the random network is well connected. Therefore, a tentative
experimental test on the time cost of the proposed algorithm
is conducted with the change on the 𝜏 value, in which
the variation interval is 0.05. Figure 4 approximately shows
the varying trend of 𝜏 and result of its corresponding time
cost. From the figure we can observe that the computational
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Figure 4: Time cost of distributed EM versus variation of 𝜏.
time decays gradually when 𝜏 is increased from 0.05 to
0.95, which means the convergence rate of distributed EM
method increases. Moreover, the decline of the time cost
nearly stops improving when the 𝜏 value achieves 0.8, which
demonstrated that the effect of 𝜏 will be not necessary after
0.8. And thus the value of rate parameter 𝜏 for distributed EM
is chosen as 0.8. According to available convergence analysis
not included due to space limitation, it is claimed that the
proposedmethod converges to a fixed point of the centralized
EM solution when it holds the assumption in (10).

Consequently, the estimation of parameters can be
updated as follows: 𝑝𝑘1 , 𝑝𝑘2 , 𝜇𝑘, Σ𝑘, and 𝜆𝑘:

𝑝𝑘1 = ∑𝑁𝑖=1 𝜐𝑘−1𝑖1∑𝑁𝑖=1 (𝜐𝑘−1𝑖1 + 𝜐𝑘−1𝑖2 ) ,
𝑝𝑘2 = 1 − 𝑝𝑘1 ,
𝜇𝑘 = ∑𝑁𝑖=1 𝜐𝑘−1𝑖1 𝑙𝑖∑𝑁𝑖=1 𝜐𝑘−1𝑖1 ,
Σ𝑘 = ∑𝑁𝑖=1 𝜐𝑘−1𝑖1 (𝑙𝑖 − 𝜇𝑘−1)2∑𝑁𝑖=1 𝜐𝑘−1𝑖1 ,
𝜆𝑘 = ∑𝑁𝑖=1 𝜐𝑘−1𝑖2 𝑙𝑖∑𝑁𝑖=1 𝜐𝑘−1𝑖2 .

(17)

Iterate processes (A) and (B) until a suitable stopping crite-
rion is reached. After each update for condition expectation𝑄𝑖(𝑘) and mixture model parameters, the neighbor sensors
organized into computing store their local values into mem-
ory. And before the end of operation, every node begins to
compare the calculated results with at least two neighbors’
record after fixed time interval. If it is found a discrepancy
in the information, the node with inconsistent values will be
considered as an adversary attack and discarded. Then the
remainder of sensors will rerun distributed EM algorithm.

When feature extraction using distributed EM algorithm
is finished, five new features are acquired for eachnode,which
is defined as VE𝑖 = [𝑝𝑘1𝑖, 𝑝𝑘2𝑖, 𝜇𝑘𝑖 , Σ𝑘𝑖 , 𝜆𝑘𝑖 ]. These new features
are used to provide more statistical feature information for
attack classification. As a result, the sum of feature vector for
sensor 𝑖 can be expressed by 𝑉𝑖 = [VD𝑖,VT𝑖,VE𝑖], in which
the dimension of𝑉𝑖 is equal to𝑁+𝐶+ 9. And then𝑉𝑖 will be
entirely used as an input into the classifier at the next stage of
recognition.

5. Distributed Classifier Design

After these features have been selected and further extracted,
we plan to perform classification to recognize the external
attacks. A classification process with excellent generalization
properties and minimal test error is sufficient to compensate
for deficiency in the feature dimensions. As described in the
last section, the EG mixture modeling and distributed EM
feature extraction all belong to the generative model, which
could establish more distinct features from the variation
of distance and topological parameters by exploiting their
probability density. The generative model possesses excellent
ability of modeling and flexibility for the nonnormalized
data. However, the optimization capability of generative
scheme in recognition phase is always weaker than its
discriminative counterpart, especially when the labelled data
is sufficient [43]. Another class of technique for recognition
is discriminative method. It maps the posterior probability
directly as a class label, which avoids the rigid hypotheses
for background posterior probability estimation. It generally
obtains lower asymptotic error than generative approach in
recognition task [44]. However, this manner cannot capture
the intrinsic relationship between the feature distribution and
the observed feature. In order to make the best of advantages
from discriminative approach and generative approach, it is
better to couple the generative features with a discriminative
classifier to get higher recognition accuracy.

Here, it is noticed that, besides the MK-SVM algorithm,
logistic regression (LR) is another prominent and competitive
methodology among the discriminative classifiers, which has
been used for an extensive range of recognition tasks [45].
Although the computational time of LR is fast and it can
often achieve higher accuracy than support vector machine,
especially for huge dataset case. Localization attack data
classification by using LR has a potential challenge. LR is
known as a linear classifier, which means that it can make
the best performance on the linear separable features. For
the distance and topological features, the variation trend of
their approximated distribution and parameters has close
relationship with each other. But there still exists certain
difference between them for some attacks, which will bring
nonlinearity into the features extracted from the unified
mixed distribution. In addition, the uncertain data modifica-
tion by themalicious node will also enhance the nonlinearity.
The accumulative nonlinearity may degrade the accuracy
of LR in attack recognition. Comparatively, the MK-SVM
utilized a kernel function to transform the feature into higher-
dimensional space nonlinearly, which is more appropriate to
make the feature distinguishable. Therefore, the MK-SVM is
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chosen as the classifier for attack classification. Furthermore,
in order to adapt to distributed sensor networks, the PECPR-
MKSVM algorithm is devised to fully exploit the strengths of
machine learning, and a two-stage data verification policy is
added finally.

5.1. Extension for CPRSM. For themulticlass problem,we can
equal it to a linear equality-constrained optimization problem
which consists of multiple separable objective functions:

min
𝑚∑𝑖=1𝜗𝑖 (V𝑖) ,
𝑚∑𝑖=1 𝑔𝑖V𝑖 = 𝑒
V𝑖 ∈ 𝑉𝑖,𝑖 = 1, . . . , 𝑚,

(18)

where 𝜗𝑖 is closed proper convex function, V𝑖 is the feature
vector, 𝑔𝑖 are given matrices, and 𝑒 is a designated vector.
Although the objective function in (18) is convex and linearly
constrained, it is not suited for a classic centralized opti-
mization to solve due to a lack of safety and time efficiency.
On one hand, after feature extraction, a new feature vector
is generated and the potential adversaries are discarded.
Although the period of attack launching is uncertain, there
is still a small possibility for the undetected adversaries to
launch a data modifying assault, which could pose severe
damage to recognition performance. On the other hand, the
input feature dataset is always large and high dimensional,
which is not easy to fulfill the classifier training and testing
task for a common optimization scheme. So it becomes
important to continue exploiting a parallelizing optimization
method to prevent themalicious sensors and process the large
feature dataset.

Referring to the literature [46], the contractive Peaceman-
Rachford splitting method (CPRSM) has been developed for
the linearly constrained convex optimization problem that
has been split into two parts. The augmented Lagrangian
iterations are given by

V𝑘+11 = argmin{𝜗1 (V1) − (𝜁𝑘)𝑇 (𝐺1V1 + 𝐺2V𝑘2 − 𝑒)
+ 𝛽2 󵄩󵄩󵄩󵄩󵄩𝐺1V1 + 𝐺2V𝑘2 − 𝑒󵄩󵄩󵄩󵄩󵄩2 | V1 ∈ 𝑉1}

𝜁𝑘+1/2 = 𝜁𝑘 − 𝛼𝛽 (𝐺1V𝑘+11 + 𝐺2V𝑘2 − 𝑒)
V𝑘+12 = argmin{𝜗2 (V1)

− (𝜁𝑘+1/2)𝑇 (𝐺1V𝑘+11 + 𝐺2V2 − 𝑒)
+ 𝛽2 󵄩󵄩󵄩󵄩󵄩𝐺1V𝑘+11 + 𝐺2V2 − 𝑒󵄩󵄩󵄩󵄩󵄩2 | V2 ∈ 𝑉2}

𝜁𝑘+1 = 𝜁𝑘+1/2 − 𝛼𝛽 (𝐺1V𝑘+11 + 𝐺2V𝑘+12 − 𝑒) ,

(19)

where 𝜗1 and 𝜗2 are closed convex functions, V1 ⊂ 𝑅𝑛1
and V2 ⊂ 𝑅𝑛2 are primal variables, 𝐺1 ∈ 𝑅𝑚×𝑛1 and 𝐺2 ∈𝑅𝑚×𝑛2 are given matrices, and 𝑒 is a designated vector. 𝜁𝑘
and 𝜁𝑘+1/2 are the intermediate updated Lagrange multiplier
corresponding to the linear constraints and 𝛽 > 0 is a penalty
scalar; here the value of relaxing factor 𝛼 ∈ (0, 1) is not
determined to ensure the sequence derived by (19) under
strictly contractive condition. For convenience, it is assumed
that𝛼 is chosen close to 1. Inspired by effectiveness ofCPRSM,
a natural idea for solving (18) is to extend the CPRSM scheme
from the special situation to the general situation, so the
straightforward extension of CPRSM results is the following
scheme:

V𝑘+11 = argmin
{{{𝜗1 (V1)

− (𝜁𝑘)𝑇(𝐺1V1 + 𝑚∑𝑗=2𝐺1V𝑘𝑗 − 𝑒)
+ 𝛽2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐺1V1 +
𝑚∑𝑗=2𝐺𝑗V𝑘𝑗 − 𝑒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 | V1 ∈ 𝑉1}}}

𝜁𝑘+1/𝑚 = 𝜁𝑘 − 𝛼𝛽(𝐺1V1 + 𝑚∑𝑗=2𝐺1V𝑘𝑗 − 𝑒) ,
V𝑘+12 = argmin

{{{𝜗2 (V2)
− (𝜁𝑘+1/𝑚)𝑇(𝐺1V𝑘+11 + 𝐺2V2 + 𝑚∑𝑗=3𝐺𝑗V𝑘𝑗 − 𝑒)
+ 𝛽2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐺1V𝑘+11 + 𝐺2V2 + 𝑚∑𝑗=3𝐺𝑗V𝑘𝑗 − 𝑒
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 | V2 ∈ 𝑉2}}} ,

𝜁𝑘+2/𝑚 = 𝜁𝑘+1/𝑚 − 𝛼𝛽(𝐺1V𝑘+11 + 𝐺2V2 + 𝑚∑𝑗=3𝐺𝑗V𝑘𝑗
− 𝑒)

...
V𝑘+1𝑚 = argmin

{{{𝜗𝑚 (V𝑚)
− (𝜁𝑘+(𝑚−1)/𝑚)𝑇(𝑚−1∑𝑗=1𝐺𝑗V𝑘+1𝑗 + 𝐺𝑚V𝑚 − 𝑒)
+ 𝛽2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑚−1∑𝑗=1𝐺𝑗V𝑘+1𝑗 + 𝐺𝑚V𝑚 − 𝑒󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2 | V𝑚 ∈ 𝑉𝑚}}}
𝜁𝑘+1 = 𝜁𝑘+(𝑚−1)/𝑚 − 𝛼𝛽(𝑚−1∑𝑗=1𝐺𝑗V𝑘+1𝑗 + 𝐺𝑚V𝑚 − 𝑒) ,

(20)



Journal of Sensors 11

where 𝜗𝑖, 𝑖 = 1, . . . , 𝑚, is closed convex function, V𝑖 ⊂𝑅𝑛𝑖 , 𝑖 = 1, . . . , 𝑚, is primal variable,𝐺𝑖 ∈ 𝑅𝑚×𝑛𝑖 , 𝑖 = 1, . . . , 𝑚,
is given matrices, and 𝑒 is a designated vector. Noting here
that 𝜁𝑘+𝑗/𝑚 is an intermediate variable, its value is updated
between iterations of V𝑖, 𝑖 = 1, . . . , 𝑚.𝛽 > 0 is a penalty scalar
and 𝛼 ∈ (0, 1) is a relaxing factor. In order to reduce (19) to
improve calculation efficiency, 𝜁𝑘+𝑗/𝑚 can be further rewritten
as𝜁𝑘+1/𝑚 = 𝜁𝑘 − 𝛼 (𝜁𝑘 − 𝜁𝑘+1/𝑚) ,
V𝑘+12 = argmin

{{{𝜗2 (V) − [𝜁𝑘 − 𝛼 (𝜁𝑘 − 𝜁𝑘+1/𝑚)]
𝑇𝐺2V2

+ 𝛽2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐺1V𝑘+11 + 𝐺2V2 + 𝑚∑𝑗=3𝐺𝑗V𝑘𝑗 − 𝑒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 | V2 ∈ 𝑉2}}} ,

𝜁𝑘+2/𝑚 = 𝜁𝑘 − [2𝛼 (𝜁𝑘 − 𝜁𝑘+1/3) − 𝛼𝛽𝐺2 (V𝑘2 − V𝑘+12 )]
V𝑘+3/𝑚3 = argmin

{{{𝜗3 (V3) − (𝜁𝑘+2/𝑚)
𝑇

⋅ ( 2∑𝑗=1𝐺𝑗V𝑘+1𝑗 + 𝐺3V3 + 𝑚∑𝑗=4𝐺𝑗V𝑘𝑗 − 𝑒)
+ 𝛽2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2∑𝑗=1𝐺𝑗V𝑘+1𝑗 + 𝐺3V3 + 𝑚∑𝑗=4𝐺𝑗V𝑘𝑗 − 𝑒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 | V3 ∈ 𝑉3}}}

= argmin
{{{𝜗3 (V3)

− (𝜁𝑘 − [2𝛼 (𝜁𝑘 − 𝜁𝑘+1/𝑚) − 𝛼𝛽𝐺2 (V𝑘2 − V𝑘+12 )])𝑇
⋅ 𝐺3V3 + 𝛽2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2∑𝑗=1𝐺𝑗V𝑘+1𝑗 + 𝐺3V3 + 𝑚∑𝑗=4𝐺𝑗V𝑘𝑗 − 𝑒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 | V3

∈ 𝑉3}}}
𝜁𝑘+3/𝑚 = 𝜁𝑘+2/𝑚 − 𝛼𝛽( 2∑𝑗=1𝐺𝑗V𝑘+1𝑗 + 𝐺3V3 + 𝑚∑𝑗=4𝐺𝑗V𝑘𝑗

− 𝑒) = 𝜁𝑘 − [3𝛼 (𝜁𝑘 − 𝜁𝑘+1/𝑚) − 2𝛼𝛽𝐺2 (V𝑘2
− V𝑘+12 ) − 𝛽𝐺3 (V𝑘3 − V𝑘+13 )] .

(21)

Substituting (21) into (20) and applying scaled dual form,
problem (19) can be simplified to

V𝑘+11 = argmin
{{{𝜗1V1 (V1) ∈ +𝑉1

𝛽2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐺1V1 +

𝑚∑𝑗=2𝐺𝑗V𝑘𝑗

− 𝑒 − 1𝛽𝜁𝑘
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2}}} ,

V𝑘+12 = argmin
{{{𝜗2V2 (V2) ∈ +𝑉2

𝛽2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐺1V𝑘+11 + 𝐺2V2

+ 𝑚∑𝑗=3𝐺𝑗V𝑘𝑗 − 𝑒 − 1𝛽 [𝜁𝑘 − 𝛼 (𝜁𝑘 − 𝜁𝑘+(1/𝑚))]󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2}}}

...
V𝑘+1𝑚 = argmin

{{{{{{{
𝜗𝑚V𝑚 (V𝑚) ∈ +𝑉𝑚𝛽2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑚−1∑𝑗=1𝐺𝑗V𝑘+1𝑗

+ 𝐺𝑚V𝑚 − 𝑒 − 1𝛽 [[[𝜁
𝑘

− (𝑚 − 1) 𝛼(𝜁𝑘 − 𝜁𝑘+( 1𝑚))
− (𝑚 − 2) 𝛼𝛽𝐺2 (V𝑘2 − V𝑘+12 )
− (𝑚 − 3) 𝛼𝛽𝐺3 (V𝑘3 − V𝑘+13 ) − ⋅ ⋅ ⋅
− 2𝛼𝛽𝐺𝑚−2 (V𝑘𝑚−2 − V𝑘+1𝑚−2)
− 𝛽𝐺𝑚−1 (V𝑘𝑚−1 − V𝑘+1𝑚−1)]]]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2}}}}}}}

.
𝜁𝑘+1 = 𝜁𝑘 − 𝑚𝛼 (𝜁𝑘 − 𝜁𝑘+(1/𝑚)) − (𝑚 − 1) 𝛼𝛽𝐺2 (V𝑘2

− V𝑘+12 ) − (𝑚 − 2) 𝛼𝛽𝐺3 (V𝑘3 − V𝑘+13 ) − ⋅ ⋅ ⋅
− 2𝛼𝛽𝐺𝑚−1 (V𝑘𝑚−1 − V𝑘+1𝑚−1) − 𝛽𝐺𝑚 (V𝑘𝑚 − V𝑘+1𝑚 ) .

(22)

So the minimization problem with more than three convex
functions can be obtained via splitting the (𝑘+1) subproblem
of (18) alternatingly. We name (22) as the extending contrac-
tive Peaceman-Rachford splitting method (ECPR).

5.2. Proximal MK-SVM with ECPR Substitution. Consider-
ing a labelled training set TS = {(V1, 𝑏1), . . . , (V𝑛, 𝑏𝑛)}, where
feature vector V𝑖 ∈ R𝑚 and 𝑏𝑖 ∈ {+1, −1}, MK-SVM places a
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separating hyperplane between the two categories in feature
space. So theminimization optimal problem of theMK-SVM
utilizing the unweighted kernels combination is given as
follows [47]:

min (12) ⋅ 𝑀∑𝑚=1 󵄩󵄩󵄩󵄩𝑤𝑚󵄩󵄩󵄩󵄩2
s.t. 𝑏𝑖( 𝑀∑𝑚=1𝑤𝑚𝜅𝑚 (V𝑖) + bia) ≥ 1

(𝑖 = 1, 2, . . . , 𝑛) ,
(23)

where 𝑤𝑚 denotes the 𝑚th element of weight vector. bia
represents a bias term corresponding to the hyperplane. 𝜅𝑚
is a basic kernel function.The objective of this formulation is
to optimize the variable of𝑤 and bia, which will also find the
maximummargin and the minimum empirical error.

In order to convert the inequality constraints to an
equality 𝑧 constraint, a slack variable 𝑧2 is introduced into
optimization problem:

min (12) 𝑀∑𝑚=1 󵄩󵄩󵄩󵄩𝑤𝑚󵄩󵄩󵄩󵄩2
s.t. 𝑏𝑖( 𝑀∑𝑚=1𝑤𝑚 ⋅ 𝜅𝑚 (V𝑖) + bia) = 1 + 𝑧2𝑖

(𝑖 = 1, 2, . . . , 𝑛) .
(24)

Then optimization procedures can be divided into two
parts, with 𝑤, bia optimization as a group and 𝑧2 as another.

The first part is to solve the minimization problem with
respect to parameters 𝑤, bia by using ECPR when 𝑧2 is fixed.
For solving the 𝑤, bia optimization, the augment Lagrangian
function of (24) can be expressed as

𝐿 (𝑤𝑚, bia, 𝜁𝑖, 𝛽, 𝑧2𝑖 ) = 12 𝑀∑𝑚=1 󵄩󵄩󵄩󵄩𝑤𝑚󵄩󵄩󵄩󵄩2
+ 𝑛∑𝑖=1𝜁𝑖(𝑏𝑖(

𝑀∑𝑚=1𝑤𝑚𝜅𝑚 (V𝑖) + bia) − 1 − 𝑧2𝑖 )
+ 𝑛∑𝑖=1𝛽2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑏𝑖(
𝑀∑𝑚=1𝑤𝑚𝜅𝑚 (V𝑖) + bia) − 1 − 𝑧2𝑖 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2 = 12
⋅ 𝑀∑𝑚=1 󵄩󵄩󵄩󵄩𝑤𝑚󵄩󵄩󵄩󵄩2 +

𝑛∑𝑖=1𝛽2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑏𝑖(

𝑀∑𝑚=1𝑤𝑚𝜅𝑚 (V𝑖) + 𝑏) − 1
− 𝑧2𝑖 − 1𝛽𝜁𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 ,

(25)

where V𝑖 denotes the feature vector and 𝑤𝑚 denotes the 𝑚th
element of weight vector. bia represents a bias term corre-
sponding to the hyperplane. 𝜅𝑚 is a basic kernel function, 𝜁𝑖
is a Lagrangemultiplier, and 𝛽 is a positive scalar. By applying
ECPR to the augmented Lagrangian function, the distributed
iterative form of problem (25) is obtained. To reduce the
calculation of derivative, we then use a linearized proximal
method that was proposed by Xu and Wu [48]:

𝑤𝑘+11 = argmin{12 󵄩󵄩󵄩󵄩𝑤1󵄩󵄩󵄩󵄩2 − 𝑛∑𝑖=1𝑏𝑖𝜅1 (V𝑖) (𝑤1 − 𝑤𝑘1)
𝑛∑𝑖=1(𝑏𝑖(

𝑀∑𝑚=1𝑤𝑘𝑚𝜅𝑚 (V𝑖) + bia) − 1 − 𝑧2𝑖 − 1𝛽𝜁𝑖) + 𝑟12 󵄩󵄩󵄩󵄩󵄩𝑤1 − 𝑤𝑘1󵄩󵄩󵄩󵄩󵄩2} .
𝑤𝑘+12 = argmin{12 󵄩󵄩󵄩󵄩𝑤2󵄩󵄩󵄩󵄩2

− 𝑛∑𝑖=1𝑏𝑖𝜅2 (V𝑖) (𝑤2 − 𝑤𝑘2)
𝑛∑𝑖=1(𝑏𝑖 (𝑤𝑘+11 𝜅1 (V𝑖) + bia) + 𝑏𝑖( 𝑀∑𝑚=2𝑤𝑘𝑚𝜅𝑚 (𝑥𝑖) + bia) − 1 − 𝑧2𝑖 − 1𝛽𝜁𝑘+1/𝑚𝑖 ) + 𝑟22 󵄩󵄩󵄩󵄩󵄩𝑤2 − 𝑤𝑘2󵄩󵄩󵄩󵄩󵄩2}

...
𝑤𝑘+1𝑀 = argmin{12 󵄩󵄩󵄩󵄩𝑤𝑀󵄩󵄩󵄩󵄩2

− 𝑛∑𝑖=1 𝑦𝑖𝜅𝑀 (V𝑖) (𝑤𝑀 − 𝑤𝑘𝑀) 𝑛∑𝑖=1(𝑏𝑖(
𝑀−1∑𝑚=1𝑤𝑘+1𝑚 𝜅𝑚 (V𝑖) + bia) + 𝑏𝑖 (𝑤𝑘𝑀𝜅𝑀 (𝑥𝑖) + bia) − 1 − 𝑧2𝑖 − 1𝛽𝜁𝑘+(𝑀−1)/𝑀𝑖 ) + 𝑟𝑀2 󵄩󵄩󵄩󵄩󵄩𝑤𝑀 − 𝑤𝑘𝑀󵄩󵄩󵄩󵄩󵄩2}

𝑛∑𝑖=1𝜁𝑘+1𝑖 = 𝑛∑𝑖=1 {𝜁𝑘𝑖 −𝑀(𝜁𝑘𝑖 − 𝜁𝑘+1/𝑚𝑖 ) − (𝑀 − 1) 𝛼𝛽𝑏𝑖𝜅2 (V𝑖) (𝑤𝑘2 − 𝑤𝑘+12 ) − (𝑀 − 2) 𝛼𝛽𝑏𝑖𝜅3 (𝑤𝑘3 − 𝑤𝑘+13 ) − ⋅ ⋅ ⋅ − 2𝛼𝛽𝑏𝑖𝜅𝑀−1 (V𝑖) (𝑤𝑘𝑀−1
− 𝑤𝑘+1𝑀−1) − 𝛽𝑦𝑖𝜅𝑀 (V𝑖) (𝑤𝑘𝑀 − 𝑤𝑘+1𝑀 )} .

(26)
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After taking the differentiation of (26), the primal variables
can be calculated as

𝜕𝐿𝜕𝑤1 = 𝑤1 − 𝑛∑𝑖=1𝑏𝑖𝜅1 (V𝑖)
𝑛∑𝑖=1(𝑏𝑖(

𝑀∑𝑚=1𝑤𝑘𝑚𝜅𝑚 (V𝑖) + bia) − 1 − 𝑧2𝑖 − 1𝛽𝜁𝑖) + 𝑟𝑤1 − 𝑟1 󵄩󵄩󵄩󵄩󵄩𝑤𝑘1󵄩󵄩󵄩󵄩󵄩 = 0
𝑤1 = 11 + 𝑟 ( 𝑛∑𝑖=1𝑏𝑖𝜅1 (V𝑖)

𝑛∑𝑖=1(𝑏𝑖(
𝑀∑𝑚=1𝑤𝑘𝑚𝜅𝑚 (V𝑖) + bia) − 1 − 𝑧2𝑖 − 1𝛽𝜁𝑖) − 𝑟1 󵄩󵄩󵄩󵄩󵄩𝑤𝑘1󵄩󵄩󵄩󵄩󵄩) = 𝑈1

𝜕𝐿𝜕bia = 𝑛∑𝑖=1𝑏𝑖
𝑛∑𝑖=1𝑏𝑖𝜅1 (V𝑖) (𝑤1 − 𝑤𝑘1) = 0

...
𝑤2 = 11 + 𝑟 ( 𝑛∑𝑖=1𝑏𝑖𝜅2 (V𝑖)

𝑛∑𝑖=1(𝑏𝑖 (𝑤𝑘+12 𝜅2 (V𝑖) + bia) + 𝑏𝑖( 𝑀∑𝑚=2𝑤𝑘𝑚𝜅𝑚 (V𝑖) + 𝑏) − 1 − 𝑧2𝑖 − 1𝛽𝜁𝑘+1/𝑚𝑖 ) − 𝑟2 󵄩󵄩󵄩󵄩󵄩𝑤𝑘2󵄩󵄩󵄩󵄩󵄩) = 𝑈2
𝜕𝐿𝜕bia = 𝑛∑𝑖=1 𝑦𝑖

𝑛∑𝑖=1𝑦𝑖𝜅2 (V𝑖) (𝑤2 − 𝑤𝑘2) = 0
𝑤𝑀 = 11 + 𝑟 (𝑏𝑖𝜅𝑀 (V𝑖)(𝑏𝑖(𝑀−1∑𝑚=1𝑤𝑘+1𝑚 𝜅𝑚 (V𝑖) + bia) + 𝑏𝑖 (𝑤𝑘𝑀𝜅𝑀 (V𝑖) + bia) − 1 − 𝑧2𝑖 − 1𝛽 𝑛∑𝑖=1𝜁𝑘+1/𝑚𝑖 ) − 𝑟𝑀 󵄩󵄩󵄩󵄩󵄩𝑤𝑘𝑀󵄩󵄩󵄩󵄩󵄩)

= 𝑈𝑀𝜕𝐿𝜕bia = 𝑏2𝑖 𝜅𝑀 (V𝑖) (𝑤𝑀 − 𝑤𝑘𝑀) = 0.

(27)

Substitute equations in (27) into primal problem 𝐿(𝑤𝑚,
bia, 𝜁𝑖, 𝛽), and the primal problem of minimization is con-
verted to a dual function:

𝑤𝑘+11 = argmax{12 󵄩󵄩󵄩󵄩𝑈1󵄩󵄩󵄩󵄩2 − 𝑛∑𝑖=1𝑏𝑖𝜅1 (V𝑖) (𝑈1 − 𝑤𝑘1)
𝑛∑𝑖=1(𝑏𝑖

𝑀∑𝑚=1𝑤𝑘𝑚𝜅𝑚 (V𝑖) − 1 − 𝑧2𝑖 − 1𝛽𝜁𝑖) + 𝑟12 󵄩󵄩󵄩󵄩󵄩𝑈1 − 𝑤𝑘1󵄩󵄩󵄩󵄩󵄩2}
𝑤𝑘+12 = argmax{12 󵄩󵄩󵄩󵄩𝑈2󵄩󵄩󵄩󵄩2 − 𝑛∑𝑖=1𝑏𝑖𝜅2 (V𝑖) (𝑈2 − 𝑤𝑘2)

𝑛∑𝑖=1(𝑏𝑖𝑤𝑘+11 𝜅1 (V𝑖) + 𝑏𝑖 𝑀∑𝑚=2𝑤𝑘𝑚𝜅𝑚 (V𝑖) − 1 − 𝑧2𝑖 − 1𝛽𝜁𝑘+1/𝑚𝑖 )
+ 𝑟22 󵄩󵄩󵄩󵄩󵄩𝑈2 − 𝑤𝑘2󵄩󵄩󵄩󵄩󵄩2}

...
𝑤𝑘+1𝑀 = argmax{12 󵄩󵄩󵄩󵄩𝑈𝑀󵄩󵄩󵄩󵄩2

− 𝑛∑𝑖=1𝑏𝑖𝜅𝑀 (V𝑖) (𝑈𝑀 − 𝑤𝑘𝑀) 𝑛∑𝑖=1(𝑏𝑖
𝑀−1∑𝑚=1𝑤𝑘+1𝑚 𝜅𝑚 (V𝑖) + 𝑏𝑖𝑤𝑘𝑀𝜅𝑀 (V𝑖) − 1 − 𝑧2𝑖 − 1𝛽𝜁𝑘+(𝑀−1)/𝑀𝑖 ) + 𝑟𝑀2 󵄩󵄩󵄩󵄩󵄩𝑈𝑀 − 𝑤𝑘𝑀󵄩󵄩󵄩󵄩󵄩2}

𝑛∑𝑖=1𝜁𝑘+1𝑖 = 𝑛∑𝑖=1 {𝜁𝑘𝑖 −𝑀(𝜁𝑘𝑖 − 𝜁𝑘+1/𝑚𝑖 ) − (𝑀 − 1) 𝛼𝛽𝑏𝑖𝜅2 (V𝑖) (𝑤𝑘2 − 𝑤𝑘+12 ) − (𝑀 − 2) 𝛼𝛽𝑏𝑖𝜅3 (𝑤𝑘3 − 𝑤𝑘+13 ) − ⋅ ⋅ ⋅
− 2𝛼𝛽𝑏𝑖𝜅𝑀−1 (V𝑖) (𝑤𝑘𝑀−1 − 𝑤𝑘+1𝑀−1) − 𝛽𝑏𝑖𝜅𝑀 (V𝑖) (𝑤𝑘𝑀 − 𝑤𝑘+1𝑀 )} .

(28)
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In the following,we consider the 𝑧2 optimization by fixing𝑤, bia which can be easily solved via gradientmethod. Setting
derivatives of (25) with respect to 𝑧2 equal to 0 yields the
following results:

𝜕𝐿𝜕𝑧2𝑖 = −𝑧2𝑖 [𝑏𝑖(𝑀∑𝑘=1𝑤𝑘𝑚𝜅 (V𝑖) + bia) − 1 − 𝑧2𝑖 − 1𝛽𝜁𝑘]
= 0,
𝑧2𝑖 = 𝑏𝑖(𝑀∑𝑘=1𝑤𝑘𝑚𝜅 (V𝑖) + bia) − 1 − 1𝛽𝜁𝑘 or 𝑧2𝑖 = 0.

(29)

Repeat the above iterations until convergence. Therefore,
we name (28) and (29) as the proximal extension contractive
Peaceman-Rachford splitting-multiple kernel support vector
machines (PECPR-MKSVM).

While the PECPR-MKSVM algorithm runs effectively
under the condition of normal, it ignores the attack scenarios
that the intermediate variables may be negatively disrupted
by the modified data from attacker. To address these inade-
quacies, a simple two-stage calculation verification policy is
supplemented to avoid the adversary and improper output. It
requires the following steps to carry out during the PECPR-
MKSVMtraining. (1)NeighborNodeVerification Stage. As the
variable updated at each neighbor node is not the same, the
sequence of data forwarding for all neighbor nodes should
be rearranged such as forward or backward one position
after the first fixed time interval. Then the set of renewing
parameter information produced in the next interval is
checked with the record maintained in the same sensor.
Finally, the first sensor with divergence is determined to
be attacker. (2) Host Node Verification Stage. Although the
validation on neighbor node can eliminate the malicious
node, it does not exclude the potential risk on host node itself.
Therefore, it is necessary to conduct the algorithm repeatedly
on the neighbor node that has been authenticated, which
ensures the attacks prevention and calculation precision.

5.3. The Process Overview of the Proposed Algorithm and
Calculation Verification Policy. Based on the above design,
the message transmission through neighboring nodes in
the distributed recognition method can be summarized as
follows and is clarified with Figure 5. As shown in Figure 5(a),
in the feature extraction phase, when every node obtains its
own original feature set, then it conveys to the sensor with
the most energy (named 𝑆1) and its one-hop neighbors to
compute statistical attack feature set and verifies its local
states 𝑄𝑖(𝑘) by exchanging record with neighbors. As shown
in Figure 5(b), in the PECPR-MKSVM training phase, the
authenticated sensor 𝑆1 with the most residual energy sets
an initial value to 𝑤01 , . . . , 𝑤0𝑚, ∑𝑛𝑖=1 𝜆0𝑖 , 𝑧0𝑖 and then computes𝑤𝑘+11 via (23); next, node sends its newly updated 𝑤𝑘+11 to
one of its one-hop neighboring sensors. After receiving𝑤𝑘+11 ,
iteration resumes when another node updates 𝑤𝑘+12 with the
features set included in itself. According to the forwarding
rule, all the intermediate variables will be transmitted along
the path in order of 𝑆1’s direct neighbor sensor one by one.

Eventually, 𝑧2 was sent to 𝑆1 to start a new circulation. And
the final global minimum of the associated cost function can
be got by iterative update on the distributed classifier.

6. Experimental Setup and Results

6.1. Simulation Setup. To assess the effective aspects of our
mechanism, we presented four groups of experiments that
were carried out under different localization attacks. In our
simulation, 600 sensors including 48 anchors are randomly
distributed over an 300m × 300m area. We set the value
of communication distance regarding sensors and anchors
all to 35m. Moreover, three types of external localization
attacks (wormhole, replay, and interference) exist in network
simultaneously. The fraction of malicious sensors is 20%,
where each kind of external localization attack has one-third
number of the total. If the sensor responsible for performing
computation happens to be the adversary, there will be a
possibility and range of data modification which is lower
than 30%. At first all the sensors in the network begin to
collect the information of original feature and then convey
the feature data to the sensor with the most energy in
the network and its one-hop neighbors. And these sensors
will conduct distributed EM scheme to compute the new
statistical features. At last, we chose one of the authenticated
sensors with new feature dataset to run PECPR-MKSVM
for training and classification. The experiments are then
repeated for 5 times. The features of first four times were
adopted as training sets whereas the ones of the last timewere
used as testing sets. Our classifier for PECPR-MKSVM uses
RBF+Poly kernels and one-versus-all approach.

6.2. Attack Classification Performance with the Proposed
Algorithm. For the effectiveness evaluation of combining
distributed feature extraction and classifier scheme, the
recognition performances on two kinds of feature datasets are
compared first between the proposed classifier and four sim-
ilar classifiers, such as a distributed SVM (MoM-DSVM), a
multiple kernel SVM (SimpleMKL), a typical SVM (C-SVM),
and a logistic regression (LR) classifier. Table 2 shows the
average recognition accuracy obtained by these algorithms
under different external localization attacks. In general, as
depicted in Table 2, the average success classification rate
for each kind of attack using feature extraction technology
significantly rose 9.4% compared to the one recognized
only by classifier. Furthermore, it is worth mentioning that
the proposed classifier obtains relatively higher accuracy
than the rest of other classifier schemes. For example, for
the replay attack, the proposed classifier with the features
extracted offers the highest classification accuracy of 93.28%.
For the same case, SimpleMKL and C-SVM only result in
recognition accuracy of 84.56% and 68.72%, respectively.
Although the MoM-DSVM classifier achieves satisfactory
classification performance using a consensus-based support
vector for replay attack, it is still not sufficiently to recognize
the wormhole and interference attacks. The recognition
performance of LR is improved obviously by the extracted
features, whose performance is superior for the interference
attacks compared to the MoM-DSVM and Simple-MKL.
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Figure 5: Overview of distributed calculation among sensor nodes in the proposed recognition algorithm.

Table 2: Comparison of recognition rate in percentage (%) on the attack feature sets with different classifiers.

Related works

Average recognition rate per category
under localization attacks (without

feature extraction)

Average recognition rate per category
under localization attacks (with

distributed feature extraction)
Unassailed Wormhole Interference Replay Unassailed Wormhole Interference Replay

PEPMK-SVM 80.27 73.78 79.03 78.49 91.56 91.97 90.85 93.28
MK-SVM 72.99 64.29 67.47 70.59 80.47 76.98 79.31 84.56
C-SVM 59.14 56.49 38.63 61.17 62.54 66.15 49.25 68.72
MoM-DSVM 73.42 68.96 73.85 75.21 82.39 83.76 80.02 86.54
LR 71.84 59.31 71.75 66.84 79.27 70.38 82.59 82.81

However, it is still not comparable to the PEPMK-SVM due
to the limitation of safety and the nonlinear features. These
comparisons show that the combination of distributed feature
extraction and the proposed classifier is able to achieve higher
recognition accuracy than any other recognition methods.

6.3. Classification Robustness of the PECPR-MKSVM with
Different Kernel Function. We further explore classification
robustness of the PECPR-MKSVM classifier with different
kernel function. Figure 6 shows the average recognition
accuracies for varied numbers of multikernel classifiers by
combining different kernels, such as RBF kernel, sigmoid
kernel, and polynomial kernel. In Figure 6(a), the average
recognition accuracy using the proposed classifier is 4%–
7% higher than the MoM-DSVM and MK-SVM method.
Moreover, the kernel combination of RBF and polynomial
kernel achieves higher recognition accuracy than the others;
on the contrary, a single kernel fails to offer good recognition
accuracy. For classification error existing in the result, it can
often be attributed to the lack of sufficient training samples
for classifier. Next, to show the robustness of the proposed
classifier, Figure 6(b) compares the recognition performance
under a higher malicious sensors ratio. When the ratio of the
malicious sensors exaggerates, the average attack recognition
rates have a certain improvement for all classifiers, which
means that the additional data of the malicious sensors pro-
vides more sample to the classifier and affects the classifica-
tion hyperplanes. Particularly, the average recognition rate of
the proposed classifier for RBF+Poly kernel is increased from

91.9% to 93.9%.Thus, the proposed algorithm is more robust
to recognize localization attacks even under a severe scenario.

6.4. Convergence Performance of PECPR-MKSVM with Dif-
ferent Positive Scalar 𝛽 and Relaxation Factor 𝛼. In order to
assess the impact of positive scalar 𝛽 and relaxation factor 𝛼
for the proposed classifier, each node trains a local PECPR-
MKSVM and its convergence of test error is compared
with the one obtained via MoM-DSVM. We first fix 𝛼 and
choose two different values of 𝛽 = {1, 10} with respect to
PECPR-MKSVM classifier. Then the evolutions of iteration
are plotted for each choice of 𝛽. For comparison purposes,
we also plot the convergence performance of MoM-DSVM
with 𝛽 = 1 and 𝛽 = 10. As illustrated in Figure 7, we
see that the test error of PECPR-MKSVM reduces very
rapidly with a fewer steps of iterations and soon approaches
the minimum value, which outperforms MoM-DSVM based
method. Moreover, plot in Figure 7(a) also reveals that a
very large value of 𝛽 may lead to dispersion and hinder the
convergence rate.These results further reflect the importance
of choosing 𝛽 when constructing the EPRSM classifier. Last,
plot in Figure 7(b) illustrates that, for each of the test scalar 𝛽,
larger relaxation factor 𝛼 tends to accelerate the convergence
rate of the proposed classifiers, thus shortening the runtime.

6.5. Time Cost with the Proposed Algorithm. Additionally, to
assess different algorithms in saving the time cost of the clas-
sification, we further perform experiment under the situa-
tion that the number of sensors varies from 200 to 1000
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Figure 6: Average recognition accuracy comparison of the proposed classifiers with MoM-DSVM and MK-SVM under different kernel
function.
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and plot the computational time in Figure 8. Here, we com-
bine all the classifiers with the proposed feature extraction
process. Generally, it is not hard for us to find that the
proposed algorithm is the fastest among three schemes. More
importantly, we can observe that the time for the proposed
algorithm increased linearly with the number of sensors, but
the growth rate is slower, even though the number of sen-
sor increases to 1000. This is because the classification pro-
cess is distributed computing, and the computational com-
plexity is depending on the number of neighbor sensors. In
contrast, although time cost of the consensus-based MoM-
DSVM scheme is more efficient than the MK-SVM and
LR algorithm, it still requires higher calculation amount in
the training process. The performance of LR algorithm lies

between the MK-SVM and the distributed SVM. The MK-
SVM algorithm uses the centralized architecture to execute
the classification, which increases the number of iterations
and computational complexity.Thus, the proposed algorithm
is more computationally efficient than the MoM-DSVM, LR,
and the MK-SVMmethod.

7. Conclusion

This paper generalized a distributed classification scheme,
which is used for external localization attack classification
in WSN. A novel distributed version of EM feature extractor
and MK-SVM classifier is also proposed.These new schemes
help each sensor computing during feature extraction and
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recognition across different neighbor sensors. The algorithm
models the distance and topological based features into a
mixed distribution at the first frame of the phase. Then
the parameter features are extracted with a distributed EM
scheme that fuses the time and neighbors’ information, as
it evolves over iteration. Eventually, a distributed classifier,
which corporates MK-SVM with extension for CPRSM, is
designed to classify localization attack datasets into multi-
class. The experimental results have shown that using the
distributed EM as feature extractor and PECPR-MKSVM as
classifier can be able to achieve higher classification accuracy
than other similar methods. Moreover, the attack recognition
scheme presented in this paper is more robust to a wide range
of attacks with competitive time efficiency.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Sci-
ence Foundation of China (no. 61401360), the Fundamental
Research Funds for the Central Universities of China (no.
3102014JCQ01055), and the Natural Science Basis Research
Plan in Shaanxi Province of China (no. 2014JQ2-6033).

References

[1] J. Jiang, G. Han, C. Zhu, Y. Dong, and N. Zhang, “Secure local-
ization in wireless sensor networks: a survey,” Journal of Com-
munications, vol. 6, no. 6, pp. 460–470, 2011.

[2] Y. Zhang, W. Liu, Y. Fang, and D. Wu, “Secure localization and
authentication in ultra-wideband sensor networks,” IEEE Jour-
nal on Selected Areas in Communications, vol. 24, no. 4, pp. 829–
835, 2006.

[3] Y. Chen, W. Trappe, and R. P. Martin, “Attack detection in
wireless localization,” in Proceedings of the IEEE 26th IEEE Inter-
national Conference on Computer Communications (INFOCOM
’07), pp. 1964–1972, May 2007.

[4] A. Boukerche, H. H. A. B. F. Oliveira, E. F. Nakamura, and A. A.
F. Loureiro, “Secure localization algorithms for wireless sensor
networks,” IEEE Communications Magazine, vol. 46, no. 4, pp.
96–101, 2008.

[5] D. He, L. Cui, H. Huang, and M. Ma, “Design and verification
of enhanced secure localization scheme in wireless sensor net-
works,” IEEE Transactions on Parallel and Distributed Systems,
vol. 20, no. 7, pp. 1050–1058, 2009.

[6] R. Garg, A. L. Varna, and M.Wu, “An efficient gradient descent
approach to secure localization in resource constrained wireless
sensor networks,” IEEE Transactions on Information Forensics
and Security, vol. 7, no. 2, pp. 717–730, 2012.

[7] Y. Wei and Y. Guan, “Lightweight location verification algo-
rithms for wireless sensor networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 5, pp. 938–950,
2013.

[8] H. Li, Y.He, X. Cheng,H. Zhu, and L. Sun, “Security and privacy
in localization for underwater sensor networks,” IEEE Commu-
nications Magazine, vol. 53, no. 11, pp. 56–62, 2015.

[9] D. Liu, P. Ning, and W. Du, “Detecting malicious beacon
nodes for secure location discovery in wireless sensor net-
works,” in Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems (ICDCS ’05), pp. 609–619,
Columbus, Ohio, USA, June 2005.

[10] M. Jadliwala, S. Zhong, S. J. Upadhyaya, C. Qiao, and J.-P.
Hubaux, “Secure distance-based localization in the presence of
cheating beacon nodes,” IEEE Transactions on Mobile Comput-
ing, vol. 9, no. 6, pp. 810–823, 2010.

[11] W.Du, L. Fang, andN. Peng, “LAD: localization anomaly detec-
tion for wireless sensor networks,” Journal of Parallel and Dis-
tributed Computing, vol. 66, no. 7, pp. 874–886, 2006.

[12] G. Han, J. Jiang, L. Shu, M. Guizani, and S. Nishio, “A two-
step secure localization for wireless sensor networks,”Computer
Journal, vol. 56, no. 10, pp. 1154–1166, 2013.

[13] Z. Li, W. Trappe, Y. Zhang, and B. Nath, “Robust statistical
methods for securing wireless localization in sensor networks,”
in Proceedings of the 4th International Symposium on Informa-
tion Processing in Sensor Networks (IPSN ’05), pp. 91–98, Boise,
Idaho, USA, April 2005.

[14] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography,” Communications of the ACM, vol.
24, no. 6, pp. 381–395, 2010.

[15] N. Yu, L. Zhang, and Y. Ren, “BRS-based robust secure localiza-
tion algorithm for wireless sensor networks,” International Jour-
nal of Distributed Sensor Networks, vol. 9, no. 3, Article ID
107024, 2013.

[16] L. Doherty, L. E. Ghaoui, and K. S. J. Pister, “Convex position
estimation in wireless sensor network,” in Proceedings of the 8th
Annual Joint Conference of the IEEEComputer and Communica-
tions Societies (INFOCOM ’01), Anchorage, Alaska, USA, April
2001.

[17] T. Bao, J.Wan,K. Yi, andQ. Zhang, “A game-based secure locali-
zation algorithm for mobile wireless sensor networks,” Inter-
national Journal of Distributed Sensor Networks, vol. 11, no. 9,
Article ID 642107, 2015.

[18] M.H. C. Law,M.A. T. Figueiredo, andA. K. Jain, “Simultaneous
feature selection and clustering using mixture models,” IEEE



18 Journal of Sensors

Transactions on Pattern Analysis and Machine Intelligence, vol.
26, no. 9, pp. 1154–1166, 2004.

[19] S. Boutemedjet, N. Bouguila, and D. Ziou, “A hybrid feature
extraction selection approach for high-dimensional non-Gaus-
sian data clustering,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 8, pp. 1429–1443, 2009.

[20] A. Subasi, “EEG signal classification using wavelet feature
extraction and a mixture of expert model,” Expert Systems with
Applications, vol. 32, no. 4, pp. 1084–1093, 2007.

[21] H. Yuan and X.-P. Zhang, “Statistical modeling in the wavelet
domain for compact feature extraction and similarity measure
of images,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 20, no. 3, pp. 439–445, 2010.

[22] P. Bouboulis, S. Theodoridis, C. Mavroforakis, and L. Evag-
gelatou-Dalla, “Complex support vector machines for regres-
sion and quaternary classification,” IEEETransactions onNeural
Networks and Learning Systems, vol. 26, no. 6, pp. 1260–1274,
2015.

[23] J. Peng, Y. Zhou, and C. L. Philip Chen, “Region-kernel-based
support vectormachines for hyperspectral image classification,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 53,
no. 9, pp. 4810–4824, 2015.

[24] C.-Y. Yeh, W.-P. Su, and S.-J. Lee, “Employing multiple-kernel
support vector machines for counterfeit banknote recognition,”
Applied Soft Computing, vol. 11, no. 1, pp. 1439–1447, 2011.

[25] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based
distributed support vectormachines,” Journal ofMachine Learn-
ing Research (JMLR), vol. 11, pp. 1663–1707, 2010.

[26] A.-Y. Ye, J.-F. Ma, Q.-Q. Pei, and L. Xu, “Survey on secure node
positioning in wireless sensor networks,” Journal on Commu-
nications, vol. 30, no. 10, pp. 74–84, 2009.

[27] X. Lu, D. Dong, and X. Liao, “MDS-based wormhole detection
using local topology in wireless sensor networks,” International
Journal of Distributed Sensor Networks, vol. 2012, Article ID
145702, 9 pages, 2012.

[28] Y. C. Hu, A. Perrig, and D. Johnson, “Packet leashes: a defense
against wormhole attacks in wireless networks,” in Proceedings
of 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM ’03), vol. 3, no. 2, pp.
1976–1986, IEEE, San Francisco, Calif, USA, 2003.

[29] L.Hung, S. Lee, Y.-K. Lee, andH. Lee, “SCODE: a secure coordi-
nation-based data dissemination tomobile sinks in sensor
networks,” IEICE Transactions on Communications, vol. E92-B,
no. 1, pp. 131–142, 2009.

[30] H. A. Nguyen, H. Guo, and K.-S. Low, “Real-time estimation of
sensor node’s position using particle swarm optimization with
log-barrier constraint,” IEEE Transactions on Instrumentation
and Measurement, vol. 60, no. 11, pp. 3619–3628, 2011.

[31] V. G. Kulkarni, “Shortest paths in networks with exponentially
distributed arc lengths,” Networks, vol. 16, no. 3, pp. 255–274,
1986.

[32] A. El-Zaart and D. Ziou, “Statistical modelling of multimodal
SAR images,” International Journal of Remote Sensing, vol. 28,
no. 10, pp. 2277–2294, 2007.

[33] J. Wu, C. K. Tse, F. C. M. Lau, and I.W. H. Ho, “Analysis of com-
munication network performance from a complex network per-
spective,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 60, no. 12, pp. 3303–3316, 2013.

[34] M. H. DeGroot and M. J. Schervish, Probability and Statistics,
Pearson Education, 2010.

[35] T. Nie, Z. Guo, and K. Zhao, “The dynamic correlation between
degree and betweenness of complex network under attack,”
Physica A: StatisticalMechanics and Its Applications, vol. 457, pp.
129–137, 2016.

[36] L. Tian, C.-P. Zhu, D.-N. Shi, Z.-M. Gu, and T. Zhou, “Universal
scaling behavior of clustering coefficient induced by deactiva-
tion mechanism,” Physical Review E, vol. 74, no. 4, Article ID
046103, pp. 1–7, 2006.

[37] X. Chen, L. Liang, G. Xu, and D. Liu, “Feature extraction of
kernel regress reconstruction for fault diagnosis based on self-
organizing manifold learning,” Chinese Journal of Mechanical
Engineering, vol. 26, no. 5, pp. 1041–1049, 2013.

[38] S. S. Ram, V. V. Veeravalli, andA.Nedic, “Distributed non-auto-
nomous power control through distributed convex optimiza-
tion,” in Proceedings of the 28th IEEE Conference on Computer
Communications (INFOCOM ’09), pp. 3001–3005, IEEE, Rio de
Janeiro, Brazil, 2009.

[39] M. Zhu and S. Martinez, “On distributed convex optimization
under inequality and equality constraints,” IEEE Transactions
on Automatic Control, vol. 57, no. 1, pp. 151–164, 2012.

[40] T. C. Aysal, B. N. Oreshkin, and M. J. Coates, “Accelerated dis-
tributed average consensus via localized node state prediction,”
IEEE Transactions on Signal Processing, vol. 57, no. 4, pp. 1563–
1576, 2009.

[41] L. Xiao and S. Boyd, “Fast linear iterations for distributed aver-
aging,” Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[42] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in
sensor networks with imperfect communication: link failures
and channel noise,” IEEE Transactions on Signal Processing, vol.
57, no. 1, pp. 355–369, 2009.

[43] J. Liu and J. Yang, “Action recognition using spatiotemporal
features and hybrid generative/discriminative models,” Journal
of Electronic Imaging, vol. 21, no. 2, Article ID 023010, 2012.

[44] H. Sun, C. Wang, and B. Wang, “Hybrid generative-discrim-
inative human action recognition by combining spatiotemporal
words with supervised topic models,” Optical Engineering, vol.
50, no. 2, Article ID 027203, 2011.

[45] Ø. Birkenes, T. Matsui, K. Tanabe, S. M. Siniscalchi, T. A.
Myrvoll, andM. H. Johnsen, “Penalized logistic regression with
HMM log-likelihood regressors for speech recognition,” IEEE
Transactions on Audio, Speech and Language Processing, vol. 18,
no. 6, pp. 1440–1454, 2010.

[46] B. He, H. Liu, Z. Wang, and X. Yuan, “A strictly contractive
Peaceman-Rachford splitting method for convex program-
ming,” SIAM Journal on Optimization, vol. 24, no. 3, pp. 1011–
1040, 2014.

[47] M. Kang, J. Kim, J.-M. Kim, A. C. C. Tan, E. Y. Kim, and B.-
K. Choi, “Reliable fault diagnosis for low-speed bearings using
individually trained support vector machines with kernel dis-
criminative feature analysis,” IEEE Transactions on Power Elec-
tronics, vol. 30, no. 5, pp. 2786–2797, 2015.

[48] M. H. Xu and T. Wu, “A class of linearized proximal alternating
direction methods,” Journal of Optimization Theory and Appli-
cations, vol. 151, no. 2, pp. 321–337, 2011.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


