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Heterogeneous multicore and multiprocessor systems have been widely used for wireless sensor information processing, but system
energy consumption has become an increasingly important issue. To ensure the reliable and safe operation of sensor systems, the
task scheduling success rate of heterogeneous platforms should be improved, and energy consumption should be reduced. This work
establishes a trusted task scheduling model for wireless sensor networks, proposes an energy consumption model, and adopts the
ant colony algorithm and bee colony algorithm for the task scheduling of a real-time sensor node. Experimental result shows that
the genetic algorithm and ant colony algorithm can efficiently solve the energy consumption problem in the trusted task scheduling
of a wireless sensor and that the performance of the bee colony algorithm is slightly inferior to that of the first two methods.

1. Introduction

Energy consumption has become a major problem in wireless
sensor networks. Sensor nodes are often equipped with small
batteries [1]. Therefore, the reduction of energy consumption
to prolong the lifetime of networks is a widespread concern.
Wireless sensor networks perform mainly real-time tasks. We
thus need to focus on reducing energy consumption under
the premise of meeting specified task deadlines.

The real-time task scheduling of wireless sensor networks
involves forming a mapping relationship between the real-
time task scheduling and the processors within the acceptable
time scope of the system. The real-time tasks are then
assigned to the processors according to the mapping rela-
tionship. In this way, the tasks can be executed within the
deadline. The mapping relationship should effectively meet
time and resource constraints.

In the process of establishing time scheduling models, the
operating environment of the real-time calculation must be
considered because calculation resources consist of different
heterogeneous hosts, workstations, and even PCs that are
distributed in different locations. These resources can be run
in a variety of operating systems, such as UNIX, Linux, and
Windows, and the storage media may be large storage devices,
databases, or other devices. Therefore, a scheduling model

and energy consumption model must be built specifically for
heterogeneous platforms.

Heterogeneity is mainly reflected in the following aspects.
(1) Computer hardware heterogeneity: a server processor
that executes calculation operations may be heterogeneous.
It may cause considerable differences in energy consumption
when processing the same tasks in unit time. (2) Operating
system heterogeneity: the heterogeneous components of an
operating system are assigned to a particular machine, the
sequence of tasks to be executed may be disrupted, and
the execution time could either increase or decrease. (3)
Heterogeneity of communication network: the topological
structure of a network may resemble items such as a bus, ring,
and tree, and the communication medium may be a cable,
optical fiber, microwave, and so on. Such variance results
in different transmission rates and different transmission
time periods. Heterogeneity degree can be used to evaluate
the degree of difference among heterogeneous computing
systems. A large heterogeneity degree is associated with
obvious system heterogeneity. Hence, heterogeneity degree
can serve as an important reference and basis for selecting
task scheduling strategies.

Research results [2] indicate that the execution power
and response time of different computers vary in the imple-
mentation of different computing tasks. For example, when



a CPU and GPU execute the same image processing task,
their execution power and response time, as well as their
total energy consumption for completing the task, will vary.
Therefore, as a result of different energy consumption factors,
a given task may be completed at different periods and
with different levels of energy consumption when different
scheduling methods and supply voltages are used. Under such
circumstances, the energy consumption problem should be
considered when carrying out parallel task scheduling in a
real-time computing environment.

Several studies have established energy consumption
models on the basis of resource utilization rates. Li and
John [3] proposed a hardware counter-based linear model
to estimate the energy consumption of an operating system.
Topcuoglu et al. [4] proposed a simple linear regression
model based on CPU utilization rate and hard disk uti-
lization, proved that the model is accurate, and used the
model to reduce the energy consumption of the server
cluster. By establishing an inquiry table for system power
and resource utilization rate, the authors [4] established an
energy consumption model for a server system and proposed
several methods for applying the model to different systems
of the same series. Currently, energy consumption optimiza-
tion management technologies based on distributed parallel
computing systems are divided into three categories: off/sleep
technology, dynamic voltage scaling (DVS) technology, and
virtualization technology. The off/sleep technology is mainly
used to reduce idle energy consumption. The other two
technologies are mainly used to reduce the execution power
consumption. Execution power consumption is defined as the
power consumption generated by the operation of computer
hardware driven by commands and data when using a
computer to complete a task. The power consumption of the
operated hardware in this case is referred to as execution
power. In the execution of the same task, the execution
power may constantly change under different implementa-
tion phases and given different task characteristics [5].

In 2010, Wang et al. [6] proposed a scheduling algorithm
for energy consumption perception and a method for calcu-
lating idle time. The proposed scheduling algorithm consid-
ers the method for reducing voltage in the communication
process. In 2009, Khan and Ahmad [7] studied task allocation
for energy consumption perception and assigned tasks to a
computing grid with DVS features. The goal of such task
assignment is to reduce energy consumption and response
time [8]. In China, Zhu et al. [9] considered the situation
in which copying a scheduling algorithm can reduce the
waiting time and time delay but increase energy consumption
and subsequently proposed a heuristic processor reduction
optimizing method. Kwok and Ahmad [10] studied network
energy consumption models and algorithm networks from
a global perspective, established a systematic optimization
model of network energy consumption, proposed a building
network system for optimizing energy consumption models,
and proposed a network packet routing algorithm for opti-
mizing energy consumption. Lee and Zomaya [11] established
the HCS model according to DVS technology and developed
the ECS algorithm, which is an innovation of the energy
consumption model with good usability [12, 13].
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The privacy-preserving techniques for WSNs are classi-
fied into two for protecting two types of private information:
data-oriented and context-oriented privacy [14]. KIPDA [15]
is a data-oriented privacy-preserving aggregation method,
which can hide a wide range of aggregation functions.
Ozdemir et al. present a polynomial regression based data
aggregation protocol that preserves the privacy of sensor data
[16].

The rest of the paper is organized as follows. Section 2
introduces the system model and formulates the problem of
real-time task scheduling in a heterogeneous wireless sensor
network. Section 3 introduces the genetic algorithm and ant
colony algorithm, which are adopted to obtain the shortest
scheduling length and lowest energy consumption. Section 4
presents a new bee colony algorithm. Section 5 provides an
analysis of the performance and results of the proposed
algorithms. Section 6 concludes the paper with a summary
and details of future research directions.

2. System Model

2.1. Real-Time Task DAG Model. A real-time parallel task
model can be abstracted as a DAG diagram DAG =
(T,E,W,D), in which T = {t,t,,...,t,} represents the col-
lection of tasks; n indicates the number of tasks; E = {e;; |
t;,t; € T} € TxT denotes the collection of directed edges that
describe the dependency relationship between tasks; W =
{w,w,,...,w,} is the computational quantity collection of
tasks, with w; € W representing the number of clock ticks
of task t; in the processor; and D is the communication
between tasks {d;}, with d;; € D representing the duration
of communication between the two ends of e;;.

The earliest starting time of each task in the paral-
lel task map is defined as Est(f,,,) = 0, Est(t;) =
maxtpspred(ti){Est(tp) + Met(f,) + Act,;}, where ¢ repre-
sents the entry subtask without a precursor node, Met(tp)
represents the minimum execution time of task ¢, and Act,;
represents the communication time between task ¢, and
task t;. The earliest completion time of each task Eft(¢;) is
defined as Eft(t;) = Est(t;) + Met(t;). Lft(¢;) is the latest
completion time of task t;, Lft(t.;) = D, and Lft(t;) =
min, cgycr) {LE(E) — Met(t;) — Act; }, where £, denotes the
exit subtask without a successor node. The deadline of each
task is Lft(t;), which is the latest completion time of task ¢;.

entry

In Figure 1, t; in the inner circle represents the serial num-
ber of the task node, the digit adjacent to the circle represents
the computation amount of the task node, and the digit on the
arrow line represents the amount of communication between
the two tasks. After processing, the DAG diagram of the
parallel task is assumed to have only one entry node and one
exit node.

2.2. Processor Model. The processor is represented by the
symbol P. We assume that each processor P only executes
one command within one clock tick and that different pro-
cessors have different operating speeds. A processor has two
properties, namely, processing frequency and corresponding
voltage. Let s; ; denote the clock rate of task T; in processor P;,
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FIGURE 1: Example of DAG task map.

and let ¢; ; denote the execution time of task T} in processor
P;. Then, ¢;; = ¢/s; ;, in which ¢; represents the calculation
amount of the corresponding T;.

The platform (heterogeneous multiprocessor platform,
HMP) comprising m heterogeneous processors is expressed
as HMP = {P,, P,,..., P, }; m processors have different clock
rate-voltage pairs.

2.3. Scheduling Model. A scheduling model is represented
by a scheduling matrix X,,,,. In X, each element x; ;
represents the corresponding relation between task T; and

processor P;, and x; ; can only be set to 0 or 1, with x; ; = 1
indicating that task T; is assigned to processor P; and with

x;; = 0 indicating that task T; is not assigned to processor P;.

2.4. Constraint Model. The effect matrix of the task schedul-
ing problem in a heterogeneous processor is U,,,,. The ele-
ment u; ; of U,,,,, is defined as u; ; = ¢; ;/ p;, which represents
the consumed computing ability of P; when performing T;.
The value of u; ; is a real number within the scope of (0,1) U
+00. If T; cannot be operated in P;, then u; ; can be set to +co.

According to the definition of the effect matrix U,,,,
the constraints [17] of task scheduling in the heterogeneous

processor are given. The constraints are as follows:
(a) Z'}ll x;=1,(=1,23,...,n);

(b) Yo, xi; * w; < U, (j = 1,2,3,...,m),U = 1,
is the maximum computing amount allowed by each
processor;

() Xij issetasOorl(i=1,2,3,...,mj=1,2,3,...,m).

In (a), each task is fully allocated to the processor. In
(b), the total calculation amount of the tasks assigned to
each processor is not greater than the maximum allowable
amount of calculation. In (c), the task is either assigned or
not assigned to a processor.

Each specific element value of the scheduling matrix is 0
or 1. Under the restriction of the constraint model, the size of
each task is 10 5 x 10 scheduling matrixes X, ,,, as shown in
Table 1.

TABLE 1: Scheduling matrix example Xs,o-

TO Tl T2 T3 T4 TS T6 T7 TS T9
p 0 0 1 0 0O 1 0 0 0 0
p 0 0 0O O 1 0 0 0 1 0
p 1 0 0 0O 0 O0 0 1 0 0
b0 O0 O 1 0 0 1 0 0 1
P 0 1 0 0 0 0 0 0 0 0

In the scheduling matrix of X5, o, x; ; = 1 indicates that
task T; is assigned to processor P;. To apply the matrix to
the swarm intelligence algorithm, the compressed scheduling
matrix is {2,4,0,3, 1,0, 3,2, 1, 3}, the compressed scheduling
matrix in the programming application becomes an index,
and the task serial number is mapped on the corresponding
processor according to the order of the compressed schedul-
ing matrix.

2.5. Energy Consumption Model. With the development of
processor hardware technology, the CMOS integrated circuit
has become the digital circuit of widely used processors. The
power consumption of the CMOS integrated circuit mainly
consists of dynamic power consumption and internal short-
circuit power consumption. As the internal short-circuit
power consumption of an ordinary processor is less than 10%
of the dynamic power consumption, the internal short-circuit
power consumption of a processor is not considered when
utilizing a DVS technology-based processor as a research
platform to study the scheduling problem and reduce energy
consumption. The dynamic power consumption equation [11]
of the processor that adopts DVS technology is

P, = ACV*f, 6))

where A is the circuit flip frequency, C is the load capacitance,
V is the supply power voltage, and f is the clock rate. In
digital circuits, voltage V' and clock rate f are positively
correlated; the formula indicates that supply power voltage
is a determining factor of power consumption [11]. As for
a given processor, A - C is generally considered a constant,
and different supply voltages correspond to different levels of
power consumption. When the supply voltage of a computing
resource is reduced, the calculating speed and power of the
computing resource decrease accordingly.

In the present study, the execution time of a single task is
e;j = w;/ f}> and the scheduling length (makespan) in a single
processor is

M~

(ek,j + dk,next) > (2)

k=1

where p is the number of tasks assigned to processor P}, ¢ ;
represents the execution time assigned to processor P;, and
A next 15 the communication time between the current task
and the next task. Thus, the total scheduling length of a task
graph is

M:max{ml,mz,...,mj,...,mm}. (3)



The total execution power consumption of the scheduling
system can be expressed with the following formula:

n n n
E=Y ACVIf-wf =Y ACVIf;- S0 =Y Viw,  (a)
i=1 i=1 f jooi=l

where wj; is the corresponding computation amount of each
task and j is the symbol indicating that task T is assigned to
processor P;.

Scheduling success rate is the number of successful
scheduling tasks completed within the deadline divided by
the total number of tasks. This index is used to evaluate the

performance of the real-time task scheduling.

3. Ant Colony Scheduling Algorithm

The ant colony algorithm is based on the foraging behavior
of ants, especially their means of finding the shortest paths
between food sources and their nest. While moving food
to their nest, ants leave a pheromone trail on the ground.
Ants can smell pheromones. When choosing the path to
search for food, they tend to choose the path with the highest
concentration of pheromones. Pheromones have a positive
feedback effect. When a path is taken by an increasing
number of ants, the corresponding pheromone concentration
increases. This condition entices the other ants to take such
path. Ants follow this pheromone trail to find the shortest
path between the food source and their nest.

On the basis of this observation, Dorigo et al. first
presented ant colony algorithms to resolve difficult combina-
torial optimization problems. The present work applies this
algorithm to the energy consumption optimization problem.

In the actual simulation and application process, the
algorithm design should consider the definition of ants,
pheromone trail representation, design of pheromone depo-
sition and volatilization, and relevant design of pheromone
and path selection.

Each ant is defined according to the definition in the
compressed scheduling matrix and effect matrix, and each
scheduling matrix represents a walking path of ants. However,
because pheromones are gradually released, the compressed
scheduling matrix cannot be randomly generated and should
instead be constantly selected and allocated by ants. Accord-
ing to the effectiveness of the path, the status of ants can
be divided into three categories: partial solution, feasible
solution, and infeasible solution.

Several methods can be used to represent a pheromone
trail. In the present work, the pheromone trail is represented
by the support rate o(i, j), which indicates the support rate
of task T; assigned to processor P; in the ant colony. In the
scheduling matrix, the ants move from the upper left corner
to the lower right corner; x;; = 1 indicates that the ants
pass through the path. The movement of the ants follows the
constraints.

3.1. Design of Ant Pheromone Deposition and Volatilization
Rate. The design of a scheduling algorithm should com-
ply with three objectives, the methods for which should
be exactly the same as those used for the calculation of
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the genetic algorithm but are referred to as optimal solutions
in separate representations. First, the maximum information
concentration of the ant colony algorithm is defined as

f (Sbest)
max — >

P

(5)

where s**" is the optimal solution of the current calculation,

p is the volatilization rate of the pheromones, and f(s) is
the corresponding evaluation function of each solution, the
definition of which corresponds to the three objectives of this
research.

The minimum information concentration is defined as

6min
Omax = (o (0% 1))’ (©)

where w is a constant that is greater than or equal to 1 and 0 is
the number of iterations of the ant colony algorithm (starting
from 1).

After the assignment of task T; to processor P;, the
pheromone trail is updated according to the relationship

between (T}, P;) and s, The updating formula is
(i) =(1-p)-a (i )+ (™), (T,P)es™™,
o(ij)=(1-p)-o(ij), (T,P;)¢s*"
If 0(i, j) > Opay then o(i, ) = 8,0 if 006, ) < Sppins

then o(i, j) = 8,,;, to maintain the information concentration
within a certain range.

7)

3.2. Ant Colony Algorithm Design. The purpose of program-
ming a specific ant colony algorithm is to find feasible
solutions for the three objectives of this work and to output
corresponding targets to find the optimal path for ants. The
ant colony algorithm can be terminated under two condi-
tions: (1) a feasible solution is found and (2) the algorithm
execution reaches the maximum number of iterations.

The specific process flowchart for designing the ant
colony algorithm is shown in Figure 2.

4. Bee Colony Scheduling Algorithm

The bee colony algorithm is an emerging swarm intelligence
algorithm that has been widely used in recent years. It
explores the optimal value according to the role assign-
ment and comprises conversion and information exchange
methods that bee colonies adopt to search for food. The
application methods of the bee colony algorithm and ant
colony algorithm are almost the same. However, the bee
colony algorithm adopts its own unique calculation formula
to find the adaptation value and selection probability of food
sources. The following section of this paper introduces the
role of ants in the bee colony algorithm according to the
implementation process of the bee colony algorithm.

The algorithmic frameworks of the bee colony algorithm
include the initial period, employed bee period, and scout
bee period. In the last two periods of a cycle, employed
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Initialize the effect matrix and the pheromone

matrix and select the probability matrix

I

Call pheromone deposition

function, counter++

|

Record the current best ant

|

If the ant is improved

If the path is a solution or the counter reaches the
maximum iteration number

Return the solution

|

End

Reset ant parameters

Call pheromone deposition

function

Do pheromone evaporation

FIGURE 2: Flowchart for designing the ant colony algorithm.

TABLE 2: Experimental parameters of the genetic algorithm.

TABLE 3: Experimental parameters of the ant colony algorithm.

Parameter value

Parameter serial number  Parameter name

1 Number of 200
chromosomes
Crossover rate 0.8
Mutation rate 0.15
4 Maxm}um pumber 1,000
of iterations

bees become onlooker bees according to the food sources
found until they find the optimal solution or the maximum
number of cycles. In the bee colony algorithm, the bees are
divided into three categories: employed bees, onlooker bees,
and scout bees. Employed bees are related to a particular
food source, onlooker bees observe the dance information
of employed bees to select the food source, and scout bees
randomly search for food. In the initial stage, the scout

Parameter
R Parameter name Parameter value
serial number
1 Number of ants 10
2 P 0.02
3 w 20.00
4 Maximum number of iterations 1,000

bees find all the food sources. Then, the employed bees and
onlooker bees make use of the food sources. The employed
bees that deplete the food sources become scout bees.

In the scheduling matrix, when a bee is a scout bee, it
randomly searches the path from left to right of the matrix
and selects one point in each column until x; ; = 1, which
indicates that the task has been assigned. The scout bee
then becomes an employed bee. When a bee is transformed
into an onlooker bee, it selects employed bees to follow its
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TABLE 4: Experimental parameters of the bee colony algorithm.

Parameter serial number

Parameter name

Parameter value

1 Number of bees 10 (twice the number of food sources)
2 Maximum number of iterations 1,000
TABLE 5: Performance test data.
Task quantity Genetic algorithm BCO ant colony ABC bee colony
Scheduling success rate 92.33% Increase by 9.54% Increase by 10.22%
10 Scheduling length 13.125 Decrease by 8.23% Decrease by 6.14%
Energy consumption 64.024 Decrease by 5.24% Increase by 5.22%
Scheduling success rate 90.35% Increase by 8.43% Decrease by 13.65%
30 Scheduling length 63.254 Decrease by 7.49% Increase by 19.55%
Energy consumption 322112 Decrease by 4.32% Decrease by 5.32%
Scheduling success rate 91.67% Increase by 11.24% Decrease by 3.25%
50 Scheduling length 150.763 Decrease by 11.23% Decrease by 13.22%
Energy consumption 579.245 Decrease by 10.25% Increase by 6.88%

path according to the selection probability. When a bee is
transformed into an employed bee, it repeats the path in the
previous round (i.e., a compressed scheduling matrix).

4.1. Fitness Value and Selection Probability of the Bee Colony
Algorithm. The value of the objective function determines
the method for calculating the fitness value of the employed
bee period. The definition of the bee colony algorithm takes
the positive and negative values of the objective function.
However, the values of the objective function proposed in this
work are positive. Thus, the fitness function is calculated as

1
H Sy ©

where m is a bee and f(m) is the target path value of the bee.

In the scout bee period, employed bees are chosen
to follow the path. The selection probability p,, of each
employed bee is calculated as

_ fitom)
P = SN G ) ©)

where SN is the number of employed bees.

4.2. Bee Colony Algorithm Design. The bee colony algorithm
program has two termination conditions: (1) a feasible
solution is found and (2) the maximum cycle index is reached.
During the cycle, onlooker bees choose to follow employed
bees according to the selection probability value, which is
calculated according to the path of the employed bees. The
flowchart is shown in Figure 3.

5. Experiment

5.1. Experiment Test Program Design. As for the three algo-
rithms implemented in the heterogeneous platform, the unity
of scheduling tasks and the differences in the parameter

setting of each algorithm should be considered, and each
algorithm should select the optimal parameters to achieve
the best performance. The optimal state of each algorithm
should then be used to compare the scheduling efficiencies
of different algorithms.

The configuration of the experiment platform used in this
work is as follows:

(1) operating system: Windows 7 Ultimate,
(2) CPU: Intel® Core™ i3 2.27 GHz,
(3) memory: 2.00 GB.

The three tests of the algorithm on the heterogeneous
platform are mainly performance tests. Small-scale tasks
are adopted in each performance test, and the main refer-
ence indicators are the algorithm’s scheduling success rate,
scheduling length, and energy consumption. Each test is
repeated 10 times. The test results are the average values of
each test.

The parameters of the three algorithms on the hetero-
geneous platform are shown in Table 2 (genetic algorithm),
Table 3 (ant colony algorithm), and Table 4 (bee colony
algorithm), separately.

5.2. Experiment Results. The genetic algorithm is taken as
a standard to compare the performance of the ant colony
algorithm and bee colony algorithm. The test results are
shown in Table 5, in which the values are the average values
of 10 experiments.

As shown in the table, the ant colony algorithm is superior
to the genetic algorithm in terms of achieving the three
objectives. As for the bee colony algorithm, the scheduling
results indicate its potential use for the combinatorial opti-
mization of task scheduling; however, this algorithm needs to
be improved further, or the program needs to be optimized
to obtain convincing results. The results shown in the table
cannot verify the advantages and disadvantages of the bee
colony algorithm in task scheduling.
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Initialize the effect matrix, the food source, the

objective function matrix, and the fitness value

Release scout bees to
detect food sources

\l/

Save the best food source
and the corresponding
parameters

Release employed bee

Compute the objective
function value and fitness
value and selection
probabilities

Cheese onlooker bees to follow employed bees
according to the selection probability value,
counter++

No

l

If food source becomes better or the counter
reaches the maximum iteration number

Return the optimal solution

|

End

FIGURE 3: Flowchart of the bee colony algorithm program.

6. Conclusion

This work takes a real-time parallel task based on the
DAG model as a scheduling object, adds the energy con-
sumption model for a heterogeneous platform, pursues the
goal of reducing energy consumption, and designs the ant

colony algorithm and bee colony algorithm for a hetero-
geneous platform. Through a series of experiments, this
work verifies the combinatorial optimization ability of the
genetic algorithm in optimizing task scheduling and proves
that the ant colony algorithm is superior to the genetic
algorithm in terms of combinatorial optimization. The bee



colony algorithm can potentially be used for combinatorial
optimization.
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