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This paper presents a stochastic global optimization technique known as Particle Swarm Optimization (PSO) for joint estimation
of amplitude and direction of arrival of the targets in RADAR communication system. The proposed scheme is an excellent
optimization methodology and a promising approach for solving the DOA problems in communication systems. Moreover, PSO
is quite suitable for real time scenario and easy to implement in hardware. In this study, uniform linear array is used and targets
are supposed to be in far field of the arrays. Formulation of the fitness function is based on mean square error and this function
requires a single snapshot to obtain the best possible solution. To check the accuracy of the algorithm, all of the results are taken by
varying the number of antenna elements and targets. Finally, these results are compared with existing heuristic techniques to show
the accuracy of PSO.

1. Introduction

In RADAR communication system, it is very important
apprehension to accurate estimation of direction of arrival
and amplitude. Plenty of work has been done in this area by
implementing classical and metaheuristic techniques. With
the passage of time applicability of these schemes enhances
drastically due to provisioning of better results in low signal
to noise ratio. These techniques comprise Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), Ant Colony
Optimization (ACO), and so forth. In this study, biological
inspiredmethod named PSO is applied for joint estimation of
direction of arrival and amplitude for the targets located in far
field of the antenna arrays. Results obtained from this scheme
are compared with GA-PS and GA-Fmincon to understand
the importance of PSO. Different cases are discussed by
varying the number of targets in the air.

Moreover, this paper is organized as follows: Section 2
addresses the different local and global schemes related to
DOA and amplitude estimation. Next section is comprised

of the mathematical modeling on the RADAR antenna
arrays system. Brief discussion on proposed methodology is
summed up in Section 4. In Section 5 simulated results are
shown and finally some conclusions and future recommen-
dations by the authors are suggested in Section 6.

2. Related Work

Today, an enormous research has been put through for
accurate estimation of direction of arrival [1] in adaptive
arrays signal processing [2] and communication systems. It
has the vast applications in biomedical technology, RADARs
[3], SONARs [4], and cellular wireless networks [5]. Smart
antenna arrays play very promising role in unidentified time
varying scenarios. So in this course of study we are primarily
focused on the estimation of DOA and amplitude of the
received signal from far field targets by using smart antenna
uniform linear arrays in RADAR. Smart antenna system
contains an array of radiating and receiving sensors. These
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arrays have the capability to steer the main beam in any
desired direction in space, while placing suitable nulls in
direction of unwanted signals or jammers [6]. Along with
these features, smart antenna arrays system has one difficulty
that we do not identify, the direction of arrival of the received
signal. For that reason, it is necessary to estimate DOA of the
received signal to design a really smart adaptive antenna array
system.

To overcome this issue, there are various classical meth-
ods to estimate DOA such as Multiple Signal Classification
(MUSIC) [7], Maximum Likelihood (ML) method [8, 9],
Bartlett method [10], and Capon method [11]. But to fulfill
the military requirements, we need to apply such algorithms
that have high accuracy and quick response and provide
better results in case of real time scenarios. By keeping in
view these standards, one can implement biological inspired
techniques such as global search algorithms [12] like Particle
Swarm Optimization (PSO), Genetic Algorithm (GA) [13],
Ant Colony Optimization (ACO) [14], and so forth and local
search algorithms [15] like Interior Point Algorithm [16],
Active Set Algorithm [17], Sequential Quadratic Program-
ming [18], and so forth.

In this paper, we aim to estimate both amplitude and
DOA in RADAR antenna arrays by applying Particle Swarm
Optimization (PSO) technique. There are various methods
to estimate DOA and amplitude in RADAR communication
system as mentioned above but the beauty of PSO is that
it provides the most precise, consistently convergent, and
feasible results. Instead of other approaches PSO is very
simple and easily completed and needs fewer parameters
which makes it fully developed. Due to fewer parameters in
the algorithm it takes very small executing time as compared
to other popular techniques. PSO algorithm is derived from
birds and fish flock movement behavior and it is one of
the promising algorithms used to solve global optimization
issues. It requires only primitive mathematical operators and
is computationally inexpensive in terms of both memory
requirements and speed [19]. That is why PSO is proposed
to estimate DOA and amplitude in RADAR communication
system in this paper.

3. Problem Formulation

In this portion of the paper, we formulate the problem for far
field targets by using uniform linear array (ULA) system in
radar receiver.ULA consist of𝑀number of antenna elements
and all elements are equally distant as shown in Figure 1. Due
to a variety of clutters in air, we received many numbers of
signals at ULA. This makes our problem more complex; to
avoid this complexity we assume that there are 𝐿 number
of targets in far field of ULA and 𝐿 number of signals are
impinging on RADAR antenna arrays. 𝑀 is always greater
then 𝐿 for accurate and optimum solution.

All targets are assumed to be in narrow band and
have known frequency (𝜔

0
), where each target is occupying

different direction of arrival (𝜑) and amplitude (𝛼). However,
signal received at the reference antenna element has no
phase shift but signal received at other elements will undergo

Antenna
elements

PSO Adaptive algorithm for updating weights

e = xm − x̂m

xm − + x̂

X(t) Decision maker

· · ·

· · ·

Direction of
arrival of signals

d d

𝜔11
𝜔MN

Σ

Σ

Figure 1: Visualization of system model.

a phase shift. So the phase shift between reference antenna
element 𝛿

1
(𝑡) and other antenna elements 𝛿

𝑚
(𝑡) due to the

same source will be expressed as

Δ
𝛿𝑚
= 𝛿
𝑚
(𝑡) − 𝛿

1
(𝑡) . (1)

General form of (1) in 3D array system is as follows:

Δ
𝛿𝑚
= −𝑘𝑥

𝑚
cos𝜑 sin𝜑 − 𝑘𝑦

𝑚
sin𝜑 sin 𝜃 − 𝑘𝑧

𝑚
cos𝜑. (2)

But we are using ULA so we only require horizontal plane
while 𝑦 and 𝑧 coordinates will be truncated. 𝐾 = 2𝜋/𝜆, and
it is the propagation constant in the free space, while 𝜆 is
the wavelength of the signal, because ULA incoming signals
are received horizontally and all elements of ULA are equally
distant. Spacing between each element is Δ

𝑥
= 𝑑 and 𝑥

𝑚
=

(𝑚 − 1)𝑑. Then (2) can be rewritten along 𝑥-axis as follows:

Δ
𝛿𝑚
= −𝑘𝑑 (𝑚 − 1) cos𝜑 (3)

Δ𝛾 is phase shift and zero is taken at the reference antenna
element. Now the incoming signal at the antenna element 1
because of 𝑙th source is defined as

𝛼
1
(𝑡) = 𝑚

1
(𝑡) 𝑒
2𝜋𝑓0𝑡, (4)

where𝑚
1
(𝑡) ismodulating signal of 𝑙th source and𝑓0 is carrier

frequency. In this case, incoming signal at the 𝑚th element
will be

𝑥
𝑚 (𝑡) = 𝑚1 (𝑡) 𝑒

𝑗(2𝜋𝑡+Δ 𝛾𝑚) + 𝑁
𝑚 (𝑡)

= 𝛼
1
(𝑡) 𝑎
𝑚
(𝜑
𝑙
) + 𝑁
𝑚
(𝑡) ,

(5)

where

𝑎
𝑚
(𝜑
𝑙
) = 𝑒
𝑗Δ 𝛾𝑚 = 𝑒

−𝑗𝑘𝑑(𝑚−1) cos𝜑𝑙 . (6)
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𝑁
𝑚
(𝑡) is denoted the randomnoise. It consists of external and

internal noise produced in the channel. Suppose signal travels
in AWGNmedium with zero mean and 𝜎2

𝑛
variance. Steering

vector of 𝑙th source will be expressed as

𝑎 (𝜑
𝑙
) =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

𝑎
2
(𝜑
𝑙
)

.

.

.

𝑎
𝑚
(𝜑
𝑙
)

.

.

.

𝑎
𝑀
(𝜑
𝑙
)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (7)

Now if it is assumed that all sources occur simultaneously
then signal at the𝑚th element will be expressed as

𝑥
𝑚
(𝑡) =

𝐿

∑

𝑙=1

𝑚
1
(𝑡) 𝑒
𝑗(2𝜋𝑡+Δ 𝛾𝑚) + 𝑁

𝑚
(𝑡) ,

𝑥
𝑚
(𝑡) =

𝐿

∑

𝑙=1

𝛼
𝑙
(𝑡) 𝑎
𝑚
(𝜑) + 𝑁

𝑚
(𝑡) .

(8)

𝑋(𝑡),𝛼(𝑡),𝑁(𝑇), and𝜑
𝑙
(𝑡) are expressed as array signal vector,

incoming signal vector, noise vector, and corresponding
steering vector, respectively, of𝑀× 𝐿matrix below:

𝑋 (𝑡) = {𝑥
1
(𝑡) , 𝑥
2
(𝑡) , 𝑥
3
(𝑡) , . . . , 𝑥

𝑚
(𝑡)}
𝑇
,

𝛼 (𝑡) = {𝛼1 (𝑡) , 𝛼2 (𝑡) , 𝛼3 (𝑡) , . . . , 𝛼𝑚 (𝑡)}
𝑇
,
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1
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3
(𝑡) , . . . , 𝑛

𝑚
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𝑇
,
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1
(𝜑
1
) , 𝑎 (𝜑

2
) , 𝑎
3
(𝜑
3
) , . . . , 𝑎 (𝜑

𝑙
)}
𝑇
.

(9)

Matrix notation of all of these parameters is

𝑋(𝑡) = 𝐴𝛼 (𝑡) + 𝑁 (𝑡) . (10)

For single snapshot (5) is reduced to the following:

𝑥
𝑚 (𝑡) =

𝑚

∑

𝑘=1

𝛼
𝑘
𝑒
−𝑗𝑘𝑑(𝑚−1) cos𝜑𝑘 + 𝜃. (11)

By using this equation, we are able to make fitness function
on the basis of mean error square. With the help of this
fitness function we estimate amplitude and DOA by applying
Particle Swarm Optimization (PSO).

4. Proposed Methodology

In this section, overall procedure of the proposed methodol-
ogy and suggested technique is discussed briefly. All narrow
band signals of far field targets are received at antenna ele-
ments, processed in RADAR signal processing and optimized

RADAR signal processing

(i) Signal reception of far field targets
(ii) Digital signal processing of

narrow band received signals

Modeling

(i) Derivation of fitness function
(ii) Single snapshot of received

signal

Optimization
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Optimal
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Figure 2: Overall performance of proposed methodology.

by Particle Swarm optimization. Flow diagram of the whole
process is demonstrated in Figure 2.

4.1. Particle Swarm Optimization. We propose Particle
Swarm Optimization for DOA and amplitude estimation.
PSO is a heuristic global optimization technique invented
by Dr. Kennedy and Eberhart in 1995 [19]. It is population
based search algorithm based on the simulation of the social
behavior of birds, bees, or fish schooling [20]. Algorithm of
PSO is described in two phases as demonstrated in Figure 3:
(1) swarm initialization phase (see Section 4.1.1) and (2)
swarm execution phase (see Section 4.1.2).

4.1.1. Initialization Phase. Initialization phase consists of
three steps:

(a) Step 1: parameter settings:

(i) Determine the particle size (ps) and set the value
of other parameters.

(ii) Initialize weight factor.
(iii) Randomly generate the population vector.
(iv) Size of population vector is pv = [𝑘

𝑝
𝑘
𝑖
]𝑚× 2.

(v) Substitute the data of pv in objective function to
obtain fitness vector.

(vi) Fitness vector fv = [ ] 𝑚× 1.
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Figure 3: Initialization and execution phase of PSO.

(b) Step 2: initialize velocity vector:

(i) In PSO velocity vector is kept in the range
[−𝑉max 𝑉max].

(ii) 𝑉max = (𝐾𝑝max − 𝐾
𝑝
min)/𝑛.

(iii) vv = ps × ncv; ncv stands for number of control
variables.

(c) Step 3: initialize Pbest and Gbest:

(i) Pbestpopulation = Population Vector.
(ii) Pbestfitness = Fitness vector.
(iii) Gbest is the best position among all individuals.

4.1.2. Execution Phase. Execution phase is also comprised of
three steps:

(d) Step 4: iteration process:

(i) weight updating,
(ii) velocity updating,
(iii) position updating.

(e) Step 5: stopping criteria:

(i) Value of fitness function is calculated for each
agent in accordance with the above steps.

(ii) Compare fitness of particle evaluation with its
Gbest.
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Figure 4: Optimized results of PSO compared with GA-PS andGA-
Fmincon for two targets close to each other.
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Figure 5: Optimized results of PSO compared with GA-PS and GA-
Fmincon for two targets far away from each other.

(f) Step 6: exit condition:

(i) If error > Epbest or a maximum number of
iterations run then stop.

(ii) Otherwise go to Step 4 and repeat the process.

5. Results and Discussion

In this section, optimized values attained from PSO algo-
rithm along with graphs are described and PSO results have
been observed by comparing with GA-PS and GA-Fmincon.
Statistical analysis of these schemes is carried out by 100
independent runs and max, mean, and min values are taken
from there. These results are categorized into three types and
each type contains three scenarios as mentioned in Figure 13.

5.1. PSO Optimized Results Compared with GA-PS and GA-
Fmincon for Type I. When two targets are close to each
other PSO converge at 63% while GA-PS and GA-Fmincon
converge at 29% and 40% simultaneously at convergence level
of 10−08. Performance of these schemes is compared more
clearly in Figure 4 and Table 1.

In this scenario, when two targets are at some distance
PSO provides error-free optimized results while GA-PS and
GA-Fmincon converge at 87% and 94% simultaneously at
convergence level of 10−08. These results are compared more
clearly in Figure 5 and Table 2.
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Table 1: Optimized results of PSO compared with GA-PS and GA-Fmincon for two targets close to each other.

Schemes Mode Amplitudes Phases Error MSE Convergence
∝
1

∝
2

𝜑
1

𝜑
2

𝜀 ≥ 10
−08

Scenario I

PSO
Max 0.9964 2.0095 0.5161 0.5731 4.97E − 10

2.03E − 07 63%Mean 1.0159 1.9841 0.5314 0.5822 5.79E − 08
Min 0.8660 2.2339 0.5447 0.5893 1.00E − 06

GA-PS
Max 1.0002 2.0008 0.5238 0.5760 3.97E − 09

1.19E − 05 29%Mean 1.0012 2.0024 0.5225 0.5764 6.10E − 06
Min 1.1104 2.0858 0.6752 0.5555 1.42E − 04

GA-Fmincon
Max 1.0070 2.0000 0.5238 0.5760 6.00E − 09

5.77E − 06 40%Mean 1.0018 2.0081 0.5149 0.5727 9.06E − 07
Min 1.0565 2.0419 0.6583 0.5542 9.65E − 05

True value 1.0000 2.0000 0.5236 0.5760

Table 2: Optimized results of PSO compared with GA-PS and GA-Fmincon for two targets far away from each other.

Schemes Mode Amplitudes Phases Error MSE Convergence
∝
1

∝
2

𝜑
1

𝜑
2

𝜀 ≥ 10
−08

Scenario II

PSO
Max 1.0000 2.0000 1.0472 2.0944 No Error

— 100%Mean 1.0000 2.0000 1.0472 2.0944 No Error
Min 1.0000 2.0000 1.0472 2.0944 No Error

GA-PS
Max 1.0000 2.0009 1.0471 2.0943 8.39E − 11

4.78E – 02 87%Mean 1.0001 2.0017 1.0471 2.0943 5.49E − 06
Min 1.0999 2.0035 1.3471 2.7943 1.03E − 01

GA-Fmincon
Max 1.0000 2.0009 1.0471 2.0943 2.37E − 12

1.91E − 02 94%Mean 1.0000 2.0016 1.0472 2.0943 5.52E − 07
Min 1.0996 2.0001 1.2472 2.3944 1.33E − 02

True value 1.0000 2.0000 1.0472 2.0944
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Figure 6: Optimized results of PSO compared with GA-PS andGA-
Fmincon for two targets close to the surface of earth.

When two targets are moving at low altitude then PSO
converges at 91% at convergence level of 10−08, while GA-PS
and GA-Fmincon converge at 74% and 85% simultaneously
in this scenario (Table 3). Assessment diagram of these three
optimization schemes is depicted in Figure 6.

5.2. PSO Optimized Results Compared with GA-PS and GA-
Fmincon for Type II. In Table 4 of type II three targets
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Figure 7: Optimized results of PSO compared with GA-PS and GA-
Fmincon for three targets close to each other.

are optimized at very short distance to each other. PSO,
GA-PS, and GA-Fmincon converge at 47%, 19%, and 30%
concurrently at convergence level of 10−07. Figure 7 describes
the overall performance of these three schemes.

When three targets are at somedistance to each other PSO
converge at 100% at 10−07 convergence level. GA-PS and GA-
Fmincon converge at 36% and 45% at the same time. Figure 8
and Table 5 show the combined performance of these three
schemes.
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Table 3: Optimized results of PSO compared with GA-PS and GA-Fmincon for two targets close to the surface of earth.

Schemes Mode Amplitudes Phases Error MSE Convergence
∝
1

∝
2

𝜑
1

𝜑
2

𝜀 ≥ 10
−08

Scenario III

PSO
Max 1.0007 1.9793 0.1294 2.5791 3.81E − 09

5.37E − 08 91%Mean 1.0159 1.8841 0.3922 2.5414 5.79E − 08
Min 0.8961 2.1339 0.4993 2.5447 1.00E − 07

GA-PS
Max 1.0001 2.0009 0.1744 2.6159 9.04E − 08

8.30E − 06 74%Mean 1.0035 2.0060 0.1190 2.5739 5.42E − 07
Min 1.1345 2.0635 0.4298 0.5636 6.47E − 04

GA-Fmincon
Max 1.0001 2.0006 0.1745 2.6159 6.05E − 08

7.75E − 06 85%Mean 1.0029 2.0066 0.1762 2.5731 7.55E − 07
Min 0.9951 2.0146 0.4516 2.5647 3.92E − 04

True value 1.0000 2.00000 0.1745 2.9671

Table 4: Optimized results of PSO compared with GA-PS and GA-Fmincon for three targets close to each other.

Schemes Mode Amplitudes Phases Error MSE Convergence
∝
1

∝
2

∝
3

𝜑
1

𝜑
2

𝜑
3

𝜀 ≥ 10
−07

Scenario I

PSO
Max 0.3087 1.9286 3.0627 0.5432 0.5422 0.6234 5.22E − 09

7.02E − 06 47%Mean 1.0506 2.1322 3.0638 0.5530 0.5534 0.6302 5.86E − 07
Min 1.0826 2.1120 3.3621 0.4949 0.6260 0.5989 3.16E − 05

GA-PS
Max 1.0000 2.0001 3.0009 1.5160 0.5774 0.6258 1.49E − 05

2.92E − 03 19%Mean 1.0027 2.0414 3.0078 1.5111 1.6138 1.6001 8.36E − 03
Min 1.0669 1.9398 2.9998 1.5508 1.6429 1.5824 1.41E − 02

GA-Fmincon
Max 1.0004 2.0002 3.0004 0.5157 0.5790 0.6215 3.90E − 07

4.42E − 05 30%Mean 1.0008 2.0069 3.0684 1.5150 1.5346 1.6048 4.45E − 05
Min 1.0475 2.0502 3.0891 1.6227 1.6224 1.5461 1.78E − 03

True value 1.0000 2.0000 3.0000 0.5236 0.5760 0.6283
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Figure 8: Optimized results of PSO compared with GA-PS and GA-
Fmincon for three targets far away from each other.

When three targets are near the surface of earth PSO
converges at 61%, GA-PS converges at 20%, andGA-Fmincon
converges at 54% at convergence level of 10−07. In this
situation PSO again perform well (Table 6). In Figure 9 all
of these results are shown graphically.

5.3. PSO Optimized Results Compared with GA-PS and GA-
Fmincon for Type III. In Scenario 1 of type III four targets
are optimized with very short distance to each other. PSO
converges at 63%, GA-PS converges at 12%, and GA-Fmincon
converges at 45% at convergence level of 10−07 in this
scenario (Table 7). Graphical representation of these schemes
is depicted in Figure 10.
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Figure 9: Optimized results of PSO compared with GA-PS andGA-
Fmincon for three targets close to the surface of earth.

When four targets are far away from each other then PSO
provides 83% convergence,GA-PS converges at 65%, andGA-
Fmincon converges at 71% at the convergence level of 10−07.
Figure 11 shows graphs of these results given in Table 8.

In Table 9 optimization results of four targets at very low
altitude are shown. In this scenario, PSO converges at 70%,
GA-PS converges at 61%, and GA-Fmincon converges at 51%
at the convergence level of 10−07. Graphically these results are
shown in Figure 12.
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Table 5: Optimized results of PSO compared with GA-PS and GA-Fmincon for three targets far away from each other.

Schemes Mode Amplitudes Phases Error MSE Convergence
∝
1

∝
2

∝
3

𝜑
1

𝜑
2

𝜑
3

𝜀 ≥ 10
−07

Scenario II

PSO
Max 1.0000 2.0000 3.0000 1.0471 1.5708 2.0943 2.47E − 32

2.07E − 30 100%Mean 1.0000 2.0000 3.0000 1.0472 1.5706 2.0888 5.50E − 31
Min 1.0000 2.0000 3.0000 1.0471 1.5707 2.1887 5.50E − 30

GA-PS
Max 1.0004 2.0009 3.0005 0.7850 1.5708 2.0947 2.12E − 07

7.60E − 02 36%Mean 1.0067 2.0094 3.0081 0.7885 1.5711 2.0902 1.11E − 04
Min 1.0369 2.0172 3.0835 0.7000 1.5737 2.0000 1.55E − 01

GA-Fmincon
Max 1.0007 2.0000 3.0002 0.7851 1.5707 2.0949 3.34E − 08

8.04E − 02 45%Mean 1.0059 2.0097 3.0002 0.7802 1.5708 2.0910 1.36E − 05
Min 1.0492 2.1679 3.0204 0.7737 1.5737 2.0000 1.55E − 01

True value 1.0000 2.0000 3.0000 0.5236 1.0472 2.0944

Table 6: Optimized results of PSO compared with GA-PS and GA-Fmincon for three targets close to the surface of earth.

Schemes Mode Amplitudes Phases Error MSE Convergence
∝
1

∝
2

∝
3

𝜑
1

𝜑
2

𝜑
3

𝜀 ≥ 10
−07

Scenario III

PSO
Max 1.0413 2.0000 3.0035 1.5772 1.5772 2.6148 2.50E − 09

3.01E − 08 61%Mean 1.1712 1.8956 2.8288 1.3792 1.5708 2.0405 1.37E − 07
Min 1.2120 2.2337 2.3102 0.1938 1.1640 2.5708 4.32E − 04

GA-PS
Max 1.0008 1.9999 3.0008 0.1720 1.5725 2.9671 1.13E − 07

1.76E − 04 20%Mean 1.0016 1.9965 3.9786 0.1582 1.5273 2.8861 5.73E − 05
Min 1.2909 2.2747 3.4214 0.2619 1.5964 2.5735 2.00E − 03

GA-Fmincon
Max 1.0008 2.0000 3.0000 0.1749 1.5724 2.9676 2.31E − 08

2.69E − 05 54%Mean 1.0073 1.9999 2.9999 0.1368 1.5347 2.8644 3.77E − 06
Min 0.9388 1.8999 3.0206 0.2424 1.5399 2.5598 1.35E − 04

True value 1.0000 2.0000 3.0000 0.1745 1.5708 2.9671
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Figure 10: Optimized results of PSO compared with GA-PS and
GA-Fmincon for four targets close to each other.
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Figure 11: Optimized results of PSO comparedwithGA-PS andGA-
Fmincon for four targets far away from each other.

6. Comparison with Existing Techniques

In Table 10 PSO is generally compared with existing
hybridized algorithms in accordance with estimation of DOA
and amplitude. Effectiveness of the algorithm is illustrated
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Figure 12:Optimized results of PSOcomparedwithGA-PS andGA-
Fmincon for four targets close to the surface of earth.

in Table 10. Performance of the proposed algorithm is
much better than other existing techniques. Average MSE,
convergence rate, and error depicted in this table are average
value of the results in Section 5.

7. Conclusions and Future Recommendations

On the basis of results and discussions portion we made up
the following conclusions.
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Table 7: Optimized results of PSO compared with GA-PS and GA-Fmincon for four targets close to each other.

Schemes Mode Amplitudes Phases Error MSE Convergence
∝
1

∝
2

∝
3

∝
4

𝜑
1

𝜑
2

𝜑
3

𝜑
4

𝜀 ≥ 10
−07

Scenario I

PSO
Max 0.9527 2.0834 3.1068 3.7570 0.5419 0.7066 0.6293 0.6691 7.47E − 09

5.07E − 07 63%Mean 1.5734 2.4055 3.2595 4.2525 0.5284 0.6195 0.6174 0.6864 2.52E − 08
Min 0.7770 1.5646 3.5882 4.6092 0.4723 0.5222 0.6494 0.6917 1.13E − 06

GA-PS
Max 0.3279 2.1876 3.7090 3.7734 0.2699 0.1125 0.2157 0.2064 7.00E − 07

9.10E − 04 12%Mean 1.4329 2.0503 2.8081 3.7207 1.0952 1.1734 1.2697 1.2729 4.27E − 04
Min 0.4281 1.5860 3.6188 4.5455 1.0089 2.1716 1.2924 2.1828 4.31E − 02

GA-Fmincon
Max 1.5488 2.0299 2.9026 3.5184 0.1025 0.2752 0.2085 0.2504 1.90E − 07

1.89E − 03 45%Mean 1.0795 2.5464 2.7853 3.5750 1.2735 0.1194 0.1774 1.2605 2.12E − 04
Min 0.3450 1.8918 3.1111 4.6440 1.1146 1.1143 2.2010 2.2651 1.89E + 0

True value 1 2 3 4 0.5236 0.5760 0.6283 0.6807

Table 8: Optimized results of PSO compared with GA-PS and GA-Fmincon for four targets far away from each other.

Schemes Mode Amplitudes Phases Error MSE Convergence
∝
1

∝
2

∝
3

∝
4

𝜑
1

𝜑
2

𝜑
3

𝜑
4

𝜀 ≥ 10
−07

Scenario II

PSO
Max 1.0546 2.1604 2.9764 4.0004 0.6107 1.0768 1.7402 2.0000 6.65E − 09

2.04E − 07 83%Mean 1.6566 2.2770 3.1192 4.0002 0.4766 1.4695 1.7458 2.5198 8.89E − 07
Min 1.6566 2.6770 3.4119 3.5499 0.3766 1.7695 1.9182 2.5363 8.89E − 05

GA-PS
Max 1.0006 2.0001 3.0002 4.1193 0.5234 1.0472 1.7458 2.5313 9.49E − 07

1.03E − 03 65%Mean 1.0094 2.0069 3.0021 4.5499 0.5244 1.0463 1.7499 2.5821 1.40E − 03
Min 1.0842 1.9006 3.0841 4.8940 1.9258 1.9132 1.0507 2.0000 3.40E − 01

GA-Fmincon
Max 1.0006 2.0000 3.0000 4.0003 0.5237 1.0471 2.4702 2.8361 2.95E − 08

1.69E − 04 71%Mean 1.0007 2.0094 3.0400 4.0008 0.5272 0.0899 2.3195 2.9023 1.20E − 05
Min 1.0984 2.0834 3.0770 4.1944 0.0000 1.0506 2.3195 3.0023 3.37E − 01

True value 1 2 3 4 0.5236 1.0472 1.5708 2.0944

Table 9: Optimized results of PSO compared with GA-Fmincon and GA-PS for four targets close to the surface of earth.

Schemes Mode Amplitudes Phases Error MSE Convergence
∝
1

∝
2

∝
3

∝
4

𝜑
1

𝜑
2

𝜑
3

𝜑
4

𝜀 ≥ 10
−07

Scenario III

PSO
Max 1.2025 2.0008 3.0002 3.5963 0.7077 1.0444 2.0471 2.9207 5.80E − 09

1.71E − 06 70%Mean 0.8158 2.0306 3.0197 4.5563 0.0808 1.0422 2.0401 2.6860 1.19E − 05
Min 1.9351 2.0787 3.0524 4.9367 1.1900 1.0581 2.0000 2.1045 4.07E − 02

GA-PS
Max 1.0000 2.0000 3.0000 4.0000 0.1736 1.0490 2.0199 2.9680 2.37E − 08

2.31E − 05 61%Mean 1.0008 1.9986 2.9975 3.9996 0.5234 1.3091 1.9198 2.6180 1.35E − 05
Min 1.3686 2.1320 2.6706 3.0771 2.6068 1.3112 1.6070 1.9163 8.81E − 01

GA-Fmincon
Max 1.0000 2.0000 3.0000 4.0000 0.1736 1.0490 2.1199 2.9680 3.60E − 08

3.61E − 04 51%Mean 1.0025 1.9987 3.0023 4.0021 0.5233 1.3090 1.9199 2.6180 1.67E − 05
Min 0.2903 2.1427 3.0767 4.0281 3.1408 1.3121 1.9149 2.6017 8.17E − 01

True value 1 2 3 4 0.1745 1.0472 2.0944 2.9671

Table 10: Comparison of PSO and other popular existing techniques.

S number Parameters of comparison Proposed methodology Other existing techniques
PSO GA-Fmincon GA-PS

1 Average MSE 1.7E − 09 2.3E − 05 3.7E − 04
2 Average convergence rate 75.33% 51.55% 44.77%
3 Average error 2.07E − 10 3.71E − 6 5.03E − 5
4 Hardware implementation Easy Hard Hard
5 System complexity Simple Complex Complex
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Figure 13

We estimate amplitude and DOA of targets in three types
of scenarios using PSO technique and compare it with two
other GA hybrid schemes, GA-PS and GA-Fmincon. In all
three scenarios performance of PSO is better than GA-PS
and GA-Fmincon. Besides that, PSO provide accurate and
convergent results, the other inherent factor of this scheme
is simplicity in concept and being easy to implement in
hardware.

In the future one can apply other biological inspired
methods like Ant Colony Optimization or Active Set Algo-
rithm for this problem using circular or rectangular shape of
antenna arrays.
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