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Bus travel time is an important source of data for time of day partition of the bus route. However, in practice, a bus driver may
deliberately speed up or slow down on route so as to follow the predetermined timetable. The raw GPS data collected by the GPS
device equipped on the bus, as a result, cannot reflect its real operating conditions. To address this concern, this study first develops a
method to identify whether there is deliberate speed-up or slow-downmovement of a bus. Building upon the relationships between
the intersection delay, link travel time, and traffic flow, a recoverymethod is established for calculating the real bus travel time. Using
the dwell time at each stop and the recovered travel time between each of them as the division indexes, a sequential clustering-based
time of day partition method is proposed. The effectiveness of the developed method is demonstrated using the data of bus route
63 in Harbin, China. Results show that the partitionmethod can help bus enterprises to design reasonable time of day intervals and
significantly improve their level of service.

1. Introduction

A well-designed bus schedule scheme is important for
increasing bus transit ridership [1]. Bus passenger demand
differs greatly at different time intervals during the everyday
operation. Before the overall design of a bus schedule scheme,
the operating time of a bus route should be divided into
multiple time intervals for which different schedule schemes
should be made. This greatly helps formulate precise oper-
ating and dispatching schemes for buses and reduce the
operational costs of a bus transit enterprise.

In recent years, buses in a number of large cities in
China have been equipped with GPS devices [2–5]. Bus
enterprises can now directly retrieve the bus travel time
between any two stops from this database. However, given the
predetermined timetables, the travel time may not reflect the
actual performance of a bus. When faced with traffic jams, a
bus drivermay deliberately accelerate if the bus is to arrive at a
downstream stop no later than the scheduled time. Although
it may manage to arrive on time, the bus typically undergoes
frequent acceleration and deceleration enroute which not

only reduces the comfort of passengers but also increases the
probability of traffic accidents. In contrast, the bus drivermay
deliberately slow down in smooth traffic so as to avoid early
arrival at the downstream stop. Consequently, the lowered
travel speed may leave the passengers with the impression
that the bus service is inefficient. These two kinds of drivers’
behavior are common in China [6, 7]. The root cause is that
the initial timetables are usually nonoptimal considering the
real-time traffic conditions.Therefore, the retrieved GPS data
cannot be used directly. To obtain the actual travel speed
and to further divide the operating time, the effect of drivers’
behavior should be considered.

Scholars have conducted much research on the optimiza-
tion of bus schedule schemes but have rarely investigated
the division of the operating time [8–11]. To evaluate the
effectiveness of a bus schedule scheme, Patnaik et al. [12]
selected as indexes the numbers of passengers boarding and
alighting the bus and the number of midway stops. The
buses from the starting stop were then divided into several
classes.The data used to develop themodels were collected by
the Automatic Passenger Counters (APC) on buses operated
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by a transit agency in the northeast region of the United
States. Guihaire and Hao [13] presented a global review of
the crucial strategic and tactical steps of transit planning:
the design and schedule of the network. They pointed out
that the bus operating period mainly depended on the
passengers’ requirements which were different at different
times. However, no analytic method has been developed for
time of day partition. Using ridership data from a bus smart
card system, Yue [14] obtained an ordered sampling of the
passengers’ arrival ratio curve and divided the operating time
intomultiple intervals using the Fisher optimal segmentation
method. In his model, only the passenger volume was
considered and the bus travel speedwas neglected. As a result,
the bus operating conditionswere not fully considered during
the partition. Shen et al. [15] proposed an improved𝐾-means
clustering algorithm for the division of the bus operating
period based onGPS data. However, only the bus travel speed
was used and the passenger demand was not considered.
Given that, in different time intervals, a transit agency tends
to arrange different bus dispatching frequencies because of
the different passenger demand, this study becomes less
practically promising. Bie et al. [16] selected the dwell time
at each stop and the travel time between each pair of them
as indexes and developed a rapid division algorithm. This is
the first study that considers both the bus travel speed and the
passenger demand in time of day partition.However, theGPS
data were used directly without considering the deliberate
speed-up or slow-down movement.

The existing methods for operating time division exhibit
two shortcomings: (i) only the passenger flow volume is taken
into account and (ii) data are obtained typically through
manual work which consumes much manpower and many
other resources.Themethod proposed in this study builds the
relationship between time division and bus schedule scheme
and successfully addresses these shortcomings.

The contributions of this study are twofold. Firstly, we
develop a method to identify whether there is deliberate
speed-up or slow-down movement of a bus. A recovery
method is then established for calculating the real bus travel
time based on raw GPS data. To the best of our knowledge,
no research so far has investigated this kind of problem.
Secondly, a sequential clustering algorithm is developed to
partition the operating period into multiple intervals based
on the recovered bus travel time and dwell time at stops.

The structure of this paper is organized as follows. In
Section 2, a recognition method for bus operating state is
first developed followed by a recovery method for the bus
travel time. A discussion is provided as to why the recovery
travel time and dwell time are selected as division indexes.
In Section 3, a sequential sample clustering algorithm is
proposed to divide the operating time into multiple time
intervals using the recovered travel time and dwell time.
Section 4 presents a real case study and Section 5 concludes
the paper.

2. Development of the Operating Time
Division Method

2.1. Recognition of the Bus Operating State. In this paper,
unless stated otherwise, all time is measured in units of

seconds. Let us assume that a bus 𝑖 passes 𝑚 stops in total
during an operating period 𝑛. According to its timetable, the
planned travel time of bus 𝑖 from the𝑚th stop to the (𝑚+1)th
stop is denoted as 𝑇𝑛𝑖 (𝑚,𝑚 + 1). The planned operating time𝑇𝑛𝑖 can be written as follows:

𝑇𝑛𝑖 = 𝑀−1∑
𝑚=1

𝑇𝑛𝑖 (𝑚,𝑚 + 1) . (1)

When traveling along a route, a bus usually passes
through three different kinds of regions, namely, stops, road
sections, and intersections.Therefore, the planned travel time
of bus 𝑖 from the𝑚th stop to the (𝑚+1)th stop can be further
divided as follows:

𝑇𝑛𝑖 (𝑚,𝑚 + 1) = 𝑎𝑛𝑖 (𝑚,𝑚 + 1) + 𝑏𝑛𝑖 (𝑚,𝑚 + 1)
+ 𝑐𝑛𝑖 (𝑚 + 1) , (2)

where 𝑎𝑛𝑖 (𝑚,𝑚 + 1) denotes the travel time spent at road
sections, 𝑏𝑛𝑖 (𝑚,𝑚 + 1) denotes the travel time spent at
intersections, and 𝑐𝑛𝑖 (𝑚 + 1) denotes the travel time spent at
bus stops.𝑎𝑛𝑖 (𝑚,𝑚+1), 𝑏𝑛𝑖 (𝑚,𝑚+1), and 𝑐𝑛𝑖 (𝑚+1) can be extracted
fromGPS data in combinationwith a geographic information
system (GIS) map.The actual travel time of the bus 𝑖 from the𝑚th stop to the (𝑚 + 1)th stop, denoted as 𝑇̂𝑛𝑖 (𝑚,𝑚 + 1), can
be rewritten as follows:

𝑇̂𝑛𝑖 (𝑚,𝑚 + 1) = 𝑎𝑛𝑖 (𝑚,𝑚 + 1) + 𝑏̂𝑛𝑖 (𝑚,𝑚 + 1)
+ 𝑐𝑛𝑖 (𝑚 + 1) . (3)

(1) Recognition of a Driver’s Deliberate Acceleration. Theoret-
ically, the bus travel time at road sections and intersections
increases under traffic jams.

𝑎𝑛𝑖 (𝑚,𝑚 + 1) > 𝑎𝑛𝑖 (𝑚,𝑚 + 1) ,
𝑏̂𝑛𝑖 (𝑚,𝑚 + 1) > 𝑏𝑛𝑖 (𝑚,𝑚 + 1) ,
𝑇̂𝑛𝑖 (𝑚,𝑚 + 1) > 𝑇𝑛𝑖 (𝑚,𝑚 + 1) .

(4)

At intersections, bus drivers tend to reduce speed because
of the queuing vehicles and the restriction of changing lanes.
However, a driver can frequently accelerate and decelerate at
road sections to reduce the travel time and to ensure punctual
arrivals at the downstream stops.

Case 1.

𝑇̂𝑛𝑖 (𝑚,𝑚 + 1) = 𝑇𝑛𝑖 (𝑚,𝑚 + 1) . (5)

In Case 1, although a bus may be delayed at intersections,
it still arrives at the downstream stops on time due to
deliberate acceleration at road sections.
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Case 2.

𝑇̂𝑛𝑖 (𝑚,𝑚 + 1) > 𝑇𝑛𝑖 (𝑚,𝑚 + 1) ,
[𝑇̂𝑛𝑖 (𝑚,𝑚 + 1) − 𝑇𝑛𝑖 (𝑚,𝑚 + 1)]

< [𝑏̂𝑛𝑖 (𝑚,𝑚 + 1) − 𝑏𝑛𝑖 (𝑚,𝑚 + 1)]
+ [𝑐𝑛𝑖 (𝑚,𝑚 + 1) − 𝑐𝑛𝑖 (𝑚,𝑚 + 1)] .

(6)

In Case 2, although the driver may deliberately speed up
the bus, it does not arrive on time at the downstream stops.

Case 3.

𝑇̂𝑛𝑖 (𝑚,𝑚 + 1) > 𝑇𝑛𝑖 (𝑚,𝑚 + 1) ,
[𝑇̂𝑛𝑖 (𝑚,𝑚 + 1) − 𝑇𝑛𝑖 (𝑚,𝑚 + 1)]

≥ [𝑏̂𝑛𝑖 (𝑚,𝑚 + 1) − 𝑏𝑛𝑖 (𝑚,𝑚 + 1)]
+ [𝑐𝑛𝑖 (𝑚,𝑚 + 1) − 𝑐𝑛𝑖 (𝑚,𝑚 + 1)] .

(7)

In Case 3, the increase in the bus travel time at road
sections exceeds or equals the total increase in the travel time
spent at intersections and in the dwell time at stops. The bus
may run normally or undergo deliberate acceleration.

(2) Recognition of aDriver’s DeliberateDeceleration.When the
traffic volume is low, the bus travel times at road sections and
intersections may decline.

𝑎𝑛𝑖 (𝑚,𝑚 + 1) < 𝑎𝑛𝑖 (𝑚,𝑚 + 1) ,
𝑏̂𝑛𝑖 (𝑚,𝑚 + 1) < 𝑏𝑛𝑖 (𝑚,𝑚 + 1) ,
𝑇̂𝑛𝑖 (𝑚,𝑚 + 1) < 𝑇𝑛𝑖 (𝑚,𝑚 + 1) .

(8)

Theoretically, if the timetable is not optimized in real
time, the driver may deliberately slow down the bus to enable
punctual arrivals according to the schedule.

Case 1.

𝑇̂𝑛𝑖 (𝑚,𝑚 + 1) = 𝑇𝑛𝑖 (𝑚,𝑚 + 1) . (9)

In Case 1, although the bus is slightly delayed at intersec-
tions, it still arrives at the downstream stops on time, since
the driver deliberately slows down the bus.

Case 2.

𝑇̂𝑛𝑖 (𝑚,𝑚 + 1) < 𝑇𝑛𝑖 (𝑚,𝑚 + 1) ,
[𝑇𝑛𝑖 (𝑚,𝑚 + 1) − 𝑇̂𝑛𝑖 (𝑚,𝑚 + 1)]

< [𝑏𝑛𝑖 (𝑚,𝑚 + 1) − 𝑏̂𝑛𝑖 (𝑚,𝑚 + 1)]
+ [𝑐𝑛𝑖 (𝑚,𝑚 + 1) − 𝑐𝑛𝑖 (𝑚,𝑚 + 1)] .

(10)

In Case 2, although the drive deliberately slows down the
bus at road sections, the bus still arrives at the downstream
stops ahead of the scheduled time.

Case 3.

𝑇̂𝑛𝑖 (𝑚,𝑚 + 1) < 𝑇𝑛𝑖 (𝑚,𝑚 + 1) ,
[𝑇𝑛𝑖 (𝑚,𝑚 + 1) − 𝑇̂𝑛𝑖 (𝑚,𝑚 + 1)]

≥ [𝑏𝑛𝑖 (𝑚,𝑚 + 1) − 𝑏̂𝑛𝑖 (𝑚,𝑚 + 1)]
+ [𝑐𝑛𝑖 (𝑚,𝑚 + 1) − 𝑐𝑛𝑖 (𝑚,𝑚 + 1)] .

(11)

In Case 3, the decrease in the bus travel time at road
sections exceeds or equals the total decrease in the travel time
spent at intersections and in the dwell time at stops. The bus
may run normally or undergo deliberate deceleration.

2.2. Recovery of the Optimal Travel Time on the Road. When
a driver’s deliberate acceleration or deceleration is recognized
as discussed in Section 2.1, the retrieved GPS data cannot be
directly used for the optimization of the schedule scheme.
This effect should be considered for recovering the optimal
bus travel time on the road.

Thedelay time of a bus at an intersection can be calculated
by subtracting the travel time at a preset speed from the travel
time spent at an intersection. During the operating period,𝑛, a number of buses pass through the intersection and their
average delay can be directly calculated. Assuming that 𝑑1𝑖
denotes the average delay at the timetable’s initial operation
stage, the traffic conditions will change after a certain period
of time, and the average delay will become 𝑑2𝑖 .

Generally speaking, the traffic flow on a road
increases/decreases as a result of an increase/decrease
in traffic flow at the adjacent intersection. According to the
theory of traffic engineering, the travel time spent at a road
section or at an intersection is directly proportional to the
traffic flow. At a signalized intersection, the average delay 𝑑
can be calculated by the following [17].

𝑑 = 0.5𝐶 (1 − 𝜆𝑖)1 − [min (1, 𝑥𝑖) ⋅ 𝜆𝑖]
+ 900𝑇[(𝑥𝑖 − 1)2 + √(𝑥𝑖 − 1)2 + 4𝑥𝑖

Cap𝑖 ⋅ 𝑇] ,
(12)

where 𝜆𝑖, 𝑥𝑖, and Cap𝑖 denote the green ratio, degree of
saturation, and traffic capacity, respectively, of the phase for
bus 𝑖. T denotes the length of the analysis period and is
generally set at 0.25 h.

𝑥𝑖 = 𝑞𝑖/𝑆𝑖𝜆𝑖 , (13)

where 𝑞𝑖 and 𝑆𝑖 denote the ratios of the arrival and saturation
flows of the entrance lane for bus 𝑖, respectively.

For bus 𝑖, when the average delay changes from 𝑑1𝑖 to 𝑑2𝑖
while the other variables remain unchanged, the variation
ratio of the flow at the entrance lane can be derived according
to (12)-(13). Since 𝑟𝑖 denotes the ratio of the flow after a certain
period of time to the original one, 𝑟𝑖 can also denote the
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variation ratio of traffic flowwhichwill be used for recovering
the optimal travel time of the bus on the road.

Through field observations, a relationship is shown to
exist between the average speed of traffic on urban roads and
the flow. At low traffic flow, speed is insensitive to the increase
in flow and only decreases slightly. When the flow increases
and is close to the capacity of the road, the speed decreases
significantly. When the flow is lower than the capacity of the
road, the average speed varies with the flow in an approximate
linear fashion:

𝑞󸀠𝑖 = 𝛼 + 𝛽V𝑖, (14)

where 𝑞󸀠𝑖 denotes the flow in pcu/h of the road section, V𝑖
denotes the average speed of the traffic flow in km/h, and 𝛼
and 𝛽 are constants to be determined.

According to the characteristics of traffic flow, when free-
flow speed 𝑢𝑓 occurs, the traffic flow equals 0 (𝑞󸀠𝑖 = 0).
When the speed equals the optimal value 𝑢𝑚, the traffic flow𝑞󸀠𝑖 reaches the maximum and the saturation flow ratio 𝑆𝑖 is
achieved. Therefore, the following equations hold:

𝛼 + 𝛽 × 𝑢𝑓 = 0,
𝛼 + 𝛽 × 𝑢𝑚 = 𝑆𝑖. (15)

By calculation, we can get 𝑎 = 𝑆𝑢𝑓/(𝑢𝑓−𝑢𝑚), 𝑏 = 𝑆/(𝑢𝑚−𝑢𝑓).
V𝑖 = (𝑞󸀠𝑖 − 𝑆𝑖𝑢𝑓𝑢𝑓 − 𝑢𝑚)

𝑢𝑚 − 𝑢𝑓𝑆𝑖 . (16)

Assuming that the flow changes to 𝑟𝑖𝑞󸀠𝑖 after the bus
dispatching scheme is executed for a certain period of time,
the average travel speed V󸀠𝑖 of the bus can be calculated by

V󸀠𝑖 = (𝑟𝑖𝑞󸀠𝑖 − 𝑆𝑖𝑢𝑓𝑢𝑓 − 𝑢𝑚)
𝑢𝑚 − 𝑢𝑓𝑆𝑖 . (17)

Defining 𝑟󸀠𝑖 = V󸀠𝑖 /V𝑖, the following expressions can be
obtained:

𝑟󸀠𝑖 = (𝑢𝑓 − 𝑢𝑚) 𝑟𝑖𝑞󸀠𝑖 − 𝑆𝑖𝑢𝑓
(𝑢𝑓 − 𝑢𝑚) 𝑞󸀠𝑖 − 𝑆𝑖𝑢𝑓 ,

𝑎𝑛 (𝑚,𝑚 + 1) = 1𝑟󸀠𝑖 𝑎
𝑛 (𝑚,𝑚 + 1) .

(18)

Let 𝑎𝑛(𝑚,𝑚+ 1) denote the average travel time of the bus
from the𝑚th to the (𝑚 + 1)th stop within the operating time
period 𝑛 at the timetable’s initial operation stage.The optimal
travel speed after a certain period of time becomes 𝑎𝑛(𝑚,𝑚+1) which denotes the recovered average speed from the 𝑚th
to the (𝑚 + 1)th stop.𝑟󸀠𝑖 is the most important parameter which plays a decisive
role in the travel time recovery process. Figure 1 illustrates the
overall process for calculating 𝑟󸀠𝑖 .
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Figure 1: Flow chart of the bus travel time recovery.

2.3. Determination of theOperating TimeDivision Indexes. To
divide the operating period, we first analyze all the historical
data and then group into the same class buses with similar
operating states and starting times into the same class. The
corresponding operating time is referred to as a time interval.
In this study, the dwell time at each stop and the interstop
travel time (the recovered value as described in Section 2.2)
are selected as the division indexes.

(1) Bus Dwell Time at Stops.Thedispatching frequency affects
the passenger volume of a bus route when the vehicle capacity
of a bus is fixed. In each interval, the frequency is kept
constant. Only when the passenger volume is also constant
or slightly fluctuates will the passenger load factor of each
dispatched bus be similar to one another. As a result, the
uneven bus occupancy rate in an interval can be avoided.

With GPS data only, the number of alighting/boarding
passengers at each stop is not available. However, empirical
results show that the bus dwell time is positively proportional
to the number of alighting/boarding passengers. Namely, a
larger number of alighting/boarding passengers will result in
longer dwell time. Though the bus dwell time is also affected
by some other secondary factors such as the fare structure and
the bus vehicle type (whether all doors can be used by the
alighting passengers), they are all predetermined and remain
unchanged for a given bus line. Hence the fluctuation of the
bus dwell time at stops is mainly dependent on the number of
alighting/boarding passengers.Therefore, the total dwell time
at all stops is used to measure the passenger demand. Buses
with similar total dwell time will be classified into the same
time interval.

Let Δ𝐷max denote the maximum permissible difference
in the total dwell time at all stops for a bus in the same
period. It can be calculated by Δ𝐷max = 𝜀 ⋅ 𝛿 ⋅ 𝑇𝑜𝑏 where 𝛿
denotes the maximum number of passengers, 𝜀 denotes the
passenger carrying factor which is used mainly for adjusting
the expected degree of crowdedness in the bus, and 𝑇𝑜𝑏
denotes the average boarding time of each passenger at each
stop.

(2) Bus Interstop Travel Time. The bus operating status is
affected not only by the arrival passenger volume at each
stop, but also by the traffic conditions in real time. The
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road traffic conditions influence the bus interstop travel
time and hence the punctuality of the bus at each stop. For
two buses dispatched consecutively from the same depot, if
they have identical numbers of alighting/boarding passengers
at each stop but different interstop travel time, they will
experience different total travel time as well as different levels
of punctuality at stops. Hence these two buses should not be
classified into the same time of day interval.

LetΔ𝐸max denote themaximum permissible difference in
the total travel time among all stops for a bus in the same
period. It can be calculated by Δ𝐸max = max{0,𝐻−𝜀 ⋅ 𝛿 ⋅𝑇𝑜𝑏},
where𝐻 denotes the departure time interval for the buses as
stated in the timetable.

Study [18] has analyzed the division indexes in different
time of day for a bus route. However, the bus travel time
obtained from GPS data was used directly. The deliberate
acceleration or deceleration was not considered which ren-
ders the division results nonoptimal.

3. Operating Time Division Algorithm

Some classical clustering algorithms (such as 𝐾-means
clustering) have achieved favorable results in index-based
classification but are not suitable for this study.These classical
algorithms do not take the order of data into account but
quantify the correlation among data by using one of the
distance metrics (such as the Euclidean and Mahalanobis
distances). If the sequence of the buses is not taken into
consideration, the buses with nonadjacent departure time
intervals may be included in the same class. For example,
when the first, second, third, fourth, tenth, and twentieth
buses are included in the same operating period, this period
can be divided into three subplots: subplot 1 includes the
first, second, third, and fourth buses; subplot 2 includes
the tenth bus; and subplot 3 includes the twentieth bus.
Subplots 2 and 3 are quite short leading to frequent transitions
between different bus dispatching schemes which reduces the
management efficiency of the bus enterprise [19].

Given that the sequential sample clustering requires that
the data sequence not be disturbed, a Fisher sequential sam-
ple clustering method (also referred to as optimal segmenta-
tion) is themost effectivemethod [18].There are 2𝑛−1 division
methods for 𝑛 sequential samples. Each division method
corresponds to segmentation. Among these segmentations,
there exists an optimal segmentation that minimizes the
difference within a segment and maximizes the difference
among segments. To help achieve the optimal segmentation,
the diameter of a class should be defined. After that the
loss function is defined according to the constraint that the
neighboring samples should be included in the same class.
The optimal classification is found through a step-by-step
recursive calculationwith the objective ofminimizing the loss
function. The details of the procedure are described below.

(1) Calculation of the Diameter of a Class. In this study,
the ordered variables are denoted as 𝑥1, 𝑥2, . . . , 𝑥𝑛 (each
variable 𝑥𝑖 denotes an 𝑚-dimensional column vector, 𝑖 =1, . . . , 𝑛). 𝑚 = 2 given that the dwell time and the travel
time are selected as two division indexes. Assuming that

{𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛} denotes a segment (1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛), the
diameter of a class (also referred to as the sum of the squares
of deviation) 𝐴(𝑖, 𝑗) can be written as follows:

𝐴 (𝑖, 𝑗) = 𝑗∑
𝑙=𝑖

(𝑥𝑙 − 𝑥𝑖,𝑗)󸀠 (𝑥𝑙 − 𝑥𝑖,𝑗) . (19)

(2) Calculation of the Loss Function. For simplicity, the
variable 𝑥𝑖 (𝑖 = 1, . . . , 𝑛) is denoted by its subscript 𝑖.
Assuming that 𝑖𝑘 denotes the first sample (vector) in the 𝑘th
segment, the following method can be used for dividing the𝑛 ordered variables into𝐾 classes:

𝑃 (𝑛,𝐾) : {𝑖1 = 1, 𝑖1 + 1, . . . , 𝑖2 − 1} ,
{𝑖2, 𝑖2 + 1, . . . , 𝑖3 − 1} , . . . , {𝑖𝐾, 𝑖𝐾 + 1, . . . , 𝑛} . (20)

To use Fisher clustering, we need to define a loss function𝑒(𝑃(𝑛, 𝐾)) to evaluate the quality of clustering. For a certain
division method, the loss function 𝑒(𝑃(𝑛, 𝐾)) is defined as
the sum of the squares of the deviations of all classes. Given𝑛 and 𝐾 (the Fisher algorithm is applicable to cases with a
known class number, 𝐾), the total sum of the squares of the
deviations of all classes is fixed. Hence a smaller intraclass
sum of squares and a larger interclass sum of squares give
better classification results. In other words, clustering or
segmentation aims to find amethodwhichminimizes the loss
function 𝑒(𝑃(𝑛, 𝐾)):

Obj: min 𝑒 (𝑃 (𝑛, 𝐾)) = min
𝐾∑
𝑘=1

𝐴 (𝑖𝑘, 𝑖𝑘+1 − 1) . (21)

To solve the above-described objective function, we use
the following recursion:

min 𝑒 (𝑃 (𝑛, 𝐾))
= min
𝐾≤𝑖≤𝑛

{min 𝑒 (𝑃 (𝑛 − 1,𝐾 − 1)) + 𝐴 (𝑖, 𝑛)} . (22)

For example, when𝐾 = 2, 𝑃∗(𝑛, 2) is the optimal method
among all possible division schemes that minimizes the loss
function.

𝑒 (𝑃∗ (𝑛, 2)) = min 𝑒 (𝑃 (𝑛, 2))
= min
2≤𝑖≤𝑛

{𝐴 (1, 𝑖 − 1) + 𝐴 (𝑖, 𝑛)} . (23)

Using the method of induction, the recursion described
in (23) can be derived which represents the optimal classi-
fication method of dividing 𝑛 samples into 𝐾 classes. It can
be regarded as a combination of the optimal classification
method of dividing 𝑖 − 1 samples into 𝐾 − 1 classes and the𝐾th segment which includes the remaining 𝑛 − 𝑖 + 1 samples.

There are two unique features of this algorithm. Firstly,
it does not disturb the order of the dispatched buses. Hence
the numbers of all buses that are classified into the same
interval are adjacent. Secondly, the algorithm is not complex
which takes less time to get the partition results and which
can improve the computational efficiency.

(3) Final Division Based on Threshold Values of Two Indexes.
By means of the above two steps, the dispatched buses are
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Table 1: Time interval partition scheme and bus headway during the investigation period.

Interval number Starting and ending times Headway (min) Bus quantity Departure number
1 05:50–07:00 15 5 1–5
2 07:00–09:00 8 15 6–20
3 09:00–12:00 10 18 21–38
4 12:00–16:00 11 22 39–60
5 16:00–19:00 8 22 61–82
6 19:00–21:00 12 11 83–93

Table 2: Minimal lost function and starting codes of the last cluster in different partition methods.

𝐾 = 2 𝐾 = 3 𝐾 = 4 ⋅ ⋅ ⋅ 𝐾 = 89 𝐾 = 90 𝐾 = 91 𝐾 = 92
𝑛 = 3 0.0007 [2] ⋅ ⋅ ⋅
𝑛 = 4 0.05134 [3] 0.0437 [3] ⋅ ⋅ ⋅
𝑛 = 5 0.0094 [3] 0.0084 [3] 0.0008 [4] ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑛 = 91 9.121 [52] 8.068 [83] 7.482 [65] ⋅ ⋅ ⋅ 0.0026 [91] 0.0016 [91]
𝑛 = 92 10.065 [52] 8.448 [83] 7.926 [65] ⋅ ⋅ ⋅ 0.0029 [92] 0.0026 [92] 0.0016 [92]
𝑛 = 93 9.909 [48] 8.213 [82] 7.683 [72] ⋅ ⋅ ⋅ 0.0039 [93] 0.0029 [93] 0.0026 [93] 0.0016 [93]

Sequential Calculate class Calculate loss 

Obtain original 
division groups

Threshold values 
of division indexes

Final 
division

function e(P (n, K))diameter A (i, j)variable xi

Figure 2: Flow chart of the division algorithm.

divided into 𝐾 groups. However, it has not been determined
whether the differences in the total dwell time and in the
interstop travel time between two adjacent buses are smaller
than the threshold values, which is thus evaluated in this step.
In each group, if the differences in the two division indexes of
two adjacent buses are larger than the threshold values, the
two buses should be classified into different groups.

Figure 2 illustrates the overall process of the division
algorithm.

4. Case Study

In this section, we apply the proposed time of day division
method based on GPS data on the number 63 bus route in
Harbin, China, as a case study.

4.1. Data Acquisition. Bus route 63 in Harbin has 21 stops in
total. The line starts from Jiangong Community and goes all
the way to Dajiang Community along the westbound direc-
tion.The operating distance of one direction is approximately
9.5 km. The bus enterprise has set the sampling interval of
the GPS data at 30 seconds, which, however, cannot satisfy
the requirement of this study. As a result, we carried out

our own investigation of the bus line for two weeks (from
Monday to Friday per week) during September 2013. In each
bus, a GPS device was placed and connected to a laptop for
real-time storage of the GPS data, which were later matched
with a GIS map. Afterwards, the required travel time spent
on road sections and intersections and the delay and dwell
time at stops were extracted. During the investigation, the bus
operating time was from 05:50 to 21:00.The operating period
can be divided into 6 time intervals for each day. The specific
starting and ending time points as well as the departure head-
ways are listed in Table 1. In December 2014, we performed a
second investigation for one week (Monday to Friday) and
obtained the latest bus operating data. Compared with the
first investigation, the total number of vehicles in Harbin had
increased significantly. In addition, due to the winter snow
on the road, vehiclesmovedmore slowly and road congestion
became even more serious. Acceleration and deceleration of
the bus vehicles happened to be more frequent. As a result,
the original schedule scheme was no longer suitable for the
second investigation.

4.2. Division Results. Before the division of the operating
time, the values of various parameters should be determined.𝛿 and 𝑇𝑜𝑏 are constants which are set at 60 people per bus
and 2.2 seconds per person, respectively. Given that 𝐻 = 8
minutes,𝐻𝑎max = 2𝐻 and𝐻𝑎min = 𝐻 and Δ𝐷max = 112.2 andΔ𝐸max = 367.8.

All the division indexes are normalized before used.
Table 2 lists theminimal loss function based on the sequential
clustering and the beginning label at the last time slot. The
minimal loss function is calculated from the second column;
that is,𝐾 = 2.Theminimal loss functions of all the schemes of
dividing the first 𝑖 buses (3 ≤ 𝑖 ≤ 97) into𝐾 classes are derived
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to determine the optimal segmentation. Using min 𝑒(𝑃(3, 2))
as an example, there are two division schemes which divide
the first two buses into two classes, namely, ({1}, {2, 3}) and({1, 2}, {3}).
min 𝑒 (𝑃 (3, 2)) = min

2≤𝑗≤3
(𝐴1,𝑗−1 + 𝐴𝑗,3)

= min [(𝐴1,1 + 𝐴2,3) , (𝐴1,2 + 𝐴3,3)]
= min (0.0007, 0.0076) = 0.0007.

(24)

The optimal segmentation is ({1}, {2, 3}), and the begin-
ning label of the last class (i.e., 2) is recorded. As shown in
the second row and the second column in Table 2, [2] on
the right of 0.0007 represents the division of the first three
buses into 2 classes where the beginning label of the second
class is 2 and the corresponding minimal loss function is
0.0007. Moreover, the division indexes (the average dwell
time at stops and the average travel time among stops) are
different for different buses in a class which should be taken
into account in the classification. The buses whose division
indexes are smaller than the thresholds are grouped into the
same class. For example, there are 92 division schemes when
dividing 93 samples into 2 classes. Before the calculation
of the loss function, we should first evaluate whether the
thresholds Δ𝐷max and Δ𝐸max are satisfied and delete those
division schemes that do not satisfy the requirement. Only
after that can the loss functions of the remaining division
schemes be calculated so as to determine the optimal division.

As shown in Table 2, the sequential clustering algorithm
cannot determine the class number𝐾 but can only determine
the optimal class number according to the variation in the
minimal error function. It can be observed that, in the
last row of Table 2 (𝑛 = 93), the minimal error function
of 93 sample data decreases gradually with an increasing𝐾. A greater 𝐾 suggests a finer division and, accordingly,
fewer buses are included in a class in which the difference
is smaller. However, a bus enterprise does not necessarily
want to increase the number of the operating time slots,
since doing so will not only increase the frequency to update
the dispatching schemes but also require more transition
schemes between different dispatching schemes. Frequent
transitions may reduce the operating efficiency of bus transit
[7]. In studies [7, 8], the value of 𝐾 was determined by
the manager. For this study, with reference to the previous
research, we consulted the administration department of the
bus enterprise and finally set the value of 𝐾 at 8; that is, the
operating time of the number 63 bus is divided into 8 time
intervals as shown in Table 3.

5. Conclusion

This study first recovers the bus travel time on the road
based on the historical GPS data and then divides the bus
operating time using a sequential clustering algorithm. The
main conclusions are as follows:

(1) The bus travel time data collected from the bus-
mounted GPS cannot truly reflect the real operating

Table 3: Final partition results of operation time intervals for bus
route 63.

Interval
number

Starting and
ending times

Interval
number

Starting and
ending times

1 5:50–7:05 5 12:49–15:01
2 7:05–8:09 6 15:01–16:39
3 8:09–11:05 7 16:39–19:15
4 11:05–12:49 8 19:15–21:00

state of the bus vehicle. Drivers’ behavior should be
taken into account for data correction.

(2) For the division of the operating time, the division
algorithm is more sensitive to the threshold value of
the dwell time at stops. A smaller threshold valuemay
easily make the division finer.

(3) A sequential clustering method can ensure that the
order of the adjacent buses is not disrupted in order to
achieve a favorable division of the bus operating time.
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