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Aircraft detection from high-resolution remote sensing images is important for civil and military applications. Recently, detection
methods based on deep learning have rapidly advanced. However, they require numerous samples to train the detection model and
cannot be directly used to efficiently handle large-area remote sensing images. A weakly supervised learning method (WSLM) can
detect a target with few samples. However, it cannot extract an adequate number of features, and the detection accuracy requires
improvement. We propose a cascade convolutional neural network (CCNN) framework based on transfer-learning and geometric
feature constraints (GFC) for aircraft detection. It achieves high accuracy and efficient detection with relatively few samples. A
high-accuracy detection model is first obtained using transfer-learning to fine-tune pretrained models with few samples. Then, a
GFC region proposal filtering method improves detection efficiency. The CCNN framework completes the aircraft detection for
large-area remote sensing images. The framework first-level network is an image classifier, which filters the entire image, excluding
most areas with no aircraft. The second-level network is an object detector, which rapidly detects aircraft from the first-level network
output. Compared with WSLM, detection accuracy increased by 3.66%, false detection decreased by 64%, and missed detection

decreased by 23.1%.

1. Introduction

Aircraft detection from remote sensing images is a type of
small target recognition under a wide range. It has two prob-
lems, however, one is the efficiency of large-area image detec-
tion; the other is the aircraft feature extraction and expression
in complex environments. Nevertheless, the increase of high-
resolution remote sensing images has advanced research in
this area [1]. The key point of target detection is to find the
stable target feature. Traditional aircraft detection methods
mainly focus on the feature description, feature selection,
feature extraction, and other algorithms [2-5]. Adjustment
and optimization of the algorithm can improve the detection
accuracy and efficiency [6]. However, these features are
common image attributes; thus, it is difficult to fundamentally
distinguish between the target and background. Moreover, in
a complex environment, the method accuracy is poor, such

as that of the histogram of oriented gradient (HOG) [7] and
scale-invariant feature transform (SIFT) [3]. Some studies
matched the test image by designing a standard sample of
the target [2, 8]. However, this method only applies to special
scenes; it is not very versatile. In practice, the multifeature
fusion method is often used to comprehensively describe the
target [9]. Nonetheless, it increases the algorithm complexity
and reduces the detection efficiency to some extent [7, 10].
The deep learning method has a strong feature-extraction
ability. Through a multilayer neural network and a large
number of samples, it extracts the multilevel features of
objects. The method has advanced considerably in the field
of natural image processing [11, 12]. Furthermore, numerous
high-performance algorithms [13, 14], such as the Region
Convolutional Neural Network (R-CNN) and Fast and Faster
R-CNN [15,16], have been proposed. However, these methods
require many samples to train the network model. When
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processing a large-area image, many invalid region proposals
must be detected, and this is inefficient. Some target detection
methods using remote sensing images based on deep learning
have been presented. Weakly supervised and semisupervised
feature learning methods have been proposed [17-19]. Zhang
et al. proposed an aircraft detection method based on weakly
supervised learning coupled with a CNN [20]. Han et
al. proposed an iterative detector approach [21], by which
the detector is iteratively trained using refined annotations
until the model converges. Nevertheless, a nonconvergence
situation may occur, which reduces the detection accuracy.
Weakly supervised learning extracts features with a small
amount of sample data. However, owing to a lack of samples,
the features are not sufficient. Therefore, the detection accu-
racy is limited.

There are three key problems in aircraft detection from
remote sensing images by the deep learning method. First,
the number of training samples is limited. A means of using
a small number of samples to train a high-accuracy model is
an important point. Second, aircraft in remote sensing images
have obvious features, and some stability features can be
selected as constraint conditions. Combining these features
with deep learning, the detection method can have a better
targeting ability. Third, a remote sensing image covers a large
area, its scale is not uniform, and the sensor is miscellaneous.
The existing deep learning model and network structure are
not directly suitable for remote sensing image aircraft detec-
tion [22]. The network structure and detection algorithm
must be modified to improve the efficiency and accuracy.

In view of the above problems, a cascade CNN (CCNN)
architecture is proposed to improve the accuracy and effi-
ciency. It contains four main parts: (1) A two-level CCNN
is designed to rapidly process remote sensing image aircraft
detection. The first-level network quickly classifies the scene
and eliminates the areas that do not contain aircraft. The
second-level network identifies and locates aircraft in the
areas not filtered out in the previous step. (2) A transfer-
learning method is used to fine-tune the parameters of
pretrained classification and object detection models with
the samples. (3) A region proposal filtering method of a
geometric feature constraint (GFC) based on the geometric
features of aircraft is proposed. By using these features to filter
the region proposals, numerous nonaircraft region proposals
are eliminated. (4) An aircraft sample library and a remote
sensing image-scene sample library are established. They are
used as the data source of transfer-learning.

2. Related Work

In this section, we review related work that has utilized deep
learning for scene classification and target detection. Remote
sensing scene classification plays a key role in a wide range
of applications and has received remarkable attention from
researchers. Significant efforts have been made to develop
varied datasets and present a variety of approaches to scene
classification from remote sensing images. However, there
has yet to be a systematic review of the literature concerning
datasets and scene classification methods. In addition, almost
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all existing datasets have several limitations, including the
small scale of scene classes and image numbers, the lack of
image variation and diversity, and accuracy saturation. In
response to this problem, Cheng et al. [23] proposed a large-
scale dataset, called “NWPU-RESISC45,” which is a publicly
available benchmark for remote sensing image scene classifi-
cation (RESISC). This dataset contains 31,500 images, cover-
ing 45 scene classes with 700 images in each class, which pro-
vides strong support for RESISC. Paisitkriangkrai et al. [24]
designed a multiresolution convolutional neural network
(CNN) model for the semantic labeling of aerial imagery.
To avoid overfitting from training a CNN with limited data
[25] investigated the use of a CNN model pretrained on gen-
eral computer vision datasets for classifying remote sensing
scenes. However, the CNN model in [25] was not further fine-
tuned and was directly used for land-use classification. Yao
et al. [26] proposed a unified annotation framework com-
bining discriminative high-level feature learning and weakly
supervised feature transfer. Specifically, they first employ an
efficient stacked discriminative sparse autoencoder (SDSAE)
to learn high-level features on an auxiliary satellite image data
set for a land-use classification task.

Another way to improve the efficiency of aircraft detec-
tion is to first detect the airport range and then detect the
aircraft within the airport. Airport detection from remote
sensing images has gained increasing research attention
[21, 27, 28] in recent years due to its strategic importance for
both civil and military applications; however, it is a challeng-
ing problem because of variations in airport appearance and
the presence of complex cluttered backgrounds and varia-
tions in satellite image resolution. Yao et al. [29] proposed a
hierarchical detection model with a coarse and a fine layer. At
the coarse layer, a target-oriented saliency model is built by
combining contrast and line density cues to rapidly localize
airport candidate areas. At the fine layer, a learned condition
random field (CRF) model is applied to each candidate area
to perform fine detection of the airport target. CNNs have
demonstrated their strong feature representation power for
computer vision. Despite the progress made in natural scene
images, it is problematic to directly use CNN features for
object detection in optical remote sensing images because
it is difficult to effectively manage the problem of variations
in object rotation variation. To address this problem, Cheng
etal. [30] proposed a novel and effective approach to learning
a rotation-invariant CNN (RICNN) model that advances
object detection performance, which is achieved by intro-
ducing and learning a new rotation-invariant layer based on
existing CNN architectures. Cosaliency detection, the goal
of which is to discover the common and salient objects in a
given image group, has received tremendous research interest
in recent years. However, most existing cosaliency detection
methods assume that all images in an image group should
contain cosalient objects in only one category and are thus
impractical for large-scale image sets obtained from the
Internet. Yao et al. [31] improved cosaliency detection and
advanced its development. Their results can outperform state-
of-the-art cosaliency detection methods performed on man-
ually separated image subgroups.
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FIGURE 1: Architecture of two-level CCNN for large-area remote sensing rapid aircraft detection. The target detection process consists of two
parts. First, the image is downsampled. The first-level CNN structure is used to classify the scene, with a sliding window on the downsampled
image, block-by-block. The nontarget window image is excluded and the index position of the target window is reserved and passed to the
next level of the network. The second level receives the target window and performs aircraft target detection on the original image. An RPN
is used to get region proposals, and the GFC model is used to filter multiple region proposals and exclude the region proposals that do not
satisfy the geometric characteristics of aircraft. Then, the Faster R-CNN classification model is used to classify the remaining region proposals
to generate the target area. Finally, using overlap constraints, delete the redundant target area to get the final detection results.

3. Methods

3.1. Cascade Network for Aircraft Detection. In general, the
image used for aircraft detection includes the entire airport
and surrounding areas; most image areas do not contain
aircraft. This situation reduces the detection accuracy and
efficiency. We propose a two-level CCNN method that
combines the trained models and GFC method to solve this
problem. As shown in Figure 1, the first level is a coarse
filter. A new image with lower resolution is obtained through
twofold downsampling of the original image. The new image
is traversed using a sliding window, and the CNN image
classifier is used to classify each sliding window. Most of the
negative areas are filtered out, and the positive area is fed into
the second-level network for aircraft detection.

The second-level network is a target detector. In this level,
Faster R-CNN is used to perform aircraft detection for the
respective area. The output of the first-level network is the
input of the second-level network. The corresponding region
on the original image is sent to the second network, and the
window size is 800 x 800 pixels. The region proposals are
generated by the region proposal network (RPN). The main
difference between Faster R-CNN and Fast R-CNN is the
generation of the region proposal; that is, the former uses the
efficient RPN method, whereas the latter uses the less efficient
selective search (SS) method. In the RPN, each image pro-
duces approximately 20,000 region proposals of three ratios
and three scales. Then, according to the region proposal clas-
sification score, the top 300 region proposals are selected as
the Faster R-CNN input for target detection. More than 95%
of the 20,000 region proposals are background. Scoring and
sorting such a large number of region proposals is obviously

time-intensive. The GFC is used to delete the invalid region
proposals. The final detection for the remaining region
proposals is performed by the aircraft detector.

The general sliding window method uses a small size
window, such as 12 x 12, 24 x 24, and 48 x 48. Small windows
and small steps require considerable time to traverse the
entire image, which reduces the detection efficiency. In an
experiment, we used a large-size sliding window. In the first
level, the window size was 400 x 400, which was suitable for
image classification. According to the training samples, the
downsampled images had a higher classification accuracy;
moreover, the speed of traversing the entire image was
improved. In the second level, the window size was 800 x 800.
The range of this window was equal to the downsampling
range. It required almost the same amount of time to detect
a 400 x 400 image and an 800 x 800 image. Thus, it was not
necessary to decompose the original image into four 400 x
400 smaller images. The window size and sliding step size
were determined by the image resolution. It had to satisfy the
condition that at least one window could contain a complete
maximum aircraft.

Because of the overlap between adjacent windows, some
aircraft may be detected several times. The repetitive detec-
tion areas should be optimized. The redundant objects are
deleted, and only one optimal result is retained. The regions
for the same aircraft must meet the following conditions. (1)
Every region should satisfy the condition of GFC; that is, the
aspect ratio, width, and height must meet the thresholds of
(r,1,), (wy,w,), and (hy, h,), respectively. (2) The overlap
between two regions should be larger than 30%, as defined
in (1). (3) The area is the largest, as defined in (2), in which
area(r;) means the area of the given region. The process is
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FIGURE 2: Process of deleting duplicate detected regions and overlapping regions between sliding windows. (a) Result before deleting the duplicate.

(b) Result after deleting the duplicate.
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FIGURE 3: Structure of transfer-learning for scene classification and target detection. Source tasks are the original deep learning methods of
classification and detection, and the knowledge base is comprised of the trained networks. The learning system involves transfer-learning and
fine-tuning, and the target tasks are remote sensing image scene classification and aircraft detection.

shown in Figure 2, in which the two aircraft at the upper
left are in overlapping windows. The incomplete regions are
deleted, and the most appropriate one is preserved.

area (r; N'r;) > 30% @

Region = maxarea (r;) . (2)

3.2. Transfer-Learning and Fine-Tuning the Model Parameters.
Transfer-learning refers to a model training method. The
parameters of the pretrained network model are fine-tuned
by a small number of samples to prompt the original model to
adapt to a new task [32, 33]. The deep learning object detec-
tion method can achieve very high detection accuracy. One
reason is that a large number of samples are used to train the
detection model, which contains a sufficient number of target
features. However, for the remote sensing image, no large
sample library, such as ImageNet, exists that can be used to
train a high-accuracy model. Moreover, training a new high-
accuracy object detection model consumes considerable time
and computing resources. Transfer-learning can solve the
problem of lacking samples and significantly shorten the
training time [34].

In this paper, the transfer-learning method is, respec-
tively, used to fine-tune the pretrained image classification
model and object detection model. As shown in Figure 3,
the source models are the respective classification and object
detection models. Both include the VGG16 network structure
[35] and are trained with ImageNet. They were trained with
the samples given in Section 4.1. The parameters of the origi-
nal model were fine-tuned by the learning system to complete
the tasks of scene classification and aircraft detection.

The CNN structure comprises many layers. The bottom
layers are used to extract generic features, such as structure,
texture, and color. The top layers contain specific features
associated with the target detection task. Using transfer-
learning, the top layer parameters are adjusted with a small
number of aircraft samples to change the target detection
task. Through a backpropagation algorithm, the bottom-layer
parameters are adjusted to extract aircraft features. In general,
we use softmax as the supervisory loss function, which is
a classic cross-entropy classifier. It is defined in (3), where
f(x;) is the activation of the previous layer node that pushed
through a softmax function. In (4), the target output y; is a
1 - K vector, and K is the number of outputs. In addition, L
is the number of layers, and A is a regularization term. The
goal is to minimize loss. Finally, stochastic gradient descent
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is used to fine-tune the model and backpropagation is used to
optimize the function.

e’
N X,
i=1

f (x;) = soft max (x;) = 3)

i

loss = —iyi log f (x;) + AZsum (||w,||2) N )

i=1 I=1

Another important parameter is the learning rate. The
parameters of the pretrained model are fine; thus, the network
layer learning rate should be set to a small number. Therefore,
asmalllearning rate is used to ensure that both the features of
the new sample can be learned and the excellent parameters
of the pretrained model can be maintained. Taking Faster
R-CNN, for example, the parameters that must be set are
the following. (1) By initializing the training network and
selecting the pretrained model, the “train_net” is set to
VGGl6.v2.caffemodel. (2) Set the number of categories. In
this paper, all aircraft types are considered the same type;
thus, there are only two categories, aircraft and background.
In the data layer, num_classes is set to two; in the cls_score
layer, num_output is set to two; and in the bbox_pred layer,
num_output is set to eight. (3) In setting the learning rate,
the base learning rate, base_ly, is set to 0.001. The learning
rate ly_mult of the cls_score layer and the bbox_pred layer is
set to five and ten, respectively. The learning rates of other
convolutional layers are not modified. (4) In setting the num-
ber of iterations of the backpropagation function, max_iters
is set to 40,000.

3.3. Geometric Feature Constraint. In aremote sensingimage,
the aircraft covers only a small area; the remaining area is the
background. The region proposals are mostly background,
not aircraft. Reducing the number of region proposals can
make object detection more targeted, which helps improve
efficiency [16]. The special imaging method of the remote
sensing image determines that only the top features of the
aircraft can be viewed in the image [36]. Thus, the geometric
features of aircraft in the image have high stability [37].
This feature can be exploited when designing a detection
method. When the resolution of the image is fixed, the
geometric parameters of each aircraft are constant. Therefore,
the geometric features can be used as important conditions
for aircraft detection.

The geometric features mentioned in this paper mainly
refer to external contour sizes of aircraft in remote sensing
images. It is possible to use geometric signature constraints
for detection because the following three conditions are met.
First, conventional remote sensing imaging employs nadir
images, that is, the sensor gets an image from the sky that is
perpendicular (or near-perpendicular) to the ground. Thus,
the top contour features of aircraft are seen in these remote
sensing images; these features (length, width, and aspect
ratio) are relatively stable constants. Although the length and
width are affected by image resolution, they can be calculated
from the resolution of the image, whereas the aspect ratio
is not affected by resolution and is more fixed. Second, the
length, width, wingspan, and body length ratio of different

types of aircraft are all within a certain range. These geometric
features give us an exact basis for calculating region propos-
als. Third, statistical methods are used to count the geometric
features of many aircraft samples. Samples have been col-
lected in the world’s major countries from large, medium, and
small airports, covering almost all types of aircraft, including
large passenger aircraft, fighters, small private aircraft, and
rotor helicopters. These statistical results are used as a
reference for geometric feature constraints.

The image resolution and the result of aircraft geometry
statistics are used to calculate the size of the sliding window.
The conditions that need to be met are as follows. The
minimum overlap between the windows must be greater than
the maximum size of the aircraft to ensure that no aircraft will
be missed. The number of aircraft in a sliding window is very
small; a window contains about 2000-3000 region proposals,
but the aircraft are probably in only a few. The number of
target region proposals is much smaller than the number of
nontarget region proposals, and having many nontarget areas
results in increased overall time consumption. With GFCs,
deleting a candidate box that does not satisfy the condition
can greatly improve the time efficiency of target detection.

Taking the ground truth of the aircraft in the sample as
an example, their lengths and widths are within a fixed range.
The original 2,511 sample images were used to analyze these
parameters, and the results are shown in Figure 4.

Figure 4(a) shows that the aspect ratio of the circum-
scribed rectangle is primarily around 1.0, and the range is
(0.6, 1.6). Figure 4(b) shows that the width and height of the
circumscribed rectangle are mainly around 140 pixels, and
the range is (50, 300). These values should be appropriately
enlarged during aircraft detection to ensure that all aircraft
are not filtered out on account of statistical errors. The
geometric features of the aircraft in the remote sensing image
have rotation invariance. The aspect ratio is within a fixed
range, even at different resolutions; thus, it can be used as a
constraint to roughly distinguish between target and back-
ground. (1, 1,), (w;, w,), and (h,, h,) represent the ranges of
aspect ratio, width, and height, respectively.

For the same image, reducing the number of nontarget
region proposals has no effect on the target detection accu-
racy (in deep learning, this accuracy means the classification
score). However, it can improve the detection efficiency.
Based on the GFC, a region proposal filter method is pro-
posed. (r,,1,), (wy,w,), and (hy, h,) are set as thresholds to
filter the region proposals. The main algorithm is shown in
(5), where Region Proposal = 1 means the region proposal is
preserved, and Region Proposal = 0 means it is deleted. Ratio
represents the target aspect ratio, width represents the target
width, height denotes the target height, and « is the image
resolution coeflicient, which is used to adjust the threshold at
different resolutions.

1, ry<ratio<r,
Region Proposal =
0, ratio <r; or ratio > r,
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FIGURE 4: Geometric features all of the sample aircraft. (a) Aspect ratio of each sample aircraft. They are approximately 1.0, and the range is
(0.6, 1.6). The color in Figure 4(a) represents the value of the aspect ratio; the blue is the smallest value; the red is the largest value; and the
middle is gradually transitions. (b) Size of each sample aircraft; the red is the width, and the green is the height. They are approximately 140

pixels, and the range is (50, 300).

Region Proposal

1, axw, <width <axw,

0, width < @ x w; or width > a x w,
Region Proposal

1, axh; <height<axh,
0, height < a x h; or height > a x h,.
©)

4. Materials

In this study, we constructed three kinds of datasets: scene,
aircraft sample, and test datasets. All data were obtained from
Google Earth. The scene dataset was from the 18th level, and
its spatial resolution was 1.2m. The remaining two datasets
were from the 20th level, and the spatial resolution was
0.3 m. From a professional point of view, compared with the
real remote sensing images, the data obtained from Google
Earth contained insufficient information. However, the deep
learning method is different from the traditional remote
sensing image processing method in that it can obtain rich
information from this image type. We advocate the use of real
remote sensing images; nonetheless, one could attempt use of
Google Earth images.

4.1. Training Sample Datasets. Creating training samples is
a key step in object detection in the field of deep learning.
The sample quality directly affects the test results. In the

CCNN structure, the first-level network uses the CNN image
classification model, and the second-level network uses the
Faster R-CNN object detection model. The two networks
have different structures and functions; therefore, we created
two sample datasets, one for scene classification and the other
for aircraft detection.

The first dataset was the remote sensing image scene
dataset, which was used to train the CNN classification
model. We used the “UC Merced Land Use Dataset” as
the basic dataset [38]. It contained 21 scene categories and
included many typical background categories, such as agri-
culture, airplanes, beaches, buildings, bushes, and parking
lots. This dataset was suitable for scene classification; how-
ever, there were only 100 images in each category. To obtain
a high-accuracy training model, it was necessary to increase
the sample number of airports and other scenes that are easily
confused with airports. These scenes include industrial areas,
residential areas, harbors, overpasses, parking lots, highways,
runways, and storage tanks. Another 300 samples of airport
images and 700 samples of other scene categories were added
to the dataset. The number of scene categories remained 21.
The sample number could be expanded to be eight times the
original by image transformation. Finally, the total number
of samples was 24,800. Some added images are shown in
Figure 5, where (a) depicts an airport scene, and (b) depicts
scenes that are easily confused with airports.

The second dataset was an aircraft sample library of
remote sensing images. It was used to train the Fast R-CNN
network model. It contained 2,511 original aircraft images,
some of which are shown in Figure 6. The sample contained
not only all aircraft types, but also as much background as
possible. The diversity of the samples could help the network
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FIGURE 5: Sample images of different scenes. (a) Airport scene, including a parking apron, runway, and general terminal. (b) Scenes easily
confused with an airport, including industrial areas, residential areas, harbors, overpasses, parking lots, highways, runways, and storage

tanks.

FIGURE 6: Training sample dataset of aircraft in remote sensing images. (a) Original training sample images. (b) Corresponding labeled ground

truth images.

learn different features and better distinguish the target and
background. As shown in Figure 6(a), the sample covers
almost all types of aircraft in the existing remote sensing
image, including an airliner, small plane, military aircraft, and
helicopters.

We obtained the image from the zenith point to the nadir
point. Thus, the unique imaging perspective results of the air-
craft in the remote sensing images showed a fixed geometric
form. We could only view the top of the aircraft. Therefore, the
direction and displacement of the aircraft were two important
factors that affected the expression of the target. To ensure
that the target had a higher recognition rate in different
directions and displacements, we created transformations on
the sample, such as a horizontal flip, vertical flip, and rotations
of 90°,180°, and 270°. These transformations not only could
increase the number of samples but also adjust the direction
and structure of the target to increase the sample diversity
and make the model more robust. After transformation, the

sample contained a total of 20,088 images. These images were
divided into three groups with different numbers. Plane_S
contained 2,511 images, Plane_M contained 10,044 images,
and Plane_L contained 20,088 images.

Labeling the image is an important part of creating a
training sample dataset. The label is the basis for distinguish-
ing between the aircraft and background. The conventional
sample producing method is to independently create a posi-
tive sample and negative sample. In this paper, we produce a
sample in a different approach; the difference is that the
positive and negative samples are included in the same image.
The advantage to this approach is that the target is better
distinguished from the background, which can improve the
detection accuracy. For example, the trestle that connects
the airplane and terminal is prone to false detection. If the
airplane and trestle are contained in the same image, the tar-
get detection network can better distinguish their differences.
As shown in Figure 6(b), the aircraft position is manually
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TABLE 1: Detailed information of the three airports.

Test image Image size (pixel) Aircraft number Covered area (km?)

Berlin Tegel Airport 22016 x 9728 35 19.1

Sydney International Airport 13568 x 22272 78 26.9

Tokyo Haneda Airport 20480 x 17920 94 32.7

TABLE 2: Results of transfer-learning on different train networks and different sample sizes.

Training network Datasets Time (min) Per Iteration (s) Loss_bbox Loss_cls
Plane_S 64 0.061 0.055 0.087

CaffeNet Plane_ M 241 0.061 0.051 0.076
Plane_L 837 0.062 0.047 0.025
Plane_S 320 0.446 0.032 0.084

VGGl6 Plane_M 497 0.446 0.029 0.044
Plane_L 976 0.453 0.019 0.028

marked in the image. An XML annotation file is generated
in which basic information about the image and the aircraft
is automatically saved.

4.2. Test Dataset. Three large-area images were employed for
the test. Each image contained a complete airport, and the
area was 19.1km?, 26.9 km?, and 32.7 km?, respectively. The
test images had the characteristics of a large area, a diversity
of ground cover types, and complex backgrounds. In addition
to the airport, there were residential areas, harbors, industrial
areas, woodlands, and grasslands in the image. The types of
objects in the image were very rich and the environment was
complex. Details of the three images are shown in Figure 7
and outlined in Table 1.

Aircraft and airport detection are two different research
topics [39]. The focus of this paper is aircraft detection
of high-resolution remote sensing images. Our objective is
not to detect the airport; rather, it is to directly detect the
aircraft. The test images were three airports. Nevertheless,
the experimental data did not cover only the airport area. In
fact, when the images were enlarged, it was evident that they
contained harbors, industrial zones, and residential areas.

5. Results and Discussion

In this paper, the full implementation was based on the open-
source deep learning library Cafte [40]. The experiments were
run using an Nvidia Titan X 12GD5 graphics-processing unit
(GPU). The network models used in the experiments were
VGGI6 pretrained with ImageNet.

5.1. Training Detection Model. The two VGGI6 pretrained
models were fine-tuned using the two sample datasets pre-
sented in Section 4.1. The evaluation training results are
shown in Figure 8. As shown in Figure 8(a), the image
classification accuracy quickly improves during the first
10,000 iterations and reaches a steady value of 0.9 at 40,000
iterations. Figure 8(b) depicts the total loss of the object
detection model, whereby it reaches 0.1 at 40,000 itera-
tions. Figures 8(c) and 8(d) are the location and classification

losses, respectively, with both reaching a value of less than
0.1. Excellent transfer-learning results provided a good exper-
imental basis and were used for the next step.

The transfer-learning results are directly related to the
accuracy of the next aircraft detection process. Using transfer-
learning, a high-accuracy aircraft detection model could be
obtained using a small number of training samples and by
requiring a brief training time. Here, we use CaffeNet and
VGGI6 as examples. The number of iterations was 40,000.
Four indicators were used to analyze the results: total training
time (Time), a single iteration time (Per Iteration), position
accuracy (Loss_bbox), and classification accuracy (Loss_cls).
The transfer-learning results are shown in Table 2. The results
show that each combination of transfer-learning has good
training results. The model with more training samples has
higher accuracy than the model with fewer samples, and the
complex model VGGI6 has higher accuracy than the simple
model, CaffeNet.

Table 2 shows that the accuracy of target classification
(Loss_cls) increases with the number of samples. Plane2 L
increases by approximately 60% compared to Plane2_S. The
position accuracy (Loss_bbox) has the same trend as the
former; however, it is not obvious. This result proves that
the method of producing samples proposed in Section 4.1 is
effective. The image transformation method can increase the
sample number and enhance the robustness of the samples. It
can additionally improve the ability of transfer-learning and
enhance the robustness and accuracy of the detection model.
However, the target detection accuracy remains affected by
the number of samples. When the number of samples is
large, the target detection accuracy is relatively high, and the
training time is correspondingly increased.

CaffeNet is a small network, whereas VGGI6 is a large
network, and its structure is more complex than CaffeNet.
As the complexity of the network increases, the position
accuracy also increases. Large networks increase by approx-
imately 40% over small networks. In the same network, the
training time increases with the number of samples and the
network complexity. The results show that transfer-learning is
an effective high-accuracy model training method, and it can
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TABLE 3: Large-area image aircraft detection results.

Test image True aircraft Detected aircraft Missing detection False detection

Berlin Tegel Airport 35 35 0 2

Sydney International Airport 78 76 2 5

Tokyo Haneda Airport 94 91 3 4

TABLE 4: Detailed evaluation criteria and comparison for the four detection results.

Test image Method FDR (%) MR (%) AC (%) ER (%)

Berlin Tegel Airport CCNN >71 0 100 >71
LOGNet-C 7.69 3.23 96.77 10.92

Sydney International Airport CCNN 6.58 256 o744 o-14
LOGNet-C 48.54 10.87 89.13 59.41

Tokyo Haneda Airport CCNN 4.39 3.19 96.81 7.58
LOGNet-C 20.80 1.54 98.46 22.34

realize the task of training a high-accuracy target detection
model with fewer samples.

5.2. Aircraft Detection. The three large-area test images were
used to verify the aircraft detection accuracy. The results are
shown in Figure 9. Based on the global and local details in
the figure, the overall detection result is good. Most of the
aircraft in the airport area were detected. The detection-
missed aircraft were small aircraft; there was no missed detec-
tion of large aircraft. Moreover, there was no falsely detected
aircraft in industrial areas, residential areas, woodlands,
grasslands, or other areas beyond the airports. However, there
were individual falsely detected targets within the airports,
primarily airport trestles, and airport terminals. The quan-
titative indicators are shown in Table 3, in which “True”
indicates the number of real aircraft in the original image,
“Detected” indicates the number of aircraft detected, “Miss-
ing” is the number of detection-missed aircraft, and “False” is
the number of falsely detected aircraft.

The two-level CCNN aircraft detection structure could
rapidly process large-area remote sensing images with
high accuracy; however, the commission errors and errors

a better choice to set a suitable threshold and to balance the
false detection rate and detection miss rate.

The experimental results in Table 3 show that the pro-
posed method of CCNN is feasible. A high-accuracy aircraft
detection model can be obtained by using the transfer-
learning method to fine-tune a pretrained model. The GFC
method greatly reduces the number of region proposals
to directly improve the detection efficiency. The two-level
cascade network architecture can detect aircraft in large-
area remote sensing images with high accuracy and high
efficiency. However, some shortcomings remain. Detailed
analysis of transfer-learning and detection accuracy is out-
lined below.

The aircraft detection method performance was evaluated
by four criteria: falsely detected ratio (FDR), miss ratio (MR),
accuracy (AC), and error ratio (ER). Their meanings are given
in (6). A remote sensing image aircraft detection method
named LOGNet-C based on weakly supervised learning is
proposed in article [20]. The results of the CCNN method
were compared with those of the LOGNet-C method. The
four evaluation indicators and comparison results are shown
in Table 4.

Number of falsely detected aircraft

remained. In a complex environment, many objects have FDR = 8 x 100%
features similar to those of aircraft, especially long-shaped Number of detected aircraft

buildings and facilities. As listed in Table 3, the false detection Number of missing aircraft ,

rate of each airpprt is higher t.han the missing det.ection.rate. MR = Number of aircraft x 100% (©)
Through analysis, we determined that the detection-missed '

aircraft were not actually lost. In the detection procedure, the AC = Number of detected aircraft % 100%

classification threshold was set to 0.6. When the classification
score of a target was less than 0.6, the target was not marked.
Then, the missing detection appeared. When the threshold
was lowered to 0.5, the detection-missed targets were marked,
and the detection miss rate was zero. Nevertheless, there were
more falsely detected targets. Airport terminals and several
buildings had features similar to those of aircraft. These were
considered aircraft and marked. When the threshold was
raised, the false detection rate decreased, while the detection
miss rate increased. When the threshold was lowered, the
false detection rate increased, while the detection miss rate
decreased. According to the needs of the detection task, it is

Number of aircraft
ER = FDR + MR.

The comparison results show that the false detection rate
of the CCNN method is reduced by an average of 64%
more than the method of LOGNet-C. The missing detection
rate decreases by an average of 23.1%. Overall, the detection
accuracy increases by an average of 3.66%.

The test results showed that small aircraft are more
prone to missed detection, while long-shaped buildings and
facilities are more prone to false detection, as shown in Fig-
ure 10. This phenomenon is related to the choice of training
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FIGURE 7: Test remote sensing images for aircraft detection. (a) Berlin Tegel Airport. (b) Sydney International Airport. (c) Tokyo Haneda

Airport.

samples. The small aircraft in the sample are only a minor-
ity. In the transfer-learning stage, the detection model did
not learn more features of small aircraft. Long-shaped build-
ings were detected as aircraft. The first reason is that these

buildings had similar contour features as aircraft. The second
reason is that there were an inadequate number of similar
buildings in the negative sample. Consequently, the features
contained in the negative sample were insufficient. When
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Location loss of the object detection model. (d) Classification loss of the object detection model.

increasing the number of training samples of these types
and retraining the model, the target detection accuracy was
increased. The analysis results show that when producing
the training sample dataset, it should not only contain all
types of targets, but the number of each target type should
be balanced. The negative samples should contain as much
background information as possible, especially for objects
that have a texture, color, geometry, or other features similar
to those of aircraft.

All false detection occurred in the airport. Building-
intensive areas were prone to false detection; however, they
did not appear. This was on account of the contribution of
the first-level cascade network, which filtered out nontarget
areas and did not feed these areas into the aircraft detection
network. Missed detection primarily occurred in the airport
interior, and no aircraft were filtered out by the first-level
network. The main cause of the missed detection was that

the classification score was not high, and the network did not
extract an adequate number of features.

6. Conclusions

In the framework of deep learning, a rapid large-area remote
sensing image aircraft detection method of CCNN was pro-
posed. Using the transfer-learning method, the parameters
of the existing target detection model were fine-tuned with
a small number of samples, and a high-accuracy aircraft
detection model was obtained. Based on the geometric fea-
ture invariance of the aircraft in the remote sensing image, a
region proposal processing algorithm, GFC, was proposed to
improve the efficiency. Based on the above methods, a cascade
network architecture was designed for large-area remote
sensing images for aircraft detection. This method not only
can directly handle large-area remote sensing images for
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FIGURE 9: Aircraft detection results of the three test images, including the global images and local enlarged images. Detection results of (a) Berlin
Tegel Airport; (b) Sydney International Airport; (c) Tokyo Haneda Airport.

FIGURE 10: Commission and omission errors. The purple rectangle is the correctly detected aircraft, the green rectangle is the falsely detected
aircraft, and aircraft without a rectangle are missed detected aircraft. (a) and (b) are falsely detected aircraft, that is, predominantly long-shaped
buildings and facilities. (c) and (d) are detection-missed aircraft, predominantly small aircraft.
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aircraft detection, but it also overcomes the difficulty of
training a high-accuracy model with a small number of
samples.

The experimental results showed that the detection accu-
racy increased by an average of 3.66%. The false detection rate
decreased by an average of 64%, and the missed detection
rate decreased by an average of 23.1%. However, some of
the algorithms warrant improvement. The target detection
threshold is experientially set and has some limitations. In
future work, we intend to address the needs of the detection
task to make the system automatically set the threshold value.
In the present work, we focused on aircraft detection. If the
target is extended to other typical targets, such as ships, tanks,
and vehicles, then this method will have a larger application
scope.

The failures in target detection in this experiment may
have occurred for the following reasons. First, the number
of small aircraft in our sample is insufficient, and the sample
number of various types of aircraft is not balanced, which
has resulted in inadequate learning of the features of small
aircraft during training. Second, the choice of target threshold
must be appropriate. When detection is nearly complete, each
region proposal is scored. When this score is greater than
the threshold, the target is marked and displayed; however,
when the score is less than the threshold, the target is not
marked and is not displayed but is instead hidden as back-
ground. There is a close relationship between the threshold
value and detection accuracy, especially false positives and
negatives. When the threshold value is too small, false posi-
tives decrease. However, when the threshold value is too large,
false negatives increase. Currently, we set our threshold value
empirically and plan to adopt an adaptive threshold method
in the future.
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