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It is difficult to apply existing exposure methods to a resource-constrained platform. Their pyramidal image processing and quality
measures for interesting areas that need to be preserved require a lot of time and memory. The work presented in this paper is a
DCT-based HDR exposure fusion using multiexposed image sensors. In particular, it uses the quantization process in JPEG
encoding as a measurement of image quality such that the fusion process can be included in the DCT-based compression
baseline. To enhance global image luminance, a Gauss error function based on camera characteristics is presented. In the
simulation, the proposed method yields good quality images, which balance naturalness and object identification. This method
also requires less time and memory. This qualifies our technique for use in resource-constrained platforms.

1. Introduction

In general, the range of luminance in a real scene is wider
than the range of a digital camera. In addition, a commercial
image format is capable of storing only 8 bits per channel;
therefore, the range of storable luminance in a single image
is limited. In order to capture all of the luminance informa-
tion in a real scene, the information must be divided and
allocated among several images with different exposures.
This division not only uses more storage memory but also
creates the inconvenience of scanning several images to
recognize luminance information.

To solve such problems, methods of fusing differently
exposed images into a single image have been proposed.
There are two major fusion methods: high dynamic range
(HDR) imaging [1] and exposure fusion [2]. In HDR
imaging, an HDR image is first reconstructed from several
low dynamic range (LDR) images using camera response
function [3], and then an HDR-like LDR image including
most of luminance information is produced from the HDR
image using tone mapping operators (TMOs). Because an
HDR image cannot be shown on general display devices that

do not support the HDR format, it is necessary to tone
map an HDR image to an HDR-like LDR image. On the
other hand, exposure fusion directly creates an HDR-like
LDR image from several LDR images with different expo-
sures. Exposure fusion is thus relatively simpler because it
obviates the need to reconstruct an HDR image. The pro-
cess of exposure fusion starts by defining and measuring
image information, such as detail and contrast. The fusion
methods then select informative parts from several LDR
images and combine them into an HDR-like LDR image
without redundancy.

Many methods for measuring and selecting informative
parts of images have been researched. Mertens et al. [2]
used a quality measure constructed by contrast, saturation,
and well-exposedness and combined input images using a
pyramid-based fusion technique. Song et al. [4] measured
the visible contrast and the visual gradients in input images
and synthesized input images based on a probabilistic
model that can be transformed to a maximum a posteriori.
Finally, block-based image fusion in [5] selected the
most informative image for each block using entropy
of the image.
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These methods produce a reasonably good quality image;
however, they are not qualified for resource-constrained
platforms. It is time-consuming to obtain an HDR-like
LDR image including most of the luminance information
because of the computational complexity involved. Further-
more, pyramid-based fusions [2, 6] require more memory.
Li and Kang [7] proposed relatively fast exposure fusion
which can combine images with moving objects, but their
approach is also quite time-consuming. Furthermore, the
majority of digital cameras, including those used in
resource-constrained platforms, which leads to additional
steps to decode and encode compression data streams in a
fusion process. Although Kakarala and Hebbalaguppe [8]
avoid these extra steps in their proposed method of fusing
two images in the JPEG domain, their results lack detailed
information in dark areas because the boosted luminance
channel of the short-exposure image is only used as a lumi-
nance channel of the result image. Finally, discrete cosine
transform- (DCT-) based methods [9–11] compute local
information using DCT coefficients, and this computation
takes more time.

In this paper, we propose DCT-based HDR exposure
fusion using dual exposed image sensors that have symmetric
exposure values, +EV and −EV. The proposed fusion consists
of two sections: image fusion in an encoding field for
resource-constrained platforms and DC level reproduction
in a decoding field for displaying a fusion image. In partic-
ular, to reduce computational complexity, which becomes
a burden on resource-constrained platforms, our approach
excludes additional measurements for image quality, such
as contrast and entropy in DCT-based compressions.
Instead, we assume that the quantization process in the JPEG
baseline is sufficient for measuring image quality. As a result,
we confirm that a proposed method is able to quickly yield a
fusion image with equal to or higher than the quality of
methods that can be used in resource-constrained platforms.

2. Image Compression Baseline

JPEG [12] is a widely used image compression standard.
Owing to the simplicity of the processing and good compres-
sion performance for fair quality images, many kinds of
digital cameras store images using the JPEG standard. In
the JPEG baseline, an RGB color space of the image is first
transformed to a YCbCr color space as follows:
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where delta has a different value according to the image data
type. If the image data type is an unsigned 8-bit integer, the
delta is set to 128.

After the forward transform from RGB to YCbCr, block-
based JPEG compression is conducted. As shown in Figure 1,
an image is divided into nonoverlapping 8× 8 blocks, and
then 64 pixels in the block are transformed into the frequency

domain using the DCT. The DCT of pixels in the 8× 8 block
is defined by
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for u = 0, 1,… , 7 and v = 0, 1,… , 7, where
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1
2
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3

and f x, y is the pixel level in the spatial domain. The
transformed 8× 8 block consists of one DC coefficient and
63AC coefficients. The DC coefficient, F 0, 0 , is the sum
of the 64 pixels multiplied by the scale factor, 1/8. The
quantization process is then dividing the DCT coefficients,
F u, v , by the quantization matrix and rounding the values
off to the nearest integer.

To encode the quantized 8× 8 block, the DC coefficient in
the current block is subtracted from the DC coefficient in the
previous block, and the difference is encoded. In the case of
AC coefficients, zigzag ordering is required to increase
coding efficiency. Because high-frequency AC coefficients
are quantized to zeros, the zigzag ordering might form a
long sequence of zeros following low-frequency AC coeffi-
cients. Finally, the quantized data stream is encoded into
the corresponding bit stream using run-length coding and
Huffman coding.

DCT

Input image Reconstructed image

Inverse DCT

Inverse quantizationQuantization

Zigzag reorderingZigzag ordering

Entropy decodingEntropy encoding

JPEG data stream

Figure 1: Block-based JPEG baseline: compression (left) and
decompression (right).
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3. DCT-Based HDR Exposure Fusion Using
Dual Exposed Sensors

The bracketing mode of cameras typically produces images
of symmetric exposure values, for instance, +EV, 0, and
−EV, where EV is an exposure value. Because the luminance
information of the scene is sufficiently present in +EV and
−EV images, the proposed method utilizes only two symmet-
ric exposed images with +EV and −EV. By alternatively
capturing over- and underexposed images at N frames, it
can generate N/2 HDR frames as shown in Figure 2. The
process of exposure fusion is divided into image fusion in
the JPEG compression and DC level reproduction in the
JPEG decompression for a resource-constrained platform.
Through the separation of the exposure fusion process, the
two images can be quickly fused in the camera without
computational complexity.

3.1. Image Fusion in the Compression Field

3.1.1. Quality Measurement Using the Length of DCT
Coefficients. In general, the detail in bright regions appears
best in the −EV image, whereas the detail in dark regions
does so in the +EV image. In other words, in order to repro-
duce the detail of the scene in a fusion image, it is necessary to
decide which of two images best represents the detail in each
region. In the case of the JPEG data stream, the AC coeffi-
cients in the 8× 8 DCT block correspond to the detail. In
the quantization process, the insufficient level of high-
frequency AC coefficients makes them converge to zeros, so
that the low-frequency AC coefficients, which do not
converge to zeros, represent the degree of the detail in the
8× 8 block. Therefore, without additional steps, it is possible

to use the length of the AC coefficients as the quality measure
in the fusion process [13].

Figure 3 presents one example of the encoding in JPEG.
In this example, the bit stream encoding using Huffman code
is skipped for clarity. First, Figure 3(a) shows the quantized
8× 8 block in the DCT domain. This block has a DC coeffi-
cient and only a few low-frequency AC coefficients. Because
of the quantization process, many AC coefficients have
converged to zero. Coefficients in the block are arranged by
zigzag ordering (as shown in Figure 3(b)). Finally, the
arranged data is classified by run-length coding to reduce
its length (as shown in Figure 3(c)). The run-length coded
data stream consists of (RUNLENGTH, CATEGORY) and
(AMPLITUDE) where RUNLENGTH is the number of
consecutive zeros preceding the nonzero AC coefficient
indicated by AMPLITUDE; CATEGORY is the number of
bits to encode the nonzero AC coefficient. Therefore, the
length without consecutive zeros, which correspond to
converged high-frequency AC coefficients, can be directly
estimated from the run-length coded data stream. In this
example, the length without consecutive zeros is 5 (DC coef-
ficient, 1 RUNLENGTH, −6 AMPLITUDE, 1 RUNLENGTH,
and −4 AMPLITUDE).

3.1.2. Selective Fusion Rule in the Compression Field. Two
image fusions follow the maximum selection rule; the block
whose DCT coefficients have the maximum length belongs
to the fusion image. Let P= {px,y; x=0,… , N− 1 and
y=0,… , M− 1} be an image which consists of N×M blocks
of size 8× 8. Suppose that Dn= {dn,u,v; n=0,… , N×M− 1
and 0≤u, v≤ 7} be the corresponding DCT coefficients and
Qn= {qn,u,v; n=0,… , N×M− 1 and 0≤u, v≤ 7} be the
quantized DCT coefficients of each nth 8× 8 block. In the

 N frames

N/2 HDR images

Overexposure Underexposure

Fusion Fusion

Overexposure Underexposure

Figure 2: Illustration of HDR exposure fusion using dual exposed sensors.
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proposed image fusion, the nth block of the fusion image,
QF

n, is obtained as follows:

QF
n =QK

n, where K = arg max
k

Lkn , k = +EV, −EV

4

Lkn is the length of the coefficients of the nth block of the
kth image after the quantization. For example, the quantized
DCT 8× 8 blocks in the same position as the +EV and −EV
images are shown in Figures 4(a) and 4(b), respectively. In
this example, the block of the +EV image,Q+EV, becomes that
of the fusion image, QF , because L+EV (equal to 37) is longer
than L−EV (equal to 4).

Fusion rule in (4) has an advantage that two images are
fused in the JPEG data stream without complex computation
or additional processing because the length of the coefficients
can be derived simply from the JPEG data stream. Therefore,
a result image can be easily fused in the camera and directly
transmitted or stored because the result image is already a
form of the JPEG data stream. Furthermore, as shown in
Figure 5, the result is competitive with that of the variance-
based fusion rule without consistency verification [10] in
regard to detail selection.

3.2. DC Level Mapping in the Decoder. Although detail is
reconstructed using the proposed image fusion, the transmit-
ted or stored JPEG data stream of a fusion image requires the
manipulation of local tone using DC coefficients. For faster
processing in the JPEG compression, it is acceptable to take
a simple average of two DC coefficients in the DCT 8× 8
blocks; however, because of the significant level of difference
between +EV and −EV images, a simple average of DC levels
produces unpleasant local tones in the fusion image. In addi-
tion, as shown in Figure 6, detail in a fusion image does not
appear clearly because the DC level is too dark or too high.
Note that Sub1 is darker in the fusion image than in the
+EV image and Sub2 is brighter in the fusion image than in
the −EV image, so the detail is insufficient. To solve this
problem, in the JPEG decompression, we estimate DC levels
of the +EV image in dark regions and those of the −EV image
in bright regions from an average DC level of the transmitted
JPEG data stream.

3.2.1. Gauss Error Function for Estimating DC Levels. We
conducted an experiment to determine the relationship
between each input image and a transmitted average
value of the two input images. A number of symmetri-
cally exposed images using a linear gradient pattern were
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Figure 4: Example of 8× 8 blocks after the quantization. The lengths of the coefficients are (a) 37 (the last nonzero value in the zigzag ordering
is −51) and (b) 4 (the last nonzero value is −4).
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Quantized data in the 8 × 8 block

(a)

Zigzag ordered data stream:

176 0 0 0

59 zeros

00−6 −4

(b)

Run-length coded data stream:

(0, 8)(176), (1, 3)(−6), (1, 3)(−4), (0, 0)

(c)

Figure 3: Example of an 8× 8 block after quantization. (a) Quantized data in the block, (b) zigzag ordered data stream, and (c) run-length
coded data stream.
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captured using a camera (model: Sony α6000) with ±0.3
EV, ±0.5 EV, ±0.7 EV, ±1.0 EV, ±1.3 EV, and ±2.0
EV. Then for each symmetric exposure value, the scatter
graphs for the pixels of each test pattern image against
the corresponding average pixel values of ±EV images
were plotted as shown in Figure 7 (blue and green data).
In our experiment, the maximum exposure is limited to
±2.0 EV because images with an EV value higher than
2.0 have too many saturated pixels. From the scatter graphs
for each symmetric exposure value, we see that the scatter

graphs exhibit point symmetry and can be estimated using
the Gauss error function as follows:

I+EV′ = ERF αIavg , 5

I−EV′ = ERF α Iavg − 1 + 1, 6

ERF x = 2
π

x

0
e−t

2
dt Gauss error function , 7

+EV image −EV image Fusion image

Image

Sub1

Sub2

Figure 6: Gray images of +EV and −EV and fusion images using (4).

(a) (b)

(c) (d)

Figure 5: The results of fusion rules using (a) +EV and (b) −EV images (ΔEV = 4); (c) the variance-based fusion rule without consistency
verification in [10] and (d) our proposed fusion rule. White pixels indicate that the +EV image is selected, and black pixels indicate that
the –EV image is selected.
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where I+EV′ and I−EV′ are the estimated image levels for the
+EV and −EV images, respectively, and Iavg is the average
level of the two images. Because the Gauss error function is
an odd function, the scatter graphs can be estimated using
the function and its translation. In addition, the parameter,
α, in the Gauss error function correlates to the absolute
exposure value of the images. We plot α against discrete EV
data as a function of exposure value in Figure 8 and simply
obtain the parameter α as follows:

α = 0 5 EV + 1 8

In Figure 7, we superimpose red and black lines obtained
from (5) and (6) on the scatter graphs. Although there are
deviations in the bright regions of the +EV image and the
dark regions of the −EV image, they are acceptable because
this luminance, which is generally saturated in the +EV and
−EV images, is not included in the fusion image. In other
words, each piece of luminance information in the dark and
bright regions of the scene is estimated from the +EV and
−EV images, respectively.

Similarly, Kakarala and Hebbalaguppe proposed the
brightness transfer function (BTF) using a sigmoidal function
to boost the intensity of a short exposure image up to that
of a long exposure image [8]. However, the BTF for the
image with large ΔEV has a high gradient, and for a
fusion image, only the boosted pixel level in the short
exposure image is used. On the contrary, our function,

which has a relatively low gradient, can estimate levels of
both the +EV and the −EV images from an average level.

To confirm that the functions in (5), (6), (7), and (8) are
available to different cameras, we captured the same pattern
with ±1.0 EV and ±2.0 EV using an Olympus E-PM1 and
the mobile phone cameras of the Nexus 5 and Galaxy S5.
The phone cameras are considered resource-constrained
platforms because they are relatively nonprofessional camera
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Figure 7: Scatter graphs using a Sony α6000 and Gauss error function curves. Blue and green represent the scatter graphs for +EV and −EV
images against the average image. Red and black lines represent the estimation curves using the Gauss error function. (a) EV = ±0 3 and
α = 1 1895 in (5) and (6); (b) EV = ±0 5 and α = 1 2665; (c) EV = ±0 7 and α = 1 3435; (d) EV = ±1 0 and α = 1 5150; (e) EV = ±1 3 and
α = 1 6845; and (f) EV = ±2 0 and α = 1 9930.
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Figure 8: The parameter, α, as a function of exposure value. Black
triangles represent the discrete EV data in Figure 5, and the red
solid line represents (8).
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models. Similar to Figure 7, scatter graphs for these cameras
and Gauss error function curves are shown in Figure 9.
Although there are slight deviations, the estimation using
the Gauss error function is successful.

In addition, based on the camera response function
(CRF) constructed using the five images with EVs = 2, 1,
0, −1, and − 2, we verified our estimate for general images.
The left graph in Figure 10 shows the CRF with irradi-
ance, E, and exposure time, Δt. Assuming the exposure
range of the camera with EV = +2 is [−2 4] in the log
domain, the range of the camera with EV = −2 is [−4.77
1.23] because the exposure time of EV = +2 is sixteen
times longer than that of EV = −2, and the gap is approx-
imately 2.77 in the log domain. Similar to Figure 7, the
pixel graphs against the corresponding average pixel
values of ±EV images (blue and green) and the estimated
graphs (red and black) are plotted in Figure 10(b). As in
the test using a pattern image, the estimation for general
images is successful.

3.2.2. Reproduction of Corresponding DC Levels. Our experi-
ment demonstrates that the levels of ±EV images can be
estimated using the Gauss error function of the average level
with an exposure value. However, having the DC levels
simply spatially switch between the estimated levels of
±EV images in the JPEG decompression produces level
discontinuity in the result image. To smooth the

discontinuity, we apply the weighting map, w, to the
sum of the estimated levels in (5) and (6) as follows:

DCfusion =w ERF α DCavg − 1 + 1
+ 1 −w ERF αDCavg ,

9

where ERF ⋅ and α are derived from (7) and (8), respec-
tively, and DCavg is an average DC coefficient of the ±EV
images. The weighting map, w, is obtained from blurring
the subimage composed of DCavg values so that the map var-
ies spatially. For simplicity, the weighting map is constrained
within the range [0 1]. Bright regions in the scene are indi-
cated by w = 1. Thus, (9) estimates the level of the −EV image
because bright regions appear best in the −EV image, whereas
bright regions in the +EV image are saturated. On the other
hand, dark regions in the scene are indicated by w = 0. This
means that the level of the +EV image is obtained from (9)
because the dark regions in the −EV image are too dark.

We show the function graphs of (9) in Figure 11(a).
These graphs change smoothly between the estimated DC
levels of ±EV images according to w values. Therefore, level
discontinuity in the fusion image disappears. To illustrate
this, in Figure 11(b), we show the five DC images: +EV,
−EV, w, DCavg, and DCfusion. The dark regions in +EV and
the bright regions in −EV are well expressed in DCfusion,
which is derived from (9) using DCavg and w.
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Figure 9: Scatter graphs using different cameras and Gauss error function curves. Blue and green represent the scatter graphs for +EV and
−EV images against the average image. The red and black lines represent the estimation curves using the Gauss error function.
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3.3. DCT-Based HDR Exposure Fusion. A block diagram of
the proposed JPEG-based exposure fusion is shown in
Figure 12; the blue and red lines indicate the manipulations
of DC and AC coefficients, respectively. As shown in
Figure 12(a), because the proposed fusion requires only two
simple operations in the camera—the operation comparing
length using AC coefficients and the average operation
using DC coefficients—it is easily applied on a resource-
constrained platform, such as a surveillance system. The
reproduction of DC levels of the fusion image in the JPEG
decompression is then enhanced when displaying the
transmitted JPEG data stream as shown in Figure 12(b).

As an example, a specific JPEG data stream using image
block data from the dark region of the scene is entered. In
the JPEG compression within the camera of the resource-
constrained platform, image fusion is conducted; AC

coefficients are selected using the fusion rule, and DC
coefficients are averaged. When displaying the fusion
image in the JPEG decompression, the DC level is repro-
duced using an average value of DC coefficients and EV
values. As a result, the fusion image block has a DC coef-
ficient which is similar to that of the +EV image block
and AC coefficients that are exactly the same as those
of the +EV image block.

4. Simulations

4.1. Simulation Setup. Six image sets are used in simulation:
“Building 1,” “Building 2,” “Gazebo,” “Belgium house” [14],
“Venice carnival” [15], and “Memorial church” [3]. For com-
parison, three existing fusion methods are used: exposure
fusion (EF) [2], fast multiexposure image fusion (FMMR)
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Figure 11: Proposed function graphs for a DC level reproduction (a) and example images (b). The red and dark red curves span five
ws: 0, 0.25, 0.5, 0.75, and 1. The gray scatter graphs correspond to the blue and green scatters in Figure 7(f).
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+EV and −EV. The red and black lines represent the estimation curve using the Gauss error function. The CRF is constructed
using Debevec’s method [3].
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[7], and probabilistic model-based fusion using generalized
random walks (GRW) [16]. Our approach considers only
the Y channels of the two symmetric exposed images such
that for color processing, we take the furthest value from
the neutral point between the two images in the CbCr
color domain.

The major advantage of our exposure fusion is its
applicability to resource-constrained platforms. Further-
more, unlike our method, the existing methods are not

able to take images in the JPEG stream without a JPEG
decoder. Although raw image data may be available for
fusion using the existing methods, the use of the raw data
requires too much memory. Fusing images using the existing
methods causes an increase of computational complexity
in the camera that should be avoided. For this reason,
we set the test bed that fuses images using the existing
methods after JPEG encoding and decoding modules, as
shown in Figure 13.
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Figure 12: Proposed JPEG-based exposure fusion diagram.
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Figure 13: Test bed for a resource-constrained platform.
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4.2. Result Images. Figures 14–16 show the result images
obtained with the existing and proposed methods using dual
exposed capturing. In “Building 1” and “Gazebo,” the results
of FMMR and GRW are stained. Particularly in the FMMR
result for “Buildings 1,” the upper left of the red brick build-
ing is unnatural because the method has a subsampling pro-
cess for reducing the computing and memory consumption.

Similarly, in the GRW result for “Gazebo,”most of the green
leaves have low chroma. While the results of EF seem more
natural, it is generally hard to identify details in the darkest
and brightest areas. In contrast, our proposed method pro-
duces natural images with good details in these areas. The
enhanced results are surely confirmed in the cropped images
shown in Figure 17.

(a) (b) (c)

(d) (e) (f)

Figure 14: Result images of “Building 1.”

(a) (b) (c)

(d) (e) (f)

Figure 15: Result images of “Gazebo.”

10 Journal of Sensors



To objectively verify the image quality, we use five
metrics for quantitative assessments: SSIM [17], FSIM [18],
FMI [19], MEF [20], and TMQI [21]. SSIM is a well-known
quality metric based on structural similarity of images. FSIM

is based on the salient low-level features of the perceived
scene and shows higher consistency with the subjective
evaluations. Because SSIM and FSIM are reference-based
assessments, we crop dark and bright areas, respectively,

(a) (b) (c)

(d) (e) (f)

Figure 16: Result images of “Belgium house.”

EF FMMR

GRW Proposed

Figure 17: Subimages of the result images.
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and the cropped images are used as reference images. FMI,
which is a feature-based image fusion metric, calculates the
amount of mutual information carried from the source
image to the fused image. MEF is designed for multiexpo-
sure image fusion. MEF correlates particularly well with
subjective judgement. Finally, TMQI is an image quality
metric for tone-mapped images. In other words, using an
HDR image as a reference, TMQI measures signal fidelity
and naturalness of a tone-mapped image. We adopt this
metric because a tone-mapped image is similar to an
exposure-fused image. In our simulation, HDR reference
images for TMQI are made using Adobe Photoshop CS6
with two source images.

Quantitative results are shown in Tables 1, 2, and 3. The
proposed method ranks first in SSIM score (0.9106) and
FSIM score (0.9417) and second in FMI (0.8832), MEF
(0.9686), and TMQI (0.9394) scores. Although the proposed
method is not the first in all of the individual metrics, it is the
first in the overall ranking using all metrics (the sum of ranks
for the four metrics; EF = 13, FMMR = 14, GRW= 15, prop
osed = 8). EF has the highest scores in MEF (0.9723) and
TMQI (0.9497), but the lowest scores in SSIM (0.8647), FSIM
(0.9225), and FMI (0.8767). This means that EF has good
naturalness but bad signal fidelity, whereas the proposed
method is more faithful to structural fidelity with a slight loss
of naturalness. FMMR and GRW have relatively good signal
fidelity but are lacking in naturalness. For example, their
result images for “Building 1” and “Gazebo” have many halo

artifacts such that they are stained. In contrast, our proposed
method yields well-balanced result images.

4.3. Computation Time. For resource-constrained platforms,
computation time is one of the main points to be considered.
Table 4 shows the computation time for each method in
MATLAB on a 3.40GHz (i7-2600K) CPU PC with 8.00GB
RAM. Because of the decision to use JPEG streams for a
resource-constrained platform, the results include the times
consumed by the JPEG modules as in the test bed in
Figure 13. The proposed method has the fastest computa-
tional time. The brute force JPEG code causes the computa-
tional times of the JPEG decoding and encoding to

Table 1: Quantitative metric results for SSIM and FSIM.

SSIM FSIM
EF FMMR GRW Proposed EF FMMR GRW Proposed

“Building 1” 0.9033 0.9219 0.9055 0.9312 0.9385 0.9516 0.9398 0.9585

“Building 2” 0.8878 0.8970 0.8392 0.9054 0.9404 0.9395 0.9230 0.9428

“Gazebo” 0.8578 0.9154 0.8602 0.9193 0.9218 0.9446 0.9192 0.9514

“Belgium house” 0.7926 0.8663 0.8496 0.8904 0.8964 0.9275 0.9197 0.9222

“Venice carnival” 0.9155 0.9220 0.8875 0.9317 0.9343 0.9405 0.9322 0.9450

“Memorial church” 0.8313 0.8695 0.8439 0.8856 0.9035 0.9233 0.9160 0.9304

Average
(rank)

0.8647
(3)

0.8987
(2)

0.8643
(4)

0.9106
(1)

0.9225
(4)

0.9378
(2)

0.9250
(3)

0.9417
(1)

Table 2: Quantitative metric results for FMI and MEF.

FMI MEF
EF FMMR GRW Proposed EF FMMR GRW Proposed

“Building 1” 0.8539 0.8760 0.8695 0.8835 0.9772 0.9706 0.9694 0.9703

“Building 2” 0.9020 0.9110 0.8798 0.9099 0.9751 0.9668 0.9583 0.9729

“Gazebo” 0.7763 0.7803 0.8016 0.7747 0.9684 0.9598 0.9399 0.9577

“Belgium house” 0.8955 0.9074 0.9064 0.8895 0.9661 0.9661 0.9601 0.9629

“Venice carnival” 0.9303 0.9331 0.9329 0.9326 0.9757 0.9725 0.9696 0.9779

“Memorial church” 0.9022 0.8756 0.9174 0.9093 0.9712 0.9404 0.9669 0.9698

Average
(rank)

0.8767
(4)

0.8806
(3)

0.8846
(1)

0.8832
(2)

0.9723
(1)

0.9627
(3)

0.9607
(4)

0.9686
(2)

Table 3: Quantitative metric results for TMQI.

TMQI
EF FMMR GRW Proposed

“Building 1” 0.9372 0.9131 0.9216 0.9353

“Building 2” 0.9582 0.9325 0.9450 0.9559

“Gazebo” 0.9589 0.9539 0.9429 0.9330

“Belgium house” 0.9442 0.9552 0.9406 0.9311

“Venice carnival” 0.9427 0.9246 0.9190 0.9471

“Memorial church” 0.9568 0.9037 0.9512 0.9337

Average
(rank)

0.9497
(1)

0.9305
(4)

0.9367
(3)

0.9394
(2)
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constitute a large portion of the result times. Nevertheless,
considering that it does not take long (about 0.5 seconds) to
write “Building 1” as a JPEG image file using the imwrite
function in MATLAB, the proposed method can have very
fast computational times.

If the JPEG modules in Figure 13 are removed, the
memory requirements of the other fusion methods become
excessive. For example, the memory for the two raw images
of “Gazebo” is about 16.26MB, while the memory for the
two JPEG images is only about 1.95MB. Therefore, in
considering the memory requirement and the computation
time together, the proposed method is superior to the
existing methods.

5. Conclusions

In this paper, DCT-based HDR exposure fusion for resource-
constrained platforms is proposed. To fuse two symmetric
exposed images in the JPEG baseline, we demonstrate that
the quantization process in the JPEG baseline qualifies for
the quality measure in the fusion process and that the Gauss
error function estimates the DC levels of the source images
from average DC levels well. Furthermore, for resource-
constrained platforms, two symmetric exposed images are
fused in JPEG compression, and then the DC level of the
fusion image is reproduced in the JPEG decompression.
The simulation results indicate that the proposed method
balances naturalness and detail in saturated regions for
overall good image quality. In addition, the proposed method
has a very fast computation time and requires less memory
such that it satisfies the demands for exposure fusion in
resource-constrained platforms.
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