
Research Article
Neck Flexion Angle Estimation during Walking

Duc Cong Dang,1 Quoc Khanh Dang,2 Young Joon Chee,3 and Young Soo Suh1

1Electrical Engineering Department, University of Ulsan, Ulsan, Republic of Korea
2NAMU Inc., Ulsan, Republic of Korea
3Biomedical Engineering Department, University of Ulsan, Ulsan, Republic of Korea

Correspondence should be addressed to Young Soo Suh; yssuh@ulsan.ac.kr

Received 8 June 2017; Accepted 19 October 2017; Published 28 December 2017

Academic Editor: Yeesock Kim

Copyright © 2017 Duc Cong Dang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Neck pain is recently known as the fourth leading cause of disability and the number of patients is apparently increasing. By
analyzing the effect of gravitational force on inertial sensor attached to the neck, this study aims to investigate the head flexion
posture during walking. The estimated angle is compared with the craniovertebral angle which is measured with an optical
tracker. A total of twenty subjects with no history of neck pain or discomfort were examined by walking on the treadmill inside
the working range of an optical tracker. In our laboratory settings, the neck flexion angle (NFA) may have a linear relationship
with the craniovertebral angle (CVA) in both static case and constant speed walking case. Therefore, inertial sensor, which is
lightweight, low cost, and especially free in movement, can be used instead of a camera system. Our proposed estimation
method shows its flexibility and gives a result with the mean of absolute error of estimated neck angle varying from 0.48 to 0.58
degrees, which is small enough to use in applications.

1. Introduction

Neck pain is one of the most common musculoskeletal
disorders (MSDs) among both the general and working
population, with an annual prevalence rate exceeding 30%,
and the literature is mixed as to whether it peaks or plateaus
in middle age [1]. According to [2], the head in normal
posture weights about 10 to 12 lbs., but when the head flexed
forward, the force seen by the neck increases to 27 lbs. at 15°,
40 lbs. at 30°, 49 lbs. at 45°, and 60 lbs. at 60°. That huge
amount of force increases loading in the joints and muscles
of the cervical spine and can be a major contribution factor
to neck and upper limb disorders after a prolonged period
of time [3].

Recent studies show greater interest in the relationship
between neck pain and digital devices, using situations such
as computers at the workplace [3, 4] or handheld devices
[5–7]. The widespread use of digital technology, including
computers and mobile devices, is related to the prevalence
of neck pain due to the head forward flexion posture. Users

tend to maintain their poor head posture even with the
existence of pain symptoms or neck discomfort [5].

Besides neck pain, it is said that pedestrians may face
some risk while walking or crossing road since they tend to
miss visual targets or sound indications when looking down
the smartphone [8, 9]. Therefore, it is important to investi-
gate the head flexion posture during user walking.

The neck flexion angle (NFA) can be estimated by using
force sensors placed on the front, left, and back side of the
neck [10] or camera systems to observe the craniovertebral
angle (CVA) using infrared markers attached on the neck
[11, 12]. Another effective way to measure the neck flexion
angle was proposed by using motion sensors to analyze the
gravitational force placed on the neck [13, 14]. In previous
studies, the neck flexion angle is estimated for static pose
such as standing or sitting down. In this study, we used
an inertial sensor to estimate the neck flexion angle
(NFA) during walking. OptiTrack camera system is used
to obtain the craniovertebral angle (CVA), which is used
as ground truth value for the analysis. A preliminary result

Hindawi
Journal of Sensors
Volume 2017, Article ID 2936041, 9 pages
https://doi.org/10.1155/2017/2936041

https://doi.org/10.1155/2017/2936041


was presented in the conference paper [15], where a basic
algorithm is given without experimental verification.

2. Methods

The neck posture in this paper is estimated by analyzing the
gravitational force placed on the neck using an accelerome-
ter. During walking, the estimation is affected heavily by
the walking movement since the accelerometer observes not
only the gravitational force but also the external acceleration.
The walking movement will be analyzed in this section
together with the step detecting algorithm to propose a novel
method for detecting neck angle during walking.

2.1. Human Gait Analysis. Human gait refers to locomotion
achieved through the movement of human limb. During
walking, the center of mass moves along the travelling
direction but also has sinusoidal movements in the lateral
and vertical direction [16]. The result in [16] also showed
that the lateral and vertical displacements depend on the
walking speed. When the nominal speed increases, the lateral
displacement decreases while the vertical displacement tends
to increase. However, according to a recorded data using
VICON camera system from Carnegie Mellon University
[17], the vertical and lateral translations are still in sinusoidal

forms where the vertical movement frequency is double the
lateral movement frequency.

The human gait analysis can be seen from Figure 1. As
the lower limbs act like inverted pendulums while walking,
the center of mass of a pedestrian moves in sinusoidal wave
form with respect to the sagittal plane. The maximum
vertical displacement is around 30% and 80% of gait cycle
when one leg is at mid-stance and mid-swing positions,
respectively. In the meantime, the sinusoidal form of the
lateral displacement is caused by the changing of center of
mass onto each foot while walking. The minimum of the
lateral displacement is at 30% of the gait cycle while its
maximum is at 80% of the gait cycle.

Based on this fact, a simulated movement can be gener-
ated as in Figure 2 where the forward movement is assumed
to be linear. To verify the theory, a real data of a walking
person was recorded. In this record, an accelerometer was
attached on a volunteer’s neck so that the x-axis of the
accelerometer points upward while the z-axis of the acceler-
ometer coincides with the walking direction. Since we are
only interested in the form of the signal, the accelerometer
outputs were filtered as can be seen from Figure 2(b). The
result showed that while walking, the acceleration of the
pedestrian’s neck movement has both vertical and lateral
accelerations in sinusoidal forms, in which the frequency of
the later acceleration is twice that of the vertical acceleration.
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Figure 1: Vertical and lateral displacements of human gait.
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As can be seen from Figure 2, the peaks of the vertical
acceleration were produced by the shocks yielded at the
heel strike periods of the gait cycle. Based on these peaks,
the steps can be detected. Since in each step the accelera-
tions in vertical and lateral directions are close to sinusoi-
dal forms and the forward acceleration is approximated to
zero (linear forward walking), the external accelerations
will be eliminated by summing the acceleration values in
each axis. Or in other words, the sum of the acceleration
in the x- and z-axes in each step represents the gravitational
force acting upon the pedestrian’s neck. By only measuring
the gravitational force, the accelerometer estimates the
inclination angle of the accelerometer with respect to the
ground using a triad algorithm given in [18]. This inclination
is also the neck angle. Therefore, to cancel out the external
acceleration, a step detection algorithm is needed.

2.2. Step Detection Algorithm. As mentioned above, the esti-
mation of the neck angle is heavily affected by the external
acceleration. In the first step, we aim to classify the human
activities into dynamic and static cases using standard devia-
tion of the acceleration as the main classification criteria. The
standard deviation σa of norm acceleration data set ai (1 ≤
i ≤N , N is the number of samples) is calculated as follows:

σa =
1
N
〠
N

i=1
ai − μ 2, 1

where μ = 1/N ∑N
i=1ai is the mean value of data set ai.

By applying the standard deviation parameter to accel-
eration norm data, some human activities can be easily
detected as an example in Figure 3, where a sequence
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Figure 2: Simulated and real filtered accelerations of walking data: (a) simulated data; (b) real filtered data.
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Figure 3: Activity classification using an accelerometer: (a) norm of acceleration; (b) norm and standard deviation of acceleration.
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data of sitting–standing up–standing–sitting down–sitting–
standing up–standing–walking–running–walking–standing–
sitting down–sitting was recorded.

It is easy to classify the light activity among various
activity and static cases. In this experiment, the parame-
ters to detect static and vigor activity are 0.1 and 2,
respectively. Other actions such as sitting down and
standing up have the same standard deviation with walk-
ing but it can be eliminated since they happen in a short
time while walking activity is periodic and occurs in a
long time. Our next step is to detect the walking steps
based on characteristics of walking activity (long and
periodic occurrence).

There are many algorithms for step detection such as
threshold level [19–21], spectral analysis [22], or peak
detections. The threshold-based method in [19–21] detects
a walking step when the acceleration value is larger than a
threshold level. This method is simple but sensitive to noise
since other acceleration could cause a fluctuation in the
output of the sensor. Spectral analysis in [22] is robust to
noise but has a large computational load.

To provide an online step detection that can run on
low speed and limited memory processors, we propose a
simple peak detection algorithm using five consecutive
data points.

Let yi ∈ℝ be a signal from the output of the sensor
at the discrete time i. Since we are only interested in
detecting the peak of the signal rather than its true
values, yi is filtered by a simple three-point weighted
moving average:

yi = α1yi−1 + 1 − 2α1 yi + α1yi+1, 2

where α1 is the weighting factor for the low-pass filter.
The significant maximum peak at the discrete time i

will be detected if one of the following conditions
is satisfied:

yi−2 < yi,
yi−1 < yi,
yi > yi+1,
yi > yi+2,

yi −max yi−2, yi−1, yi+1, yi+2 > α2,
yi−3 < yi−2,
yi−2 < yi−1,
yi−1 < yi,
yi > yi+1,

yi −max yi−3, yi−2, yi−1, yi+1 > α2,
yi−1 < yi,
yi > yi+1,
yi+1 > yi+2,
yi+2 > yi+3,

yi −max yi−1, yi+1, yi+2, yi+3 > α2,

3

where α2 is a threshold parameter. The sensitivity of the peak
detection algorithm can be adjusted by changing the value of
α2. If α2 is chosen as a large value, small peaks due to noise
can be ignored. However, only conspicuous peaks can be
recognized. This also means that some true peaks may not
be detected.

Although all peaks are detected, there might be a chance
that the peak is caused by other activities or noises rather
than walking. For example, as can be seen from Figure 4(a)
where an extraction of a fast walking data is from an acceler-
ometer attached on a person’s neck, if only the conditions in
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Figure 4: Peak detection of real walking data: (a) all peaks; (b) heel strike peaks.

4 Journal of Sensors



(3) are used, we obtain many peaks. Fortunately, peaks
caused by the contacting shock at heel strike moments are
much larger than other peaks and these peaks occur
periodically. Based on this fact, we propose to detect the heel
strike peeks by searching one large peak within a specific time
α3. In detail, when a peak is detected at the time i using
conditions in (3), all surrounding peaks in the range of
i − α3, i + α3 are compared together. The largest value
will be the true peak generated by a heel strike. By using
this method, periodic peaks will be selected.

The result of applying α3 condition is given in Figure 4(b)
where all walking peaks are successfully detected. If α3 is too
large, some steps will be missed. Conversely, if we set α3 as a
small value, some peaks caused by noises will be wrongly
detected as the walking peaks. However, the maximum value
of α3 can be chosen from 0.4 to 0.6 sec since the normal and
fast walking speeds of a pedestrian is 100 and 150 steps per
minute [23, 24], respectively. In this experiment, α3 is chosen
to be 0.4 sec.

The walking activity is only defined when at least three
consecutive walking peaks are detected. Let T j be the time
interval between two consecutive peaks at ti−1,j and ti,j from
N peaks 1 ≤ j ≤N :

T j = ti,j − ti−1,j 4

Since walking activity is nearly periodic, the following
condition will be satisfied:

T j −
1
N
〠
N

k=1
Tk ≤ α4 5

If small α4 is chosen, we obtain very periodic walking
steps but the walking activity may fail to be detected since
naturally not all strike cycles are the same. In contrast, if
a larger α4 is used, we have a more flexible condition in
detecting walking activity. However, there could be a
chance that some of the detected peaks are not the walk-
ing steps.

2.3. Neck Flexion Angle Estimation. The neck flexion angle
(NFA), which is the angle of neck flexion relative to horizon-
tal direction, is estimated by observing the angle between
vertical direction and the projection of the gravitational force
on the z-axis of the accelerometer. The accelerometer was
attached on the body neck as shown in Figure 5(b) where
its x-axis points upward and its z-axis is perpendicular to
the neck when the neck is up straight. The world coordinate
frame was chosen so that its z-axis is upward, while the
x- and y-axes can be chosen arbitrarily. When the neck
is bended, the inclination angle of the neck can be calculated
by using the following equation [25]:

β = tan−1 ax

a2y + a2z
, 6

where a = ax ay az
T ∈ℝ3 is the output of the

accelerometer.
Equation (6) is only applied for static cases where the

external accelerations are absent. In walking scene, the
external due to walking activity is considerable. As can be
seen from Figure 1 and Figure 2(b), the projection of the
gravitational force on the x- and z-axes of the accelerometer
are sinusoidal in each walking step. Since x-axis of the
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Figure 5: (a) Reflective markers and inertial sensor position while standing upright inside the working range of infrared camera system;
(b) sensor and world coordinate frames used in this paper.
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accelerometer points upward while its z-axis is on walking
direction, the inclination on the neck in each walking step
can be estimated using the following equation:

β = tan−1 ax
az

, 7

where ax and az are the average value of accelerometer
output in the x and z direction within each walking
step, respectively.

3. Experiments

A total of 20 subjects, ranging from 24 to 32 years old
with the mean age of 26.8, were recruited for the study.
All participants had no difficulties in using smartphones
while standing or walking and had at least 15 minutes
walking to be familiar with the treadmill (running machine).

We conducted all trials with participants in two
separated experiments.

During the whole process, subjects were asked to wear a
swimming cap having three reflective markers attached in
the sagittal plane parallel to the direction of view. Two more
markers were placed on the skin at the position of C7 bone
and tragus.

An Xsens MTi1 sensor with the customized board having
Bluetooth communication was put on subjects’ neck using an
elastic band. Both two experiments were conducted inside
the working range of 6 cameras in the OptiTrack infrared
camera system (Figure 5(a)). The system was configured to
extract 3D position data of the markers, 3-axis acceleration,
and angular velocity of the inertial sensor at the sampling rate
of 100Hz.

At the beginning of the first experiment, each subject’s
data was recorded while they were standing up straight
(upright position) as they usually did for 10 seconds. Then
each participant intentionally performed “text-neck” pos-
ture [26] changes with 5 levels from upright position
and the lowest position within about 10 seconds each.
These levels were chosen by each subject, whichever make
themselves comfortable.

Before the second experiment started, participants were
asked to get acquainted with different speed levels of the
treadmill. Each subject then sequentially performed walking
tasks with regular constant walking speed of 3, 4, and
5 km/h. During each task, the subject also did the 5 levels
of “text-neck” changes, each level within 30 seconds. At
least 30 seconds of rest break was given after finishing
each task to minimize the risk of neck pain.

Position data of markers and output of inertial sensor
were synchronized before using for analysis. The craniover-
tebral angle (CVA) and the neck flexion angle (NFA or the
neck angle) can be derived using the following procedure:

(a) The CVA, which is the angle between a line
connecting C7 to tragus and the horizontal line
through the spinous process of C7 [27] can be calcu-
lated by projection of both C7 and tragus markers
into the sagittal plane.

(b) The neck angle NFA in the static pose can be calcu-
lated by observing the angle between the vertical
direction and the projection of the gravitational force
at each sample of time on the z-axis of the accelerom-
eter using (6), which is called “direct computation
method.” However, in the walking case, the center
of mass has sinusoidal movements in lateral and
vertical direction [16], the external acceleration in
that two directions are close to sinusoidal forms.
The forward acceleration is approximately zero
(linear forward walking), then we can eliminate the
external accelerations by summing the accelerometer
output in each axis within each walking step, and the
inclination angle with respect to the ground can be
calculated using (7).

To evaluate the relationship between the CVA and the
NFA, we inspected the mean and variation of the difference
between that two angles. Our estimation algorithm perfor-
mance is also examined by comparing with the “direct
computation method” and “fixed interval average method,”
where the acceleration data in each axis is summed over a
fixed period. We chose that fixed interval to be 0.5, 0.75,
and 1 second due to the common walking step time.

4. Results and Discussions

The main contributions of this study include the relationship
between CVA and NFA in both static and walking cases. The
experimental results of a subject showed in Tables 1 and 2
imply that the estimated neck angles (NFA) have a linear
relationship with the CVA, where there is a “nonchanging”
offset value between the two angles in both static and walking
cases. Also in Figure 6, we can clearly see the similar trends
and amount of changes between different levels among these
angles. It means the NFA, which can be derived by our
simple, flexible, and cost-effective method, can be used
instead of the CVA in applications, and from the estimated
angle and a calibration step, the true neck angle can be

Table 1: CVA and NFA in static case (unit: degrees).

Static case 10 sec no change Level 1 Level 2 Level 3 Level 4 Level 5

Mean (NFA) 83.6211 82.4773 76.2310 66.1847 58.4557 45.9955

Mean (CVA) 49.3835 48.5494 40.7722 30.2919 22.7974 9.2151

Mean (NFA−CVA) 34.2376 33.9280 35.4588 35.8928 35.6582 36.7804

Var (NFA−CVA) 0.0632 0.0461 0.0518 0.0273 0.0340 0.0681
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derived. The calibration step can be done using the following
simple process:

(a) The calibrated angle is obtained when the candidate
sits upright.

(b) This upright angle is assumed to be 90 degrees for the
estimated neck angle at that moment.

(c) The difference between the real estimated and
upright angle is added into each estimated neck
angle value.
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Figure 6: Relationship between CVA and NFA in (a) static case; (b) 3 km/h walking; (c) 4 km/h walking; (d) 5 km/h walking.

Table 2: CVA and NFA in walking case (unit: degrees).

Walking case Level 1 Level 2 Level 3 Level 4 Level 5

3 km/h

Mean (NFA) 81.4722 74.4427 71.6546 65.7486 58.8117

Mean (CVA) 45.3579 37.3134 34.1081 28.1364 21.5184

Mean (NFA−CVA) 36.1144 37.1292 37.5465 37.6123 37.2933

Var (NFA−CVA) 0.3312 0.1863 0.1491 0.3100 0.5335

4 km/h

Mean (NFA) 82.7458 75.8507 69.3977 65.0855 60.2854

Mean (CVA) 46.0182 38.7697 31.8672 27.5250 22.9371

Mean (NFA−CVA) 36.7277 37.0810 37.5305 37.5605 37.3483

Var (NFA−CVA) 0.9034 0.4096 0.7186 0.8024 0.5123

5 km/h

Mean (NFA) 82.0928 74.7623 69.1052 64.1363 58.7212

Mean (CVA) 45.9104 37.4357 31.0791 26.0616 21.2336

Mean (NFA−CVA) 36.1824 37.3266 38.0261 38.0747 37.4876

Var (NFA−CVA) 0.2328 0.3207 0.1990 0.4291 0.6641
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Experiment data from all candidates were also included
to examine the performance of our proposed neck angle
estimation method. Table 3 shows the mean of absolute
errors of the estimated neck angle which belong to the “direct
computation method” (calculate angles at each sample of
data), our proposed walking step time-based “flexible interval
average method” (calculate angles based on average of
acceleration between consecutive walking steps), and the
“fixed interval average method” (calculate angles based on
average of acceleration during a fixed time interval of 0.5,

0.75, and 1 second). The true neck flexion angle (NFA) was
obtained through a calibration step from the craniovertebral
angle (CVA) measured by OptiTrack camera system. An
example of visual comparison between methods above is
presented in Figure 7.

The result from Table 3 shows that our proposed method
provides better result in all contexts in comparison with
others. More specifically, the “direct computation method”
at each sample of data gives an acceptable result with mean
of absolute error of estimated angle varying from 1.88 to
2.49 degrees. Since the external accelerations in forward
and vertical directions can be canceled out by taking average
in each walking step, our proposed method presents better
result in comparison to other methods with mean of absolute
error from 0.48 to 0.57 degrees. Moreover, the walking
step length and the human gait while walking at each
speed are personal dependent parameters, and the proposed
method shows its flexibility that we can use for personal
independent parameters.
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Table 3: Mean of absolute error of the estimated neck angle after calibration steps (unit: degrees).

Walking case Direct computation method
Fixed interval
T= 0.5 sec

Fixed interval
T= 0.75 sec

Fixed interval
T= 1 sec

Proposed flexible interval

3 km/h

Level 1 1.8637 0.5419 0.5403 0.4982 0.4836

Level 2 1.8715 0.5579 0.5356 0.4999 0.4826

Level 3 1.7772 0.5449 0.4932 0.4780 0.4545

Level 4 1.8539 0.5632 0.5650 0.4928 0.4793

Level 5 2.0296 0.6462 0.6297 0.5337 0.5074

Mean 1.8792 0.5708 0.5528 0.5005 0.4815

4 km/h

Level 1 2.4324 0.7696 0.7460 0.8390 0.6590

Level 2 2.2248 0.6280 0.6395 0.5494 0.5222

Level 3 2.2666 0.7383 0.6646 0.6376 0.5636

Level 4 2.2077 0.8018 0.5846 0.6797 0.5552

Level 5 2.2607 0.6116 0.6482 0.6276 0.5534

Mean 2.2784 0.7099 0.6566 0.6667 0.5707

5 km/h

Level 1 2.6015 0.5970 0.6359 0.5893 0.5434

Level 2 2.5488 0.6479 0.6007 0.5484 0.5537

Level 3 2.3671 0.5444 0.5038 0.5273 0.4856

Level 4 2.3915 0.5932 0.6272 0.6478 0.5585

Level 5 2.5111 0.6832 0.6684 0.7290 0.5866

Mean 2.4840 0.6131 0.6072 0.6084 0.5456
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