
Research Article
Parallel Algorithm for Wireless Data
Compression and Encryption

Qin Jiancheng,1 Lu Yiqin,1 and Zhong Yu2,3

1School of Electronic and Information Engineering, South China University of Technology, Guangdong, China
2School of Software, South China University of Technology, Guangdong, China
3China Telecom Co., Ltd., Zhaoqing Branch, Guangdong, China

Correspondence should be addressed to Lu Yiqin; eeyqlu@scut.edu.cn

Received 4 October 2016; Revised 24 December 2016; Accepted 11 January 2017; Published 12 February 2017

Academic Editor: Fanli Meng

Copyright © 2017 Qin Jiancheng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As the wireless network has limited bandwidth and insecure shared media, the data compression and encryption are very useful
for the broadcasting transportation of big data in IoT (Internet ofThings). However, the traditional techniques of compression and
encryption are neither competent nor efficient. In order to solve this problem, this paper presents a combined parallel algorithm
named “CZ algorithm” which can compress and encrypt the big data efficiently. CZ algorithm uses a parallel pipeline, mixes the
coding of compression and encryption, and supports the data window up to 1 TB (or larger). Moreover, CZ algorithm can encrypt
the big data as a chaotic cryptosystem which will not decrease the compression speed. Meanwhile, a shareware named “ComZip” is
developed based on CZ algorithm.The experiment results show that ComZip in 64 b system can get better compression ratio than
WinRAR and 7-zip, and it can be faster than 7-zip in the big data compression. In addition, ComZip encrypts the big data without
extra consumption of computing resources.

1. Introduction

With the rapid expanding of IoT (Internet of Things), lots of
sensors are available in various fields, and the volume of data
in wireless networks is increasing in a marvelous speed. As
more and more users share the same wireless channel, the
bandwidth becomes rare. How tomake full use of the wireless
bandwidth is a problem.

Another problem is the security in wireless networks. As
the signals broadcast in the air and every node can receive
them, the data needs protection.

Data compression is a smart way to speed up the wireless
network transportation, and data encryption can protect the
transporting information. A practical way is using some
high-performance nodes (named “wireless messenger” [1])
in the WSN (Wireless Sensor Network) to gather, store, and
transmit the data of lightweight nodes. This way can avoid
the bottleneck in the WSN caused by the weaknesses of the
lightweight nodes: limited energy, short wireless distance, low
performance, and so on.

But the practical problem still exists: when facing the
GBs or TBs of big data in IoT, the traditional techniques
of compression and encryption are neither competent nor
efficient. For example, the softwareWinRAR has a small data
window of 4MB, which will limit the compression ratio. And
its compression speed is not fast enough. Moreover, using
AES (Advanced Encryption Standard) to encrypt the big
data will consume the computing resources and decrease the
speed.

We need to enhance the traditional techniques at the
following aspects: higher speed, better compression ratio, and
faster encryption. To achieve this goal, we may utilize some
hopeful ways (e.g., a larger compressing data window and a
parallel pipeline for compression and encryption).

Meanwhile, the exciting development ofmobile hardware
supports the proposed improvements. For example, the latest
ARM (Advanced RISC Machines) platforms have multicore
CPUs with low energy consumption, and current flash
memory has enough capacity and well performance to store
a large data window.

Hindawi
Journal of Sensors
Volume 2017, Article ID 4209397, 11 pages
https://doi.org/10.1155/2017/4209397

https://doi.org/10.1155/2017/4209397

2 Journal of Sensors

This paper proposes a combined parallel algorithm
named “CZ algorithm” to compress and encrypt the big data
efficiently. CZ algorithm has the following features:

(1) It uses the compression format named “CZ format”
[2], which supports unlimited data window size.

(2) It mixes the coding of compression and encryption.
The encryption named “CZ encryption” acts as a
type of chaotic cryptosystem, which will not consume
extra computing resources to slowdown the compres-
sion.

(3) It uses the parallel pipeline named “CZ pipeline,”
which can use multiple threads to speed up the com-
pression and encryption.

We upgrade our shareware named “ComZip” in the 64 b
system with brand-new CZ algorithm. The newest ComZip
supports a large data window up to 1 TB and mixes the
compression and encryption together. Yet the data window is
still limited by the actual size of RAM. As a contrast, another
popular software 7-zip in the x64 platform supports the data
window up to 4GB, and it can use AES encryption.

We do some experiments to compare the efficiencies of
processing the big data among ComZip, WinRAR, and 7-zip.
The results show that ComZip can get better compression
ratio than WinRAR and 7-zip, and it can be faster than 7-zip
in the big data compression. Moreover, ComZip encrypts the
big data without consuming extra computing resources.

In our experiment, limited by the computer memory of
32GB, ComZip has a data window of only 4GB. We believe
that ComZip may have better compression ratio when the
data window is larger. To make further experiments, we pro-
vide a 64 b version of ComZip in the website.The researchers
may download it from http://www.28x28.com/doc/cz x64
.html.

The remainder of this paper is structured as follows.
Section 2 expresses the problems of big data compression

and encryption in wireless communication. Section 3 intro-
duces the parallel pipeline “CZ pipeline” and its framework.
Section 4 describes the upgraded “CZ format” and “CZ
algorithm.” Section 5 describes the chaotic cryptosystem “CZ
encryption.” The experiment results are given in Section 6.
The conclusions and future work are given in Section 7.

2. Problems of Big Data Compression and
Encryption for Wireless Communication

Since the nodes are increasing in IoT and they share the
wireless bandwidth, fast data transportation cannot depend
on the high bandwidth assignment. Instead, we can use high-
performance hardware to compress and encrypt the data for
the transportation and security protection. But treating TBs
or PBs of big data is a challenge. We are facing the following
problems of big data compression and encryption.

(1) How to Encode the Big Data Fast Enough? A traditional
“fast” technique may be slow in the field of big data. For
example, if a serial compression algorithm can encode 10MB

in a second, then encoding 1 TB needs 29.1 hours. Speed is
always important for the big data treatments.

Parallel computing is a way to solve this problem, but
changing the serial algorithms is difficult. We have to try
to divide the tasks and avoid the data relativity, which will
prevent the parallel acceleration.

(2) How to Use a Large Data Window for Compression? We
discussed the data window in [2] and revealed that a large
data window might improve the compression ratio. But it is
difficult to enlarge the data window, because the length of the
index will grow, which will decrease the compression ratio.

We use multilevel indexes to solve this problem. And we
have to upgrade the compression format to support a data
window larger than 4GB.

In this paper, we define the compression ratio as follows:

𝑅 = 1 −
𝐷zip
𝐷
. (1)

𝐷zip and 𝐷 are the volumes of the compressed and original
data, respectively. If the original data are not compressed,𝑅 =
0. If the compressed data are larger than the original data,𝑅 <
0. Always 𝑅 < 1.

(3) How to Save the Computing Consumption of Encryption?
Although AES algorithm is fast, it still consumes computing
resources during the big data encryption. Since the data
volume is considerable, this consumption will increase the
energy cost and decrease the speed of data coding.

Chaotic encryption may be a way to save the consump-
tion. We regard the lossless compression system as a chaotic
cryptosystem. Thus the process of compression is also the
process of encryption, and it does not need extra computing
resources.

To solve the problems, we need to review themain related
works around big data compression and encryption.

From the view of academic classification, current math-
ematic models and methods of lossless compression can be
divided into the following 3 classes:

(1) The compression based on the probabilities and
statistics (e.g., Huffman coding and arithmetic coding
[3]). In this class, the PPM (Partial PredictionMatch)
algorithm [4] based on the Markov chain model has
a good compression ratio.

(2) The compression based on the dictionary indexes
(e.g., LZ77/LZSS algorithm [5] and LZ78/LZW algo-
rithm).The compressionmodels of LZ series have the
advantage of speed.

(3) The compression based on the order and repeat of the
symbols (e.g., run-length coding and BWT (Burrows-
Wheeler Transform) [6] coding).

Current popular compression software are the compre-
hensive applications of the above basic theories. Each soft-
ware combines different compression models and methods
to achieve better effects. Table 1 lists the features of popular
compression software and ComZip.

http://www.28x28.com/doc/cz_x64.html
http://www.28x28.com/doc/cz_x64.html

Journal of Sensors 3

Table 1: Features of compression software.

Software Format Basic algorithms Maximum data window size Shortages
Support Current

WinZip Deflat LZSS & Huffman 512KB 512KB Small data window; low compression ratio;
weak big data support

WinRAR RAR LZSS & Huffman 4MB 4MB Small data window; low compression ratio;
weak big data support

PPMd PPM — — Good compression ratio for text data only;
weak big data support

Bzip2 BZ2 BWT & Huffman 900KB (block) 900KB Small BWT block; low compression ratio; weak
big data support

7-zip LZMA LZSS & arithmetic 4GB 1GB No multilevel coding for large data window;
limited big data support

ComZip CZ LZ77 & arithmetic 1 TB—unlimited 0.5 TB Need larger data window for higher
compression ratio

There are other compression software (e.g., PAQ and
WinUDA).Theymight have high compression ratio, but they
are slow and unfit for big data.

As the trend of the lossless compression, the data window
in the scope of MBs is already insufficient (e.g., WinRAR).
We have seen the experiment results in [2]. We consider
the future belongs to the efficient compression for big data,
including the fast algorithms of LZ series and the large
data window in the scope of GBs or more. And another
researching hotspot is JSCAC (Joint Source Channel Arith-
metic Codes) [7].

In the field of information security, to improve the
encryption performance for big data, researchers use parallel
computing with the aid of hardware (e.g., ASIC (Application
Specific Integrated Circuit) [8], FPGA (Field-Programmable
Gate Array) [9]). And a researching hotspot is the GPU
(Graphic Processing Unit) acceleration (e.g., the GPU imple-
ments of AES [10] and RSA (Rivest-Shamir-Adleman algo-
rithm) [11]).

Based on the chaotic cryptography [12], a chaotic cryp-
tosystem has the advantages of the encryption speed and the
key length, which is fit for big data. The researchers use 2
chaotic signals for the system synchronization and encryp-
tion [13] and use discrete methods in the chaotic system to
improve the security [14] and present the implementation and
synchronization of the chaotic cryptosystem [15]).

The problems of big data compression and encryption are
so complex that no one can solve them in a short while. In this
paper we focus on 3 points: the parallel coding pipeline, the
large datawindowof compression, and themixed encryption.

3. Framework of Parallel CZ Pipeline

The simplest parallel computing way for the big data com-
pression is dividing the data directly and using multithreads
to compress each part of the data separately. This algorithm
is easy and fast, but the data window will also be divided
into small pieces for the threads, which will decrease the
compression ratio. For example, if 8 threads share a data
window of 1 GB, then the actual data window for each thread
is 128MB.

CZ algorithm uses another way: a parallel coding
pipeline. This way can maintain the data window size and
keep the compression ratio, and it can also support multi-
threads and increase the speed.

Like the pipeline in a CPU (Central Processing Unit),
CZ pipeline has several segments, which divide the serial
workflow of compression/decompression into pieces. Each
piece can burden a short part of the compression task. The
threads run concurrently in the segments of CZ pipeline.

Figure 1 shows the framework of CZ encoding pipeline.
As the reverse framework is CZ decoding pipeline, we only
present the encoding part here.

The “BWT filter” is alternative. In this paper we do not
use it. Hence the original data go straight into the “character
buffer.” The data window is in the character buffer. LZ77
algorithm runs mainly in the “string match unit.” The “com-
mand buffer” stores the code-words of control instructions,
characters, and length/index pairs. The “instruction parser”
translates the command code-words into CZ format codes,
and these codes go into different Markov chain models. The
“arithmetic encoder” changes the CZ format flow into binary
data and put them into the “binary buffer.” Then the pipeline
can output the compressed data.

To avoid the data relativity, each buffer in CZ pipeline has
different zones for reading andwriting.Hence the threads can
read and write the buffers concurrently. A new design is the
command code-word, which can increase the depth of CZ
pipeline and simplify the work of the threads.

Table 2 shows the design of the command code-word.The
command buffer is a 32 b data buffer; hencewe design the 32 b
code-words to cover the information of controls, characters,
and length/index pairs.

4. Description of CZ Format and CZ Algorithm

We introduced the previous design of CZ format in [2],
which can support the data window size up to 4GB and keep
the optimized compression ratio. The current CZ format is
upgraded and supports the large data window of 1 TB.We still
use multilevel coding for indexes and lengths, but the details
are changed according to the repeated tests. In the current

4 Journal of Sensors

BWT filter

Original data

Character buffer

String match unit

Character stream

Command buffer

Control
Character
Length/index

Instruction parser
Command code-word

LZ77 encoder

Length
separator

Index
separator

L0 length model

L1 length model

L2 length model

L3 length model

L4 length model

L1 index model

L2 index model

L3 index model

L4 index model

L5 index model

Character
Length
Control

Index

Arithmetic encoder

CZ format flow

Binary buffer

Binary data

Arithmetic coding unit

Compressed data

Figure 1: Framework of CZ encoding pipeline.

CZ format, we use a length separator code-word to lead the
different code-words: characters, lengths, indexes, and so on.

We open the L
5
index to support the data window size

up to 1 TB, and the L
6
index is ready for the future. We also

open the L
3
/L
4
length to support the string length up to 264.

To simplify the treatments in CZ pipeline, we regard a single
character as the L

0
length, which is a string with the length

of 1. In Figure 1, the “L
0
length model” is the single character

model.
Table 3 shows the design of the upgraded CZ format.
CZ algorithm is a combined parallel algorithm for mul-

tithreads, which is based on CZ pipeline. Figure 2 shows the
main workflow of CZ algorithm.

To compress TBs or PBs of big data, the algorithm
should be fast. CZ algorithm is based on LZ77 algorithm
and self-adaptive arithmetic coding algorithm, and we have
successfully optimized these 2 algorithms.

The traditional algorithm of self-adaptive arithmetic cod-
ing has the complexity of time O(𝑀). 𝑀 is the amount
of symbols. As a contrast, the optimized algorithm has the
complexity of time O(lbM). The key reason is that the
traditional algorithm uses a data structure of linked list to
maintain and locate the statistic table for the Markov chain
model, while the optimized algorithm uses a heap instead of
the linked list.

The traditional LZ77 algorithmhas the complexity of time
O(N2).𝑁 is the datawindow size.As a contrast, the optimized
LZ77 algorithm has the complexity of time O(N). This is
even better than the traditional LZSS algorithm, which has
the complexity of time O(NlbN). The key reason is that the
optimized LZ77 algorithm does not inspect all of the string
matches. It inspects only a few hopeful matches and selects
the best.

5. Description of CZ Encryption

CZ algorithm is not only a compression algorithm. We can
use it as an encryption algorithm. The main idea is that we
regard the lossless compression system as a chaotic system. If
we use a key to change the initial state of the compression
system, the decompression system cannot synchronize the
state without this key.

Not all of the compression systems fit the usage of chaotic
cryptosystems. For example, the algorithms of LZ series and
Huffman coding have the minimal coding unit of 1 b, which
is insecure because crackers have the chance to synchronize
the system state in the middle of the compressed data stream.

According to the theory of arithmetic coding, we find
that the self-adaptive arithmetic coding algorithm is exactly
a kind of discrete implement for a chaotic cryptosystem.This
chaotic cryptosystem is based on the shift-mapping model.
The recurrence formula of this shift-mapping model is

𝑥
𝑛+1
= 𝑘𝑥
𝑛

mod 1 (𝑘 > 1, 0 < 𝑥
𝑛
< 1, 𝑛 = 1, 2, 3, . . .) .

(2)

𝑥
𝑛
is a real number, and it stands for one of the states

of a chaotic system. 𝑘 is the system parameter. And the
self-adaptive arithmetic coding algorithm uses the following
formula to encode the data:

𝑒
𝑛
= 𝑥
𝑛
𝑑
𝑛
, (3)

where 𝑑
𝑛
stands for the original data and 𝑒

𝑛
stands for

the compressed data. Moreover, 𝑒
𝑛
can also stand for the

encrypted data, if we use a key to change the initial system
state. Because the arithmetic coding is a discrete implement
and 𝑒
𝑛
, 𝑑
𝑛
are dynamic length integers, it is difficult to use the

following formula to crack the encryption:

𝑥𝑛 = 𝑒
𝑛

−1𝑑
𝑛
. (4)

Journal of Sensors 5

Table 2: Design of command code-word.

Hex range (32 b) Description Next code-word(s)
0–ff ASCII code of a character None
100–10f Control instruction Control operand(s)
110–7fffffff Reserved
80000000–800001ff Length of 0–511 Index code-word
80000200–80000237 Exponential length of 29–264 Index code-word
80000238–ffffffff Reserved
Index code-word
0–7fffffff Index below 2GB None
80000000 Reserved
80000001–ffffffff Index below 1 TB (high 31 b) Index (low 32 b)

Table 3: Design of upgraded CZ format.

Hex range Description Next code-word
Length separator code-word (5 b):

0–f Single character (𝐿
0
length, high 4 b) Single character (low 4 b)

10–1a Length of 1–11 (𝐿
1
length) Index code-word

1b–1e Length of 12–75 (high 2 b) 𝐿
2
length code-word (low 8 b)

1f 𝐿
3
length identifier 𝐿

3
length code-word (8 b)

𝐿
3
length code-word (8 b):
0–f9 Length of 76–325 None
fa Control identifier Control instruction (4 b)
fb–fe Reserved None
ff 𝐿

4
length identifier 𝐿

4
length code-word (16 b)

𝐿
4
length code-word (8 b):
0–30 Exponential length of 216–264 None
31–145 Reserved None
146–ffff Length of 325–65535 None

Index separator code-word (4 b):
0 𝐿

1
index (8 b), 256 B window None

1 𝐿
2
index (16 b), 64KB window None

2 𝐿
3
index (24 b), 16MB window None

3 𝐿
4
index (32 b), 4GB window None

4 𝐿
5
index (40 b), 1 TB window None

5–7 Reserved None

Length separator

Single character

Length 1–11

Length 12–75

Length 76–325

Control instructionControl

Length > 325

Control operand(s)

Index separator

Next coding

L0 length model

L1 length model

L2 length model

L3 length model

L4 length model

L1 index model

L2 index model

L3 index model

L4 index model

L5 index model
Window 5 (1TB)

Window 4 (4GB)

Window 3 (16MB)

Window 2 (64KB)

Window 1 (256B)

Figure 2: Main workflow of CZ algorithm.

6 Journal of Sensors

function encrypt(𝐾,𝐷){ /∗ K is the key, D is the original data ∗/
𝑅salt = random(0–2s); /∗ s is the binary length of the random salt data, E.g. 128 b ∗/
init state(0); /∗ Initialize the system state ∗/
compress(K); /∗ Compress the key, but do not output ∗/
output(compress(𝑅salt)); /∗ Compress the random salt data, and output ∗/
output(compress(D)); /∗ Compress the original data, and output ∗/
}
function decrypt(𝐾, 𝐸){ /∗ K is the key, E is the encrypted data ∗/
init state(0); /∗ Initialize the system state ∗/
compress(K); /∗ Compress the key, but do not output ∗/
decompress(s); /∗ Decompress salt data of length s, E.g. 128 b, and throw them ∗/
output(decompress(E)); /∗ Decompress the encrypted data, and output ∗/
}

Algorithm 1

The core of CZ encryption is the above arithmetic coding,
but CZ encryption is more complex, because the optimized
LZ77 algorithm and multilevel index/length pairs are com-
bined in the system. CZ encryption/decryption algorithm is
shown in Algorithm 1.

By analyzing the above CZ encryption/decryption algo-
rithm, we may see the following:

(1) If the decryption cannot get the correct key K, it will
lose the chaotic system synchronization in the process
compress(K). Then it cannot decompress the data E
in the right routine. This is the security base of this
chaotic cryptosystem.

(2) The most important time of the encryption is in the
process compress(D). Compared to TBs or PBs of big
data 𝐷, the key 𝐾 and random salt data 𝑅salt are so
short that the compression time of𝐾 and 𝑅salt can be
ignored. Hence the encryption time is equal to the
compression time. This implies that CZ encryption
does not occupy extra time besides the compression
time.

(3) The encryption and decryption support very long key,
and the influence of the key length to the compres-
sion/encryption time can be ignored. For example, if
we encrypt big data of 1 TB, the encryption time is
approximate nomatterwhether the key length is 256 b
or 20,000 b.

CZ encryption is a new coding method which combines
the data compression and encryption. This is a valuable way
for the efficient big data coding: it can save the consumption
of computing resources, and it supports very long keys
without influencing the performance.

We have designed a chaotic cryptosystem model named
“CZ-Butterfly Effect Encryption Model” (CZ-BEEM), which
combines CZ encryption, CZ algorithm, DHM (Diffie-
Hellman-Merkle) or RSA algorithm, and LDPC (Low-
Density Check-Parity Code) algorithm. CZ-BEEM can sup-
port a session key of 8,000 b or longer, and we can use a GPU
to accelerate the DHM or RSA algorithm. The feasibility of
CZ-BEEM is proved by an implement of this model. In the
field of wireless communication, we have tested the speed

of RSA in an embedded platform of STM32 in [16]. And
we have tested the acceleration of LDPC decoding with a
mobile phone GPU of PowerVR in [17]. However, to inspect
the abilities of CZ-BEEM, we need more research works and
experiment results. In this paper, we do not focus on CZ-
BEEM.

CZ encryption is different from the simple congruent
cipher. An important factor is that the output data of CZ
encryption are compressed, which makes troubles to the
attackers who want to distinguish the information confused
and diffused in the bits [18]. The experiment results show
that compressed data have good statistical characteristics:
mostly randomness, unpredictability, and little redundancy.
It infers that CZ encryption has reasonable strength against
the cryptanalysis.

We analyze the difference between CZ encryption and
a simple congruent cipher, focusing on their resistances to
robust statistical attacks. If we change (3) a little, we can get
an equation of a simple congruent cipher:

𝑒
𝑛
= 𝑘𝑑
𝑛

mod𝑚, (5)

where k stands for the key. If we use FFT (Fast Fourier
Transformation) to (5), we will get the equation of a classical
congruent cipher as (6): Caesar cipher. Equations (5) and (6)
are the same cipher system indeed:

𝑒
𝑛
= 𝑘 + 𝑑

𝑛
mod𝑚. (6)

This encryption is weak because the length of 𝑒
𝑛
is a

constant, and the attackers can easily split the output data into
𝑒
1
, 𝑒
2
, . . . to count them. If the original data 𝑑

1
, 𝑑
2
, . . . have

some statistical information, the output data 𝑒
1
, 𝑒
2
, . . . will

also have the similar information. For a simplified example,
if the character “a” appears in the plain text at a ratio of 15%,
the attackers can calculate the cipher text to find the slices at
the same appearing ratio. These slices may stand for “a.”This
simple congruent cipher is insecure.

But this attacking method is unworkable to CZ encryp-
tion. The self-adaptive arithmetic coding algorithm is the
main encoding unit of CZ encryption, which has the model
of (3). If this model is ideal, the output data en will be an

Journal of Sensors 7

Table 4: Original and compressed data file size (B).

File name Description Data file size (B)
Original ComZip WinRAR 7-zip

win7.iso An ISO image file of installation DVD for
Windows 7 (x64) Chinese version 3,341,268,992 2,480,098,840 3,100,386,508 2,701,623,708

vs2010.iso An ISO image file of installation DVD for
Virtual Studio 2010 Chinese version 2,685,982,720 2,561,514,632 2,626,046,379 2,588,193,704

ubuntu.vdi A virtual machine image file of a Ubuntu Linux
system 2,849,001,472 225,539,040 232,584,174 187,298,755

win2003.vdi A virtual machine image file of a Windows 2003
system 2,835,402,752 1,205,393,648 1,299,062,724 1,030,057,340

lamp.vdi A virtual machine image file of a Linux data
partition 527,467,008 125,894,680 250,332,779 122,996,451

book.htm A bookshop data file of storage records in
HTML/XML format 346,499,594 4,627,200 4,312,296 5,464,344

endless real number (e.g., 0.35463865). It is a problem for the
attackers to split this number into slices and calculate.

In practice, (3) has a discrete implement, which can
change the real numbers into integers. But (3) and (5) are
definitely different. In (5), each character may have a fixed
length 8 b of the cipher text 𝑒

𝑛
, and the plain text “aaaaaaaa”

will have 64 b. While in (3), 𝑒
𝑛
is compressed, and the plain

text “aaaaaaaa” may have 0.003 b or 15.22 b or another length,
which depends on the plain text. Even if themodel is discrete,
the arithmetic algorithm can encode a character with lower
than 1 b. Moreover, each character has dynamic length of 𝑒

𝑛

(e.g., 0.003 b or 8.92 b or another value), and the length for
the same character is also dynamic. Such compressed data
are difficult to be split into slices to distinguish the original
characters. On the other hand, if the attackers simply use a
fixed length to split the data, the quantity of characters in
a slice will be uncertain (e.g., 2.33 characters in 8 b, 0.971
characters, or another value). As the samples are unclear, the
statistical analysis can hardly work.

The attackers may try the robust way: they can use very
tiny slices and calculate. But it is never accurate enough to
crack the arithmetic algorithm, and this robust method is
inefficient. If a common user sets a key of 160 b in the CZ
encryption system, the robust key-guessing attacks can search
2160 passwords to crack it, while the robust statistical attacks
have to search much more than 2160 compressing system
statuses. The robust key-guessing attacks are faster. Thus CZ
encryption can prevent the robust statistical attacks.

CZ encryption is at least as strong as the chaotic
cryptosystem of (2), which can generate a very long and
mostly random key. Moreover, CZ encryption uses random
salt data and LZ77 algorithm to enhance the security. In
our experiment, we compare CZ encryption and a simple
congruent cipher, and the results show the obvious difference
between them.

6. Experiment Results

We have done some experiments to compare ComZip,
WinZip,WinRAR, Bzip2, and 7-zip in [2].The results indicate
that WinZip and Bzip2 do not have good compression ratio

because their data windows are too small (<1MB); thus they
do not have enough potential in the big data compression.
In this paper we compare ComZip, WinRAR, and 7-zip in
the experiments. The software versions are ComZip (x64)
v20121221, WinRAR 4.20, and 7-zip (x64) 9.20.The operating
system of this experiment platform is Windows. Although
Linux and Android are popular in mobile systems, it is not
easy to find a compression software for Linux/Android which
has large data window to compare with ComZip.

We provide ComZip in the website. Researchers may
use it to do more experiments with new data. It can be
downloaded from http://www.28x28.com/doc/cz x64.html.

The experiment platform is a common PC (Personal
Computer) with the following equipment: AMD A8-5600K
4-core CPU, 32GB DDR3 RAM, 1 TB 7200 rpm HDD (Hard
Disk Driver), and Windows 7 (x64) Professional version.
We expect that the future performance of high-end mobile
platform such as 64 b ARM will keep up with this PC soon.

We can change the data window size of ComZip by
modifying the parameter “cache” in the file “cz.ini.” Odd
values are also accepted (e.g., 371MB and 1235MB). But if the
window size is too large, the systemwill have to use the virtual
memory and the speed will be very slow. To avoid this, in our
experiment, we use the window size 4096 − 4 = 4092MB.

6.1. Comparison with the Effects of Compression and Encryp-
tion. In this experiment, we use the following data win-
dows: ComZip 4092MB, WinRAR 4MB, and 7-zip 1024MB.
Table 4 shows sizes of the original and compressed data files.
We select big files because the abilities of the big data window
are limited by the size of the original data. For example, if a
window of 4GB compresses a single file of 4MB, the actual
useful window size is only 4MB.

Table 5 shows the compression/encryption time of these
files.

From Tables 4 and 5, we can find that the compression
ratio of ComZip is better than WinRAR and 7-zip in most
cases, and ComZip is faster than 7-zip. WinRAR is fast, but
its compression ratio is limited by the window size of 4MB.
ComZip and 7-zip can also be faster by using a smaller data
window.

http://www.28x28.com/doc/cz_x64.html

8 Journal of Sensors

Table 5: Compression and encryption time (seconds).

File name Compression/encryption time (seconds)
ComZip WinRAR WinRAR & AES 7-zip 7-zip & AES

win7.iso 1059 350 379 1347 1359
vs2010.iso 1011 287 315 1097 1116
ubuntu.vdi 123 78 80 329 328
win2003.vdi 477 223 236 1035 1038
lamp.vdi 65 37 40 76 77
book.htm 19 9 9 32 32

Table 6: Compressed file size comparison (B).

Data window ComZip WinRAR 7-zip
1 MB 3,128,105,488 3,119,881,358 3,140,789,120
2 MB 3,116,960,272 3,108,416,160 3,128,772,615
4 MB 3,108,963,896 3,100,386,508 3,119,931,666
8 MB 3,104,976,200 — 3,114,504,857
16 MB 3,100,364,328 — 3,108,022,346
32 MB 3,092,400,272 — 3,100,097,611
64 MB 3,033,296,296 — 3,040,832,184
128 MB 2,984,543,048 — 2,991,642,706
256 MB 2,976,189,160 — 2,982,622,308
512 MB 2,918,815,872 — 2,924,014,236
1024 MB 2,697,174,696 — 2,701,623,708
2048 MB 2,481,901,456 — —
4096 − 4MB 2,480,098,840 — —

The encryption time is connected to the compression
process. The compression time of ComZip has already com-
bined the time of CZ encryption.WinRAR and 7-zip use AES
encryption.The difference of the time is not obvious for 7-zip
with orwithoutAES.We can even observe a case (ubuntu.vdi)
that 7-zip with AES is faster than the compression alone. We
consider the reason is that 7-zip also usesmultithreads, which
may save the time, but AES encryption still consumes the
computing resources in one of the threads. As a contrast, CZ
encryption does not consume extra resources.

6.2. Comparison with the Compression Ratio and Time. In
this experiment, we use different data windows to compress
the same original file named “win7.iso.” Table 6 and Figure 3
show the relationship of the compressed file size and the data
window size. From (1), we can find that this relationship is
virtually the relationship of the compression ratio and the
window size.

Table 7 and Figure 4 show the relationship of the com-
pression time and the data window size.

From Table 6 and Figure 3, we find that the curves of
compressed file size are very close, which indicates that when
ComZip, WinRAR, and 7-zip use the same data window size,
the difference of the compression ratio is not obvious. Gen-
erally, ComZip beats WinRAR and 7-zip in the compression
ratio with the advantages of a larger data window and the
upgraded CZ format.

Comparison of compressed file size

ComZip
WinRAR
7-zip

2 4 8 16 32 64 128 256 512 1024 2048 40961
Window size (MB)

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

C
om

pr
es

se
d

fil
e s

iz
e (

B)

×10
9

Figure 3: Compressed file size and data window size.

Compared to our previous experiments in [2], the new
version of WinRAR is optimized in the speed. We find that
WinRAR 3.71 uses a single thread, while WinRAR 4.20 uses
multithreads. The latter is faster, but its data window is still
limited in 4MB; thus it cannot use a larger window for the
big data to get better compression ratio.

We have predicted in [2] that ComZip would be faster
than 7-zip when the data window exceeds 64MB, and nowwe

Journal of Sensors 9

Table 7: Compressing time comparison (seconds).

Data window ComZip WinRAR 7-zip
1MB 654 431 535
2MB 668 347 568
4MB 677 350 591
8MB 711 — 607
16MB 768 — 634
32MB 787 — 723
64MB 817 — 1,209
128MB 873 — 1,346
256MB 960 — 1,411
512MB 1,043 — 1,391
1024MB 1,068 — 1,347
2048MB 1,058 — —
4096 − 4MB 1,059 — —

Comparison of compression time

200

400

600

800

1000

1200

1400

1600

C
om

pr
es

sio
n

tim
e (

se
co

nd
)

2 4 8 16 32 64 128 256 512 1024 2048 40961
Window size (MB)

ComZip
WinRAR
7-zip

Figure 4: Compression time and data window size.

observe this case in Figure 4.We believe the main reasons are
CZ pipeline and the optimized LZ77 algorithm,which has the
complexity of time O(N). Moreover, Figure 4 supports that
the time increment of ComZip is steady when the window
size increases.

In Table 7 and Figure 4, ComZip is not faster than
WinRAR and 7-zip when the data window is reduced to 4MB
or smaller. A probable reason is that ComZip is written by
compatible C/C++ without some optimization in assembly
language or machine language, which may influence the
performance. But as the data window becomes larger to fit the
big data, the performance of ComZip keeps up with that of 7-
zip, while WinRAR’s data window is too small to compete.
Moreover, we can use the special hardware acceleration if it is
necessary.

6.3. Exhibition with the Effects of CZ Chaotic Encryption. In
this experiment, we use ComZip to compress and encrypt
an image file with 256 gray scales and observe the effects of

Figure 5: Original image.

Figure 6: CZ-encrypted data image.

Gray distribution (%)

0 50 100 150 200 250
Gray scale (0–255)

0

2

4

6

8

10

Figure 7: Gray distribution histogram of original image.

the encryption. Figure 5 shows the original image, which is a
BMP (Bitmap) file of 106,680 B. Figure 6 shows the encrypted
data, which are put into another image file with 256 gray
scales: a BMP file of 62,680 B. From Figure 6 we cannot find
any signal of Figure 5. And the pixels of Figure 6 are less than
Figure 5, because the data are compressed.

Figures 7 and 8 are histograms. Figure 7 shows the gray
distribution of Figure 5. As a contrast, Figure 8 shows the gray
distribution of Figure 6, which has the statistic character of
random distribution. This indicates that CZ encryption can
defend the statistical attacks.

Because of the random salt data 𝑅salt in CZ encryption,
ComZip outputs random compressed data. If ComZip com-
presses the same data twice or more, we will get different
outputs. To compare the outputs, we pick 2 segments with
each length of 500 B from the encrypted data. Each segment
is picked from the same position of the encrypted data,
and the encryption key is the same, but 𝑅salt is random.
Figure 9 shows the different values of the ASCII codes for
every character in the 2 segments. This indicates that CZ
encryption has good randomness and the encrypted data are
unpredictable, which can protect the information security.

10 Journal of Sensors

0

0.1

0.2

0.3

0.4

0.5
Gray distribution (%)

0 50 100 150 200 250
Gray scale (0–255)

Figure 8: Gray distribution histogram of CZ-encrypted image.

Difference of the ASCII codes

−300

−200

−100

0

100

200

300

50 100 150 200 250 300 350 400 450 5000
Character position

Figure 9: Difference between 2 CZ-encryptions.

Figure 10: Caesar-encrypted data image.

6.4. Comparison with CZ Encryption and a Simple Congruent
Cipher. In this experiment, we compare CZ encryption and
a simple congruent cipher to show the difference between
them. The simple congruent cipher is Caesar encryption, a
classical but insecure cipher with the model of (6).

We use the same original data as Figure 5 to test CZ
encryption and Caesar encryption.The results of CZ encryp-
tion are shown in Figures 6 and 7. By comparison, Figure 10
shows the Caesar-encrypted data, and Figure 11 shows the
gray distribution of Figure 10.

It is well known that Caesar encryption is insecure, and
now the results support it intuitively: we can recognize that
Figure 10 is like Figure 5, and Figure 11 has similar statistic
characters to Figure 7. Undoubtedly Caesar encryption is too
weak to prevent the robust statistical attacks.

0

2

4

6

8

10
Gray distribution (%)

0 50 100 150 200 250
Gray scale (0–255)

Figure 11: Gray distribution histogram of Caesar-encrypted image.

We can find the obvious difference between CZ encryp-
tion and Caesar encryption: Figure 6 versus Figure 10 plus
Figure 7 versus Figure 11.The results show that CZ encryption
has good statistical characters to prevent the attacks. CZ
encryption is beyond a simple congruent cipher: it combines
compression with encryption and becomes a chaotic cryp-
tosystem.

From all of the experiment results in Section 6, we can
get some support about the advantages of CZ algorithm: the
compression ratio, compression/encryption time, the chaotic
encryption effects, and so on.

Yet these results cannot completely reveal the latent
abilities of CZ algorithm. We should do more research
works for this algorithm (e.g., parallel optimization, hardware
acceleration, and analysis of chaotic encryption).Thuswewill
gather more experiment results and upgrade ComZip.

7. Conclusions and Future Work

As the wireless network has limited bandwidth and insecure
shared media, the data compression and encryption are very
useful for the broadcasting transportation of big data in IoT.
A way to avoid the bottleneck in the WSN is using high-
performance nodes named “wireless messenger” to gather,
store, and transmit the data of lightweight nodes. But the
main problems are about high coding performance, big
window size, and low computing consumption. Facing TBs
or PBs of big data, traditional coding techniques expose their
limitations of abilities.

Solving these problems is difficult. Enlarging the data
window directly cannot get better compression ratio, because
a larger window needs longer index code-words, which
decreases the compression ratio. And a larger window needs
more computing consumption to find the substring matches.
A parallel algorithm has to avoid the conflicts of data access.
Moreover, common encryption also causes the computing
consumption.

This paper presents CZ algorithm, a combined algo-
rithm for data compression and encryption. CZ algorithm
uses CZ pipeline, new designed CZ format, and mixed
compression/encryption coding. It is designed for the big

Journal of Sensors 11

data treatment. A shareware ComZip is developed with CZ
algorithm.

The experiment results indicate the advantages of CZ
algorithm: the compression ratio of ComZip is better than
WinRAR and 7-zip in most cases. The speed of ComZip
is faster than 7-zip. The chaotic encryption of ComZip is
feasible, and it does not consume extra computing resources,
despite its key length.We believe these advantages are mainly
from the parallel pipeline, the multilevel index/length code-
words, and the chaotic cryptosystem.

Moreover, from the tables and curves, we get some
support to predict that the trend of CZ algorithm may be
better: ComZip can support a data window more than 4GB,
but currently it is limited by the memory capacity. As the
window size increases, its compression/encryption time will
increase steadily and slowly, which is a good character for
the big data coding. The chaotic cryptosystem can support
a key over 10,000 b without performance loss. And this
discrete chaotic cryptosystem may have latent abilities to
defendmultiple attacks, but we need further experiments and
analysis. We will continue the research.

Another future work is to make the program of CZ
algorithm compatible to Linux/Android/Contiki platforms in
order to fit more wireless network nodes. To support large
datawindow,wemay use flashmemory or other newmemory
types.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. C. Qin and B. Sun, “Design of messenger oriented P2P
framework in mobile Ad-hoc networks,” in Proceedings of
the 11th International Conference on Advanced Communication
Technology (ICACT ’09), pp. 1101–1105, Gangwon-Do, Republic
of Korea, 2009.

[2] J.-C. Qin and Z.-Y. Bai, “Design of new format for mass
data compression,” Journal of China Universities of Posts and
Telecommunications, vol. 18, no. 1, pp. 121–128, 2011.

[3] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding
revisited,”ACMTransactions on Information Systems, vol. 16, no.
3, pp. 256–294, 1998.

[4] A. Moffat, “Implementing the PPM data compression scheme,”
IEEE Transactions on Communications, vol. 38, no. 11, pp. 1917–
1921, 1990.

[5] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on InformationTheory, vol. 23,
no. 3, pp. 337–343, 1977.

[6] M. Burrows and D. J. Wheeler, A Block-Sorting Lossless Data
Compression Algorithm, DIGITAL System Research Center,
1994.

[7] C. Boyd, J. G. Cleary, S. A. Irvine, I. Rinsma-Melchert, and I.
H. Witten, “Integrating error detection into arithmetic coding,”
IEEE Transactions on Communications, vol. 45, no. 1, pp. 1–3,
1997.

[8] A. Hodjat, D. Hwang, B. Lai et al., “A 3.84 Gbits/s AES
crypto coprocessor with modes of operation in a 0.18-um

CMOS Technology,” in Proceedings of the 15th ACMGreat Lakes
Symposium on VLSI (GLSVLSI ’05), pp. 60–63, Chicago, Ill,
USA, April 2005.

[9] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA-based
performance evaluation of the AES block cipher candidate
algorithm finalists,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 9, no. 4, pp. 545–557, 2001.

[10] S. A. Manavski, “CUDA compatible GPU as an efficient
hardware accelerator for AES cryptography,” in Proceedings
of the IEEE International Conference on Signal Processing and
Communications (ICSPC ’07), pp. 65–68, Dubai, United Arab
Emirates, November 2007.

[11] A. Moss, D. Page, and N. Smart, “Toward acceleration of RSA
using 3D graphics hardware,” in Proceedings of the 11th IMA
International Conference on Cryptography and Coding, pp. 369–
388, December 2007.

[12] L. Kocarev, “Chaos-based cryptography: a brief overview,” IEEE
Circuits and Systems Magazine, vol. 1, no. 3, pp. 6–21, 2001.

[13] T. Yang, C. W. Wu, and L. O. Chua, “Cryptography based on
chaotic systems,” IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, vol. 44, no. 5, pp. 469–
472, 1997.

[14] S. H. Wang, J. Y. Kuang, J. H. Li, Y. Luo, H. Lu, and G. Hu,
“Chaos-based secure communications in a large community,”
Physical Review E, vol. 66, no. 6, Article ID 065202, 4 pages,
2002.

[15] M. Long, F. Peng, S. S. Qiu, and Y. F. Chen, “Implementation of
a new chaotic encryption system and synchronization,” Journal
of Systems Engineering and Electronics, vol. 17, no. 1, pp. 43–47,
2006.

[16] Y. Lu, J. Zhai, R. Zhu, and J. Qin, “Study of wireless authentica-
tion center with mixed encryption in WSN,” Journal of Sensors,
vol. 2016, Article ID 9297562, 7 pages, 2016.

[17] Y. Lu, W. Su, and J. Qin, “LDPC decoding on GPU for
mobile device,” Mobile Information Systems, vol. 2016, Article
ID 7048482, 6 pages, 2016.

[18] C. E. Shannon, “Communication theory of secrecy systems,”
The Bell System Technical Journal, vol. 28, no. 4, pp. 656–715,
1949.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

