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This paper aims to study the construction of 3D temperature distribution reconstruction system based on binocular vision
technology. Initially, a traditional calibration method cannot be directly used, because the thermal infrared camera is only sensitive
to temperature.Therefore, the thermal infrared camera is calibrated separately. Belief propagation algorithm is also investigated and
its smooth model is improved in terms of stereo matching to optimize mismatching rate. Finally, the 3D temperature distribution
model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the
method can accurately construct the 3D temperature distribution model and has strong robustness.

1. Introduction

Object detection and scene categorization are the important
research areas in robot vision perception and human-robot
collaboration [1]. Owing to recent technological advance-
ments, various devices that can be used to acquire different
types of information, such as temperature or spatial 3D geom-
etry, are currently available. Thus, using different devices on
common sensor platforms enables multidimensional spatial
data collection. In addition, directional emissivity is partic-
ularly important in the correction of infrared temperature
measurements for complex surfaces [2]. As the shape of the
object becomes complex, measuring 3D temperature distri-
bution is necessary for the elimination of geometry-caused
errors to obtain precise measurements.

Recent technical developments apply thermal infrared
image (2D images) onto spatial information (3D images)
to obtain 3D temperature distribution model. Three-dimen-
sional space information can be acquired through various
3D scanning methods, such as omnidirectional vision [3],
structured light technology [4, 5], time-of-flight [6], and
binocular vision technology [7]. Stereo vision technology can
be classified into active or passive technology according to
light conditions. The flaws of active vision are the view range

limitations and environment light interference. In this case,
binocular vision is usually used to obtain 3D point cloud
information.The principle of binocular vision is based on the
parallax of left and right camera images.

As a simple, noncontact, noninvasive, and inexpensive
imaging method, thermography is widely applicable in a
variety of industries and research fields. Inmost of its applica-
tions, investigation is performed in a passive manner; that is,
the camera observes a scene and detects the thermal radia-
tion emitted by objects. Although radiometric information
is typically represented as colored or gray-valued images,
thermal camera can capture complementary information that
can facilitate the description and analysis of detected objects
and observed scenes.

A thermal infrared camera model is a classical pinhole
model with intrinsic and external parameters [8]. Given that
the traditional chessboard pattern is not visible in the thermal
infrared domain, the calibration of thermal cameras is based
on a planar with lamps [9, 10]. The lamps are clearly visible
in the thermal infrared images and can be detected easily
[11]. In real situations, active lamps cannot provide high
strength heat that can be identified by infrared equipment.
Skala et al. [12] presented a calibration pattern composed of
rectangular holes cut through a solid board. The hole pattern
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can be distinguished by the thermal cameras through the
thermal radiation emitted by the objects that are located
behind the board and passing through the holes. However,
calibration board performance is unsuitable for binocular
camera calibration.

For multiple image registrations, González-Aguilera et al.
[13, 14] presented solutions for the automated registration of
individual 2D images onto 3D range models. These methods
are based on feature extraction (i.e., extraction of points,
lines, edges, rectangles, or rectangular parallelepipeds). How-
ever, extracting these features in the infrared image is diffi-
cult. Ben Azouz et al. [15] applied thermal infrared image to
determine the approximate position of the teats in an optical
image and then applied an image processing algorithm to
determine the accurate teat ends within the region of interest.
In contrast, Liu et al. [16] presented solutions that combine
2D-to-3D registration with multiview geometry algorithms.
This scheme is a simple and efficient method.

In this paper, thermal information and spatial informa-
tion are both considered. In particular, a thermal camera
is used and binocular vision technique is performed to
obtain a 3D temperature distributionmodel.We define a new
smooth item in the belief propagation algorithm to address
the parallax hollow phenomenon generated during stereo
matching. The external parameters of binocular and infrared
cameras can be calculated simultaneously by using a calibra-
tion board.The 3D space temperature distributionmodel can
be calculated by combining thermal infrared and 3D space
information [17].

This paper is organized as follows. Section 2 describes
the experimental setup and mathematical description of the
calibration method. Stereo matching and 3D temperature
distribution model calculation are introduced in Section 3.
The analysis of the experimental results is shown in Section 4.

2. System Composition and Calibration

2.1. The 3D Temperature Distribution Imaging System. The
hardware of the system adopts an A615 camera produced
by FLIR company and MV-VEM120SM visible light camera
produced by Veise company. The A615 thermal infrared
camera has a resolution of 640 × 480 and a focal plane array
(FPA) of 7.5–14 𝜇m. Its temperature measurement range is
–20–150, 0–150, and 300–2000∘C. In this system, we select
the object temperature range of 0–150∘C. Noise equivalent
temperature difference (NETD) is less than 0.05∘C at the
temperature of 30∘C, and the spectral range is 7.5–14 𝜇m.
The binocular camera consists of two imaging devices, each
of which provides a visual image of 1920 × 960 pixels. The
3D temperature distribution imaging system is shown in
Figure 1.

The projection models of the binocular and thermal
infrared cameras are shown in Figure 2. The left and right
visible light cameras (𝑂𝑙 and𝑂𝑟) constitute a binocular vision
system. The system is used to construct the 3D information
of the scene. Binocular vision technology determines the
matching points in two images by imitating human eyes
and restores the 3D space information of the entire scene
according to the triangulation theory. The matching point is

Figure 1: 3D temperature distribution imaging system.
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Figure 2: The projection model of the cameras.

defined as the dot pair (DP). The thermal infrared camera(𝑂𝐼) is used to acquire the temperature information of the
scene. Meanwhile, 𝑂𝐺 in Figure 2 represents the world coor-
dinate system after the integration of 3D space information
and temperature information. 𝑙1 and 𝑙2 are the external
parameters of the right and left cameras, respectively.

2.2. System Calibration. The calibration method of Zhang is
a widely used in computer vision [18, 19].This method can be
used even without specialized knowledge of 3D geometry or
computer vision. It only requires a camera to observe a planar
calibration pattern shown at a few (at least two) different
orientations.The camera or the planar calibration pattern can
bemovedwith freely unknownmotion.When lens distortion
is considered, this method improves camera calibration
results through a nonlinear optimization technique based on
the maximum likelihood criterion.

The traditional calibration board used in the calibration
method of Zhang is composed of black and white chessboard
boxes. Spatial information can be obtained by extracting
chessboard corners and can be used to calculate the internal
and external parameters of the camera. The temperatures of
the black and white areas of the traditional calibration board
are the same when no special treatment is applied. Thus,
thermal infrared camera cannot divide the chessboard cor-
ners used in the method of Zhang.The traditional calibration
board cannot complete the calibration work of the thermal
infrared camera.

We exploit the black and white calibration chessboard
by using a cardboard with a sheet metal. The chessboard
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Figure 3: Calibration image of binocular ((a) and (b)) and thermal (c) infrared.

corners can be clearly recognized in the binocular image and
can be identified in the thermal infrared image, as shown in
Figure 3. Subsequently, the calibration results of the binocular
and thermal infrared cameras are completed according to the
calibration method of Zhang.

Figures 3(a) and 3(b) show the binocular images (left and
right images), and Figure 3(c) shows the thermal infrared
image.

The specific steps are as follows: Position 𝑃 is assumed on
the calibration board with coordinates of 𝑝𝐿 = (𝑢𝐿, V𝐿) and𝑝𝑅 = (𝑢𝑅, V𝑅) in the left and right cameras, respectively, and𝑝𝐼 = (𝑢𝐼, V𝐼) in the thermal infrared camera.

𝑝𝑅 = 𝑅𝐿𝑅𝑃𝐿 + 𝑇𝐿𝑅,
𝑝𝐺 = 𝑅𝐿𝐺𝑃𝐿 + 𝑇𝐿𝐺,
𝑝𝐺 = 𝑅𝐼𝐺𝑃𝐼 + 𝑇𝐼𝐺,
𝑝𝐺 = 𝑅𝑅𝐺𝑃𝑅 + 𝑇𝑅𝐺,

(1)

where 𝑅𝐿𝑅 and 𝑇𝐿𝑅 represent the rotation matrix and transla-
tion vector, respectively, between the left and right cameras;𝑅𝐿𝐺, 𝑇𝐿𝐺, 𝑅𝑅𝐺, 𝑇𝑅𝐺, 𝑅𝐼𝐺, and 𝑇𝐼𝐺 are the rotation matrixes
and translation vectors of left camera, right camera, and
thermal infrared camera.Thematrixes and vectors can be set
as follows:

𝐻𝐿 = [[
[
𝑢𝐿
V𝐿1
]]
]
𝑡𝐿, (2)

where 𝑡𝐿 is a scale value. Given that 𝐵𝐿 = [𝑢𝐿, V𝐿, 1]𝑇, (2) can
be converted into

𝐻𝐿 = 𝐵𝐿𝑡𝐿. (3)

Thus, the following can be obtained by combining (1) and
(3):

𝑝𝐺 = 𝑅𝐿𝐺𝐵𝐿𝑡𝐿 + 𝑇𝐿𝐺. (4)

Similarly, under the right camera,

𝑝𝐺 = 𝑅𝑅𝐺𝐵𝑅𝑡𝑅 + 𝑇𝑅𝐺. (5)

In the calibration process of the binocular vision system,𝑅𝐿𝐺, 𝑇𝐿𝐺, 𝑅𝑅𝐺, 𝑇𝑅𝐺, 𝐴𝐿, 𝐾𝐿, 𝐴𝑅, and 𝐾𝑅 can be obtained
through calibration. Therefore, the coordinate of 𝑃 under
the world coordinate can be completely available. Given the
image coordinate 𝑝𝐼 = (𝑢𝐼, V𝐼) of 𝑃 in the thermal infrared
camera,DP can be obtained. Several dot pairs can be obtained
by using the mobile calibration board. In this instance, the
traditional calibration method can be used in the calibration
work of the thermal infrared camera by constructingmultiple
sets of linear equations according to the coordinates of the
corresponding points. Unknown parameters in the equation
are the internal and external parameters of the thermal
infrared camera.These unknown parameters can be obtained
by substituting the coordinates of the points, including 𝐴𝐼𝐺,𝐾𝐼, 𝑅𝐼𝐺, and 𝑇𝐼𝐺, into the equation.

The thermal infrared camera is built on the calibration of
the visible light cameras. The two visible light cameras and
thermal infrared camera simultaneously obtain the images
of the calibration board. The infrared image and location
information of the target point on the calibration board in
the 3D space can be obtained simultaneously to construct the
mapping relationship between them.Theparameter informa-
tion of the thermal infrared camera is then obtained.

Meanwhile, the thermal infrared camera projection
model can be constructed in the same manner as ordinary
camera [20].Theparameter calibration process of the thermal
infrared camera is similar to that of traditional camera cali-
bration method.

Levenberg-Marquardt [21, 22] (LM) algorithm is applied
in the limit correct process. LM algorithm is realized in the
following:

(1) Select the initial point 𝑝0 and terminate the control
constant 𝜀0 = ‖𝑥 − 𝑓(𝑝0)‖, 𝑘 = 0, 𝜆0 = 10−3, and
V = 10.

(2) Calculate Jacobi matrix 𝐽𝑘 and calculate𝑁𝑘 = 𝐽𝑘𝑇𝐽𝑘 +𝜆𝑘𝐼 to construct the incremental normal equation𝑁𝑘 ⋅𝛿𝑘 = 𝐽𝑘𝑇𝜀𝑘.
(3) Solve the incremental normal equation to obtain 𝜀𝑘;

if 𝜆𝑘+1 = V ⋅ 𝜆𝑘, 𝑝𝑘+1 = 𝑝𝑘 + 𝜀𝑘; on the contrary, if‖𝑥 − 𝑓(𝑝𝑘 + 𝛿𝑘)‖ ≥ 𝜀𝑘, given 𝜆𝑘+1 = V ⋅ 𝜆𝑘, resettle the
regular equation to obtain 𝛿𝑘 and return to Step (1) at
the same time.
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3. Stereo Matching and 3D Temperature
Distribution Model Calculation

3.1. Stereo Matching and Algorithm Improvement. In the
binocular vision, the structure of 3D figure is based on the
parallax of the left and right camera images. During stereo
matching, which is based on the belief propagation algorithm
[23, 24], the principle of constructing the energy function
is to convert the parallax calculation to the minimum value
calculation of the energy function. In the process of solving
the minimum value of energy function, Markov random
field model is introduced [25] to obtain the matching cost
according to the transcendental scene information. The
maximum posterior probability of Markov random field is
then calculated by the belief propagation algorithm. These
processes are used to obtain the parallax information of the
scene.

The energy function of the belief propagation algorithm
can be divided into two parts, namely, data item and smooth
item. The mapping of the data item is the relationship
between known and unknown nodes in the Markov random
field, and the smooth item is the relationship between two
adjacent unknownnodes inMarkov randomfield.The energy
function is defined mathematically as

exp [−𝐸 (𝑑)𝜎 ]

= exp[−∑𝑝𝐷(𝑃, 𝑑𝑝) − ∑(𝑖,𝑗) 𝑉(𝑑𝑖, 𝑑𝑗)𝜎 ] .
(6)

Negative exponential computing is adopted for the energy
function formula. The formula is converted as

𝐸 (𝑑) = ∑
𝑝

𝐷(𝑝, 𝑑𝑝) + ∑
(𝑖,𝑗)

𝑉(𝑑𝑖, 𝑑𝑗) . (7)

The following can be defined:

𝑃(𝐷𝐼 ) = exp [−𝐸 (𝑑)𝜎 ] ,

𝜙𝑃 (𝑑𝑝) = exp[−∑𝑝𝐷(𝑝, 𝑑𝑝)𝜎 ] ,

𝜓𝑖𝑗 (𝑑𝑖, 𝑑𝑗) = exp[−∑(𝑖,𝑗) 𝑉(𝑑𝑖, 𝑑𝑗)𝜎 ] .

(8)

Then, the energy function is

𝑃(𝐷𝐼 ) = ∏
(𝑖,𝑗)

𝜓𝑖𝑗 (𝑑𝑖, 𝑑𝑗)∏
𝑝

𝜙𝑃 (𝑑𝑝) . (9)

In the function, 𝜙𝑝(𝑑𝑝) represents the smooth item
and 𝜓𝑖𝑗(𝑑𝑖, 𝑑𝑗) represents the data item. After the negative
exponential change, the minimum value problem of the
energy function is converted to the maximum probability
distribution of unknown points. The initial matching cost of

the belief propagation algorithm is the absolute difference
function as follows:

𝐶 (𝑥, 𝑦, 𝑑)
0<𝑑<𝐷

= 󵄨󵄨󵄨󵄨𝐼𝐿 (𝑥, 𝑦) − 𝐼𝑅 (𝑥 + 𝑑, 𝑦)󵄨󵄨󵄨󵄨 . (10)

As shown in the formula, the difference between the
values of the two pixel points is calculated to obtain the
similarity degree of the two images. The smooth item of the
energy function is obtained by using the Potts model [26].

𝑉(𝑑𝑝, 𝑑𝑞) = {{{
0, 𝑑𝑝 = 𝑑𝑞,
𝜌𝐼 (Δ𝐼) , else, (11)

where 𝜌𝐼(Δ𝐼) is determined by the gradient between the two
pixels of i and j.

𝜌𝐼 (Δ𝐼) = {{{
𝑃 × 𝑠, Δ𝐼 < 𝑇,
𝑠, else. (12)

Two methods for information updating are based on the
belief propagation algorithm. One method is synchronous
updating, which calculates information from all the neigh-
borhoods of each node and then updates the information
in each node [27]. Meanwhile, accelerated updating changes
immediately when a node receives information from the
neighborhood.

𝑚𝑡𝑖𝑗 (𝑥𝑗) = max 𝜑𝑖𝜓𝑖𝑗 (𝑥𝑖, 𝑥𝑗) ∏
𝑘∈𝑁(𝑖)/𝑗

𝑚𝑡−1𝑘𝑖 (𝑥𝑖) . (13)

This paper adopts the accelerated updating method to
solve maximum joint posterior probability.

The data and smooth items in the traditional belief
propagation function use the Potts model (see (11)), in which
the smooth item between those two points is 0 when the
parallax value between the adjacent points is the same at an
area without texture. The smooth item is a constant when
the parallax value is different. However, the algorithm causes
ambiguity matching or matching error at a flat area. This
phenomenon is defined as parallax hollow phenomenon. To
overcome this disadvantage, we define a new smooth item in
the belief propagation algorithm.

𝐸𝑠 = min (󵄨󵄨󵄨󵄨󵄨𝑑𝑖 − 𝑑𝑗󵄨󵄨󵄨󵄨󵄨 , 𝜆) . (14)

In the formula, 𝜆 represents the truncated threshold.
When the parallax difference reaches the truncated threshold𝜆, the smooth item is themaximumanddoes not grow to pro-
tect the smoothness of the weak texture region. Meanwhile, 𝑘
is the penalty coefficient. According to the continuity of the
image, the penalties are different in different regions.

𝑘 = {{{
𝑐, Δ 𝑖𝑗 < 𝑇,
1, else, (15)

where Δ 𝑖𝑗 represents the brightness difference between the
matching pixels in the target image and reference image.
When the brightness difference is less than the threshold 𝑇,
the smooth item must be multiplied by a penalty coefficient.

The mismatching rate is greatly reduced in stereo match-
ing after the algorithm is improved.
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Figure 4: Matching principle.

3.2. 3D Temperature Distribution Model. In the 3D temper-
ature distribution reconstruction system, two visible light
cameras are used to construct the 3D point cloud of the object
according to the binocular vision technology. The thermal
infrared camera obtains the temperature information of an
object and captures the 2D thermal infrared image. The
parameter models of the thermal infrared and visible light
cameras can be further acquired during system calibration.
On this basis, the paper proposes a 3D temperature distribu-
tion model based on matching principle.

The matching principle is shown in Figure 4 and is based
on the pinhole camera model. In this model, the origin of the
thermal infrared camera𝑂𝐼 is defined as theworld coordinate
system origin 𝑂𝐺. In addition, 𝑂𝑙 and 𝑂𝑟 are the origins of
the left and right visible light cameras, respectively, while
u And v are the coordinate axes in the camera coordinate
system. P is the projection point in the cameras from the
object 𝑃𝑤. The 𝑧-axis is along the optical axis of the thermal
infrared camera, and the 𝑥-axis and 𝑦-axis correspond to
the projection plane of the thermal infrared camera. Thus,
a scene view is formed by projecting 3D points into the
image plane through perspective transformation. Thus, the
relation between point 𝑃𝑤 = (𝑥, 𝑦, 𝑧) in the 3D space and its
corresponding point 𝑃𝑖 = (𝑢, V, 1) in the camera coordinate
system is computed as

[[
[
𝑢
V

1
]]
]
= 𝐴 [𝑅, 𝑇][[[[[

[

𝑥
𝑦
𝑧
1

]]]]]
]

= [[
[
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

]]
]
[[
[
𝑟11 𝑟12 𝑟13 𝑡1𝑟21 𝑟22 𝑟23 𝑡2𝑟31 𝑟32 𝑟33 𝑡3

]]
]
[[[[[
[

𝑥
𝑦
𝑧
1

]]]]]
]
,

(16)

where𝐴 is the internal parameter of cameras,𝑅 is the rotation
matrix of external parameter, and 𝑇 is the translation vector
of external parameter.Therefore, three corresponding points,
namely, 𝑃𝑐𝑙, 𝑃𝑐𝑟, and 𝑃𝑖𝑡, of space point 𝑃𝑤 can be obtained
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Figure 5: The thermal infrared projection image.

according to the different projection parameters of different
sensors.

𝑃𝑐𝑟 = 𝐴𝑐𝑟 (𝑅𝑐𝑟𝑃𝑤 − 𝑇𝑐𝑟) ,
𝑃𝑐𝑙 = 𝐴𝑐𝑙 (𝑅𝑐𝑙𝑃𝑤 − 𝑇𝑐𝑙) ,
𝑃𝑖𝑡 = 𝐴 𝑖𝑡𝑃𝑤.

(17)

The parameters of rotation matrix and translation vector
can be obtained by calibration in Section 3. The depth value
can be calculated according to the difference value between𝑃𝑐𝑙 = (𝑢𝑐𝑙, V𝑐𝑙, 1) and 𝑃𝑐𝑟 = (𝑢𝑐𝑟, V𝑐𝑟, 1). By the method of polar
correction based on the rotation matrices 𝑅𝑐𝑟 and 𝑅𝑐𝑙, the
values of V𝑐𝑙 and V𝑐𝑟 should be equal.The depth 𝑧 of 𝑃𝑤 can be
calculated through the triangle method as follows:

𝑧 = (𝑙1 − 𝑙2) 𝑢𝑐𝑙𝑢𝑐𝑟𝑓𝑥𝑐𝑙𝑢𝑐𝑟 + 𝑓𝑥𝑐𝑟𝑢𝑐𝑙 . (18)

The calculated depth 𝑧 value is the length from the
object to the epipolar plane of the axis. When the thermal
infrared pixel 𝑃𝑖𝑡 is considered, the spatial and temperature
information of 𝑃𝑖𝑡 can be calculated roughly. However, the
information of the 3D model is not strictly equal to the
thermal infrared image. In other words, no point in the 3D
model corresponds to some points in the thermal infrared
image in the matching process. Therefore, interpolation
processing is required for the 3D model.

As shown in Figure 5, 𝑂𝐼 is the origin of the thermal
infrared camera, and𝑂𝐺 is the origin in the world coordinate
system. The adjacent points 𝑝1, 𝑝2, and 𝑝3 in the 3D space
are transformed to the imaging plane of the thermal infrared
camera through projection. The corresponding points in
the infrared image are 𝑝󸀠1, 𝑝󸀠2, 𝑝󸀠3 ∘ 𝑝󸀠1, 𝑝󸀠2, 𝑝󸀠3, and 𝑝1, 𝑝2,
and 𝑝3 have the similar topological structures. The direct
relationship between the 3D model and infrared image is
constructed. The corresponding temperature value in the
infrared image is returned to the 3D model to obtain the
preliminary 3D temperature distribution.



6 Journal of Sensors

Table 1: The internal parameters.

Parameters Left camera Right camera Thermal infrared camera
𝑓𝑥 4097.913 4053.563 1455.339𝑓𝑦 4153.726 4062.305 1449.502
𝑐𝑥 659.766 698.890 330.2781𝑐𝑦 490.532 483.532 247.596
𝜂 0.012 0.010 0.014𝑟 0.005 0.001 0.002

In the thermal infrared image, 𝑝󸀠𝑐 is assumed to be in the
triangle formed by 𝑝󸀠1, 𝑝󸀠2, and 𝑝󸀠3. Then 𝑝󸀠𝑐 and 𝑝󸀠1, 𝑝󸀠2, and 𝑝󸀠3
can be defined in the following equation:

∠𝑝󸀠1𝑝󸀠𝑐𝑝󸀠3 + ∠𝑝󸀠2𝑝󸀠𝑐𝑝󸀠3 + ∠𝑝󸀠1𝑝󸀠𝑐𝑝󸀠2 = 2𝜋. (19)

According to the equation, the ray equation of 𝑝󸀠𝑐 in the
3D space can be defined.

𝑝𝑐 = 𝑝󸀠𝑐 × 𝐴−1𝑅−1 + 𝑡. (20)

The following relationships of 𝑝󸀠1, 𝑝󸀠2, and 𝑝󸀠3 can be
calculated by the properties of the coplanar principle:

[ (𝑝󸀠2 − 𝑝󸀠1) (𝑝󸀠3 − 𝑝󸀠1)󵄩󵄩󵄩󵄩(𝑝󸀠2 − 𝑝󸀠1) (𝑝󸀠3 − 𝑝󸀠1)󵄩󵄩󵄩󵄩]
𝑇

(𝑝󸀠 − 𝑝󸀠1) = 0. (21)

Therefore, the complete 3D temperature distribution
model can be obtained after the interpolation processing of
the 3D model.

4. Experimental Results and Analysis

4.1. Calibration Results. For the validation of the calibration
and measurement procedure of the system, 25 sets of data
are collected with our novel black and white calibration
chessboard.The data are divided into two groups. One group
is used to calibrate the parameters of the three sensors, and
the other was used to validate the accuracy of the matching
between space information and thermal infrared informa-
tion.

The thermal infrared and binocular cameras are cal-
ibrated using the common camera calibration toolbox of
MATLAB. The calibration results are shown in Table 1.

In Table 1, 𝑐𝑥 and 𝑐𝑦 are principal points that are usually at
the image center, 𝑓𝑥 and 𝑓𝑦 are the focal lengths expressed
in pixel units, and 𝜂 and 𝑟 are the distortion parameters.
In Table 2, 𝑟1–3 and 𝑇1–3 are the matrixes of the extrinsic
parameters.

Any point 𝑃 in the 3D space can be mapped to the image
coordinate system of the thermal infrared image through
matrix transformation.Throughmapping, the corresponding
relationship between 3D points in the space and thermal
infrared image can be obtained.

4.2. Experimental Results. In the experiment, a cup filledwith
hot water is used for 3D reconstruction. The temperatures at

Table 2: The external parameters.

Parameters Left camera to thermal
infrared camera

Right camera to thermal
infrared camera

𝑟1 −0.0088 0.0168
𝑟2 0.0641 0.0144
𝑟3 0.0096 −0.0059
𝑇𝑥 −205.934 −105.934
𝑇𝑦 5.910 9.910
𝑇𝑧 7.340 3.101

the top and bottom of the cup are different in the temperature
image. Their color values are also different. After epipolar
rectification, two readily matched images are obtained, as
shown in Figure 6.

After epipolar rectification, two images have the parallax
only in the horizontal direction. Therefore, the belief propa-
gation algorithm is used to obtain the parallax image of two
images, as shown in Figure 6(c).

After the parallax image is obtained, 3D reconstruction is
carried out according to the triangulation principle shown in
Figure 7(a). In this process, the background area is eliminated
according to the different parallax between the background
and target. The thermal infrared image of the cup is shown
in Figure 7(b). Thematching between the temperature image
and the 3D model is studied after the target 3D model is
obtained, as shown in Figure 7(c).

The experimental results show that the temperature
image matched well with the 3D models. The temperature
information on the surface of the target is completelymapped
on the 3D model, but the 3D model still has some holes
because of the noise in the parallax image and mutation of
some areas.

In addition, we use a lid and kettle to perform two
experiments. The binocular visual images, depth images, and
the thermal infrared images are shown in Figure 8.

In Figure 8, columns (a) and (b) show the stereo images,
column (c) shows the depth image calculated according to
binocular vision, and column (d) shows the thermal infrared
images.

Three-dimensional space information and thermal
infrared information of the three objects are fused to
calculate the 3D space temperature distribution model.

4.3. Experimental Analysis. In terms of matching accuracy,
we propose a new method to evaluate matching accuracy on
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(a) (b) (c)

Figure 6: The stereo image.

(a) (b) (c)

Figure 7: The 3D reconstruction result (a), the thermal infrared image (b), and the 3D space temperature model (c).

the basis of matching drift. When the matching between the
3D space information and thermal infrared information is
not perfect, matching drift is produced, as shown as Figure 9.
In this instance, (a) is the depth image calculated according
to the horizontal parallax of the left and right images.The red
dots in the depth image are the chessboard corners estimated
by the stereo images, and the blue dots in (b) are the precise
corners in the thermal infrared image. When the matching
results are not accurate, matching drift is produced inevitably
and contains blue and red dots.

We define the pixel average error through the following
equation:

𝑒 = 1𝑛1 × 𝑛2
𝑛
1∑
𝑖=1

𝑛
2∑
𝑗=1

√(𝑢𝑖
𝑑𝑗
− 𝑢𝑖𝑖𝑡𝑗)2 + (V𝑖𝑑𝑗 − V𝑖𝑖𝑡𝑗)2, (22)

where 𝑖 represents the image number, 𝑗 represents the corner
point number in the 𝑖th image, 𝑛1 represents the total number
of images, 𝑛2 represents the total number of corner points,𝑢𝑖𝑑𝑗 represents the abscissa value of the 𝑗th corner point in
the 𝑖th depth image, V𝑖𝑑𝑗 represents the ordinate value of the

𝑗th corner point in the 𝑖th depth image, 𝑢𝑖𝑖𝑡𝑗 represents the
abscissa value of the 𝑗th corner point in the 𝑖th thermal
infrared image, and V𝑖𝑖𝑡𝑗 represents the ordinate value of the𝑗th corner point in the 𝑖th thermal infrared image. Thus,
the accuracy of matching algorithm can be determined by
calculating the pixel average error.

In the actual measured object, we cannot determine the
match point to verify the match pixel offset. Therefore, we
apply 10 sets of samples to measure the matching drift pixel
average error according to the calibrated spatial matching
results. The matching drift pixel average error of the samples
is shown in Figure 10.

The experimental results show that our average pixel error
is within four pixels.

The FLIR Tool software of forward looking infrared
(FLIR) camera is used to collect the temperatures of some
points in target of the thermal infrared image. FLIR cameras
exhibit high accuracy in temperature measurement and the
accuracy of the temperature is 0.1 degrees. During temper-
ature information acquisition, the coordinate of the corre-
sponding points in the 3D space can be obtained according
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(a) (b) (c) (d)

Figure 8: The stereo image ((a) and (b)), the depth image (c), and the thermal infrared image (d).

Left image

Right image Depth image

(a)

Thermal infrared

(b)

Figure 9: The matching drift phenomenon.

to the constructed 3D temperature model. The temperature
and coordinates are shown in Table 3.

Additional Points

Summary. This paper aims to build the 3D temperature
reconstruction system using two visible light cameras and a
thermal infrared camera. As indicated by the results of our

experiments on multiple objects, the method can accurately
construct a 3D temperature distributionmodel. In the future,
we can apply this method on a mobile robot platform.
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Figure 10: The matching drift pixel average error of the samples.

Table 3: Target temperature checklist.

Location Coordinate (mm) Temperature (∘C)
1 (−9.54, 4.24, 134.9) 23.4
2 (−8, 5.039, 134.5) 28.8
3 (6.96, 10.41, 135.1) 30.3
4 (−4.913, 5.512, 134.5) 58.9
5 (1.858, 7.591, 134.5) 66.7
6 (0.7244, 4.252, 134.5) 53.4
7 (0.126, 8.904, 134.5) 55.4
8 (−0.661, 10.43, 134.5) 27.4
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