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The shooting consistency of an archer is commonly perceived to be an important determinant of successful scores. Four (n = 4)
elementary level archers from a middle school in Korea participated in this study. In order to quantify shooting consistency,
movement of the bow forearm was measured with an inertia sensor during archery shooting. The shooting consistency was
calculated and defined by the dynamic time warping (DTW) algorithm as the distance between two time sequences of
acceleration data. Small distance values indicate that the archer has maintained high-level shooting consistency while
archery shooting repetitively. To verify the shooting consistency metric, the relationship between scores and shooting
consistency is evaluated. The results show that the higher the scores achieved by the archer, the higher is the level of
shooting consistency demonstrated.

1. Introduction

Recent advances in microelectromechanical system (MEMS)
technologies and wireless communication have allowed the
development of small low-cost inertia sensors that can mea-
sure body movements precisely and conveniently. The use
of inertia sensors to measure activity levels for sporting is
emerging as a popular method for the biomechanical quanti-
fication of sporting activities (e.g., archery shooting).

Few studies on postural consistency or movement during
archery shooting have been found in the literature. To the
best of our knowledge, the first researchers to pay attention
to postural consistency were Stuart and Atha. In their study
[1], Stuart and Atha used a three-dimensional optoelectronic
scanner to measure the positions of the archer’s head and
elbow and that of the bow at the moment of “loose” (releasing
the arrow). Postural consistency is defined as the consistency
in the archer’s positioning that is within-ends the standard
deviation (SD) of the positions for each archer.

More recent studies [2, 3] have reported considerable
findings with regard to the archer’s movement during arrow

release. In [2], by comparing the muscular activation patterns
of the forearm that manipulates the bow (“bow-forearm”)
of elite archers and beginners, the study concluded that
the action of not contracting both M. flexor digitorum
superficialis (MFDS) and M. extensor digitorum (MED), or
of only contracting MED, during archery shooting is an indi-
cator of the archer’s performance level. In [3], by examining
the finger and bowstring movements during arrow release,
the study presumed that maximum lateral bowstring deflec-
tion does not adversely affect the archer’s performance. How-
ever, the two aforementioned studies used EMG data to
analyze muscular activation patterns or camera-based
motion tracking systems to quantify movement; further-
more, the movement or muscular activation only focused
on the release moment.

Motion analysis of the movements performed individu-
ally by an archer in training or competition provides infor-
mation about the correctness of the individual techniques
and the effectiveness of the archer’s strategies. Currently,
there are motion tracking systems that use inertia sensors
and do not need cameras or stick markers, and they can
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be used anywhere. Such systems also make it possible to
analyze body movements during archery shooting more
precisely and conveniently than before. The disadvantage
is the high cost and need to properly process and interpret
measured data.

In this study, we measure bow-forearm movement by
using inertia sensors during archery shooting to evaluate
the shooting consistency of archers. Moreover, we attempt
to provide movement analysis tools that work precisely and
conveniently. Shooting consistency is defined as a function
of the dynamic time warping (DTW) distance between two
time sequences of acceleration data calculated with the
DTW algorithm. Small distance values indicate that an
archer has maintained high-level shooting consistency while
archery shooting repetitively. To the best of our knowledge,
no quantifying shooting consistency in archery by using iner-
tia sensors has been reported in the literature. Here, we pres-
ent the DTW algorithm as a useful signal processing method
for quantifying shooting consistency in archery.

2. Materials and Methods

2.1. Archery Shooting. Archery can be described as a com-
paratively static sport that requires strength and endurance
of the upper body, in particular, the forearm and shoulder
girdle [4]. Skill in archery is defined as the ability to shoot
an arrow onto a given target in a certain time span with accu-
racy [5]. Archery shooting is described as a three-phase
(drawing, aiming, and release) movement. Alternatively,
Nishizono et al. [6] further divided the stages of a shot into
six: bow hold, drawing, full draw, aiming, release, and
follow-through. An archery shot must be well balanced and
highly reproducible in order to achieve commendable results
in an archery competition.

Figure 1 shows an example of acceleration data that mea-
sures the bow-forearm movement during successive archery
shootings. As shown in Figure 1, a one-shot period usually
consists of nocking, hooking and grip, setup (bow lifting),
and drawing that includes anchor moment, aiming, and
holding, which in turn includes the release moment, follow
through, and finish phases. Not all the phases can be sepa-
rated exactly, but the phases are meaningful for training.

2.2. Measurement of Acceleration Data. Four elementary level
(performance level: beginner, elementary, national, and

world-class archer) female participants (middle school stu-
dent archers) were recorded during archery shooting. The
archer’s age, previous season’s scores, and current scores
are as follows: 16, 59, 59.5; 14, 59, 59.5; 15, 55, 53.5; 14, 54,
53.7. The participants were briefed on the purpose of this
study and the related procedures.

The participants were required to use their own bow
and arrows for measurement purposes and were tested at
their school’s outdoor tracks. An acceleration data logger
(Myomotion, Noraxon Inc., USA) was used to obtain
detailed information on body movement over a round
(six shots per round required almost 110 s–140 s). An iner-
tia sensor mounted on the bow-forearm was used to mea-
sure movement during archery shooting at a sampling
frequency of 100Hz. For each recording round, an archer
shot six shots at a distance of 30m and took a short rest. Each
participant shot a total of 36 arrows. Finally, we collected
a total of 144 data sets from the four participants (n = 4)
(considering references [1, 3]).

2.3. Period for Analysis. In this study, for the analysis of
shooting consistency in archery, we set the period of inter-
est (POI, see Figure 1) that only includes some interesting
phases, as follows: setup (not the whole period), drawing,
aiming, holding, and a period of dozens of milliseconds
after release.

As MEMS technology has developed, the ability to
measure body movements more precisely and conveniently
than before has increased. For the analysis of shooting
consistency in archery, we choose wider range of POI than
previous works. Such that it provides more useful infor-
mation compared with studies that have focused on release
moments only.

2.4. Method for Analysis of Shooting Consistency. In order to
analyze shooting consistency, the bow-forearm movement is
measured during archery shooting, and the DTW distance
between two time sequences of acceleration data is calculated
using the DTW algorithm.

DTW is a well-known technique for finding an opti-
mal nonlinear mapping between two given time sequences
(e.g., acceleration data in archery shooting) under certain
restrictions [7]. The objective of DTW is to compare two
time sequences. The distance (DTW distance) between X
and Y indicates how much similarity there is between them.
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Figure 1: Example of acceleration data (21.95 s–42.95 s): measured bow-forearm movement (x-axis: drawing direction) during successive
archery shootings (sampling rate of 100Hz).
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In fields of speech recognition [8], and data mining and
information retrieval [9–11], DTW has been successfully
applied to cope with time deformations and different speeds
associated with automatic time-dependent data.

In essence, DTW is an algorithm that can compute the
similarity between two time sequences, even if the lengths
do not match [7, 12]. Assume that we have two time
sequences, X = x1, x2,… , xn of length n ∈N and Y = y1,
y2,… , ym of length m ∈N . In order to measure the similar-
ity between these two time sequences, we construct an n-by-
m cost matrix where the (ith, jth) element of the matrix con-
tains cost c(xi, yj) between two points xi and yj. Typically,
c(xi, yj) is small (low cost) if xi and yj are similar to each other;
otherwise, c(xi, yj) is large (high cost). The cost matrix of X
and Y using the Manhattan distance (absolute value of the
difference) is a local cost measure c (i.e., c xi, yj = xi − yj ).
An (n, m-) warping path p = p1, p2,… , pl of length l ∈N
defines the mapping between the two time sequences X and
Y. The kth element of p is defined as pk = i, j k. There are
exponentially many warping paths. However, we are only
interested in the path that minimizes the cost (warping cost)
with respect to the local cost measure c, which is defined as
the sum of all local costs, where k runs from 1 to l. An opti-
mal warping path between X and Y is a warping path p∗ with
minimal total cost among all possible warping paths. The
distance (DTW distance) d(i, j) between X and Y is then
defined as the total cost of p∗. This optimal warping path
can be found efficiently by using dynamic programming to
evaluate the following recursive steps: d i, j = c i, j +min
d i − 1, j − 1 , d i − 1, j , d i, j − 1 . The value d(i, j)
defines an n-by-m accumulated cost matrix. The initializa-
tion can be simplified by extending the accumulated cost
matrix with an additional row and column and formally
setting d i, 0 =∞ for i ∈ 1 n , d 0, j =∞ for j ∈ 1 m ,
and d 0, 0 = 0. Furthermore, the optimal warping path
p∗ = p1, p2,… , pl is computed in reverse order of the indi-
ces starting with pl = n,m l.

2.5. DTW with Finding Subsequences Automatically. In our
study, DTW is used not only to compare two similar time
sequences but also to find subsequences within the longer
sequence that optimally fits the shorter sequence. The lon-
ger sequence represents a given one-round (six shots)
acceleration data that we call “query sequence,” and the
shorter sequence represents a given acceleration data of

POI (see Figure 1) that we call “reference sequence.” Before
starting DTW, we select one sequence as the reference
sequence where the archer achieved a score of 10 for shoot-
ing. The problem of finding the optimal subsequences can
be solved by a variant of DTW that we call “aDTW” (DTW
with finding subsequences automatically).

We illustrate the aDTW algorithm with the example
described by figures. The input for aDTW consists of the
query (sequence Y in Figure 2(a)) and reference (sequence
X in Figures 2(a) and 2(b)).

In order to find a subsequence that minimizes the dis-
tance to the reference over all possible subsequences of query,
we modify the initial conditions of the classic DTW algo-
rithm by setting d i, 0 =∞ for i ∈ 0 n and d 0, j = 0 for
j ∈ 0 m . In the first iteration, we compute the accumulated
cost matrix shown in Figure 3(a) and obtain the distance
function (Figure 3(b)) that corresponds to the top row of
the matrix.

By setting the threshold manually for each participants,
we obtain the six local minima with distance below the
threshold. The indices of the six local minima correspond
to the end point of the six subsequences in query sequence
Y. The six blue small circles shown in Figure 3(b) indicate
the six local minima. To determine the indices of the starting
point of the six subsequences in query sequence Y, the opti-
mal warping path is computed in reverse order of indices
starting with each six local minima. The six resulting
“matched subsequences,” that is, the subsequences of query
Y similar to reference X, are shown in Figures 4(a) and
4(b). In the next iteration, using classic DTW, we compute
the six final accumulated cost matrices, as shown in
Figure 4(a), and finally, normalization of the distance (see
Figure 4(b)) between the reference and the matched six sub-
sequences in query is conducted.

3. Results and Discussion

For our time sequence data sets, we only employed the x-
axis acceleration data to calculate distance (DTW distance)
by using the aDTW algorithm described in Section 2. We
iteratively found the 36 matched subsequences for all six
successive rounds, but not all participant data showed
good matching. The numbers of matched subsequences
for the four participants are 35, 35, 29, and 31. One of the
36 subsequences was a reference, and 35 was the maximum
number of matched subsequences found automatically.
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Figure 2: (a) Example of input sequences for DTW: query sequence Y (109.21 s long) for one-round acceleration data and reference sequence
X (6.3 s long) within POI indicated by grey region. (b) Zoom-out of sequence that corresponds to sequence X of (a).
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Figure 3: (a) Accumulated cost matrix between sequences X and Y for calculating distance function. Regions of low cost are indicated
by light colors, and those of high cost are indicated by dark colors. (b) Distance function that corresponds to top row of accumulated
cost matrix. Blue small circles indicate six local minima with distance below threshold. Indices of six local minima correspond to end
point of six subsequences in Y.
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Then, we calculated the distance between the reference and
the subsequence found automatically for the four partici-
pants. The mean and SD value of the distance for each par-
ticipant are as follows: 13.87± 0.9, 16.72± 1.3, 23.53± 2.2,
and 23.30± 2.3.

In order to evaluate the relationship between distance
and the scores obtained, we plotted a histogram of the
DTW distance of each participant. The histogram of DTW
distances that correspond to the four participants and the
relationship between shooting consistency (distance) and
scores are presented in Figure 5. The results show that the
higher the score (59 of 60) achieved by an archer, the higher
level is the shooting consistency (lower distance, that is,
distance of 13.87 and 16.72) that they showed. Subjects 1
and 2 are female archers with relatively higher score. A small
distance value indicates that an archer has maintained high-
level shooting consistency while archery shooting repeti-
tively. On the other hand, the lower the score (54 of 60 and
55 of 60) achieved by an archer, the lower level is the shooting
consistency (higher distance, that is, distance of 23.53 and
23.30) that they showed. Subjects 3 and 4 are female archers
with relatively lower score.

In this study, we provide a useful signal processing
method that quantifies shooting consistency in archery. The
results show that the DTW algorithm is a very useful metric
for assessing shooting skills, evaluating the progress on train-
ing, and finding talented archers.

4. Conclusions

In this study, we measured four (n = 4) elementary level
archers from a middle school in Korea for the purpose of
analyzing shooting consistency in archery. Such shooting
consistency is defined by the distance between two time
sequences with respect to acceleration data. The distance
was calculated using the DTW algorithm. The results showed
that the higher the scores achieved by an archer, the lower is
the distance, that is, the higher level is the shooting consis-
tency showed by the archer.

Consequently, distance can be used as a quantitative
parameter for measuring similarity of movement, which is,
shooting consistency in archery. Moreover, the DTW
algorithm-based approach provides the advantage of search-
ing all matched subsequences automatically from a long
sequence. We inferred that the proposed approach might
be important for assessing shooting skills, evaluating an
archer’s progress, and finding talented archers in advance.
The ultimate goal of this study is to develop measures to
identify archers’ talents and using these measures to improve
archers’ performance and preventing injuries ahead.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

Cheng-Hao Quan and Sangmin Lee conceived and designed
the experiments. Cheng-Hao Quan and Sangmin Lee per-
formed the experiments. Cheng-Hao Quan analyzed the data
and prepared the figures. Cheng-Hao Quan drafted the
paper. Cheng-Hao Quan, Zia Mohy-Ud-Din, and Sangmin
Lee revised and approved the final version of the paper.

Acknowledgments

This research was supported by the Basic Science Research
Program through the NRF (National Research Foundation of
Korea) funded by the Ministry of Education (2010-0020163).

References

[1] J. Stuart and J. Atha, “Postural consistency in skilled archers,”
Journal of Sports Sciences, vol. 8, no. 3, pp. 223–234, 1990.

[2] H. Ertan, “Muscular activation patterns of the bow arm in
recurve archery,” Journal of Science and Medicine in Sport,
vol. 12, no. 3, pp. 357–360, 2009.

[3] B. Horsak and M. Heller, “A three-dimensional analysis of fin-
ger and bow string movements during the release in archery,”
Journal of Applied Biomechanics, vol. 27, pp. 151–160, 2011.

[4] D. L. Mann and N. Littke, “Shoulder injuries in archery,”
Canadian Journal of Sport Sciences, vol. 1989, no. 14, pp. 85–
92, 1989.

[5] P. Leroyer, J. Van Hoecke, and J. N. Helal, “Biomechanical
study of the final push-pull in archer,” Journal of Sports
Sciences, vol. 11, no. 1, pp. 63–69, 1993.

[6] A. Nishizono, H. Shibayama, T. Izuta, and K. Saito, Analysis
of Archery Shooting Techniques by Means of Electromyography,
J. Tsarouchas, J. Terauds, B. A. Gowitzke and L. E. Holt, Eds.,
International symposium on biomechanics in sports, Athens,
Greece, 1987.

[7] E. Keogh and A. Ratanamahatana, Everything You Know
About Dynamic Time Warping Is Wrong, Workshop on Min-
ing Temporal and Sequential Data, in conjunction with 10th
ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining (KDD-2004), Seattle, WA, USA, 3rd edition, 2004.

[8] F. Itakura, “Minimum prediction residual principle applied
to speech recognition,” in IEEE Transactions on Acoustics,
Speech, and Signal Processing, pp. 52–72, IEEE, New York,
NY, USA, 1975.

H
ist

og
ra

m
 (%

)

40

0
5

10
15
20
25
30
35

DTW distance
3010 12.5 15 17.5 20 22.5 25 27.5

13.87 ± 0.9 16.72 ± 1.3 23.53 ± 2.2 23.30 ± 2.3

Subject 3 
Subject 4

Subject 1
Subject 2

Figure 5: Histogram of distance (DTW distance) that corresponds
to four participants and relationship between scores and distance
(postural consistency).

5Journal of Sensors



[9] M. H. Ko, G. West, S. Venkatesh, and M. Kumar, “Using
dynamic time warping for online temporal fusion in multisen-
sor systems,” Information Fusion, vol. 9, no. 3, pp. 370–388,
2008.

[10] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan,
“Uwave: accelerometer-based personalized gesture recognition
and its applications,” Pervasive and Mobile Computing, vol. 5,
no. 6, pp. 657–675, 2009.

[11] N. Gillian, R. B. Knapp, and S. O’Modhrain, “Recognition of
multivariate temporal musical gestures using N-dimensional
dynamic time warping,” in The 11th Int'l conference on New
Interfaces for Musical Expression, Oslo, Norway, 2011.

[12] E. Keogh and A. C. Ratanamahatana, “Exact indexing of
dynamic time warping,” Knowledge and Information Systems,
vol. 7, pp. 358–386, 2004.

6 Journal of Sensors



Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


