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Impulsive noise removal for color images usually employs vector median filter, switching median filter, the total variation 𝐿1
method, and variants. These approaches, however, often introduce excessive smoothing and can result in extensive visual feature
blurring and thus are suitable only for images with low density noise. A marginal method to reduce impulsive noise is proposed
in this paper that overcomes this limitation that is based on the following facts: (i) each channel in a color image is contaminated
independently, and contaminative components are independent and identically distributed; (ii) in a natural image the gradients
of different components of a pixel are similar to one another. This method divides components into different categories based on
different noise characteristics. If an image is corrupted by salt-and-pepper noise, the components are divided into the corrupted and
the noise-free components; if the image is corrupted by random-valued impulses, the components are divided into the corrupted,
noise-free, and the possibly corrupted components. Components falling into different categories are processed differently. If a
component is corrupted, modified total variation diffusion is applied; if it is possibly corrupted, scaled total variation diffusion is
applied; otherwise, the component is left unchanged. Simulation results demonstrate its effectiveness.

1. Introduction

Noise reduction is a fundamental issue in image processing.
In order to reduce noise, a great number of works have been
presented over the past several decades. The overwhelming
majority of theseworks copewith the gray-scale images.With
the increase in use of color images, however, more and more
works to reduce noise for color images are rapidly growing.

Indeed, color images often are corrupted by various
types of noise. In this paper, impulsive noise is only consid-
ered, containing salt-and-pepper noise and random-valued
impulses where they present themselves as occurring isolated
chromatic points. To yield better images from their noisy
versions, a series of various methods have been proposed.

Vector median filter (VMF) [1] and variants, based on
reduced ordering, are popular methods. VMF calculates the
cumulative sums of the Euclidean distance from every pixel
to other pixels in a filtering window and outputs the pixel
corresponding to the minimization sum of distances. The

output pixel is called vector median, since each pixel is a
vector containing multiple components. To achieve better
performance in the variants, a few dissimilarity measures
are used other than the Euclidean distance. For example,
Basic Vector Directional Filter (BVDF) uses the angular
distance [2]; Directional Distance Filter (DDF) employs the
combination of themagnitude and directional processing [3].
In addition, 𝛼-Trimmed Vector Median Filter (T𝛼VMF) only
considers alpha pixels to calculate the dissimilarity [4], rather
than all pixels within a filtering window. These methods
process the noisy and noise-free pixels uniformly. Therefore
they introduce extensive smoothing and blur visual features
extensively and are only suited to low density noise.

To overcome this limitation, various kinds of switching
vector filters have been proposed in the rich literature, which
aim to only replace the corrupted pixels. This type of filters
usually consists of noise detection and noise removal. The
former identifies the corrupted pixels, and the latter applies
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some algorithm to those corrupted pixels.Thenoise detection
is crucial. If a detector fails to identify corrupted pixels, then
they will be left unchanged, resulting in poor filtered images.
If the detector classifies a corrupted pixel correctly but also
identifies noise-free pixels as corrupted, the tiny details
may be lost. Therefore, accurate and complete identification
determines the quality of filtered images.

Currently, there exist many techniques to identify noisy
pixels. Peris-Fajarnes et al. [5] use the rank-ordered dif-
ferences statistic method. Smolka [6] uses a soft switching
technique that assigns trimmed cumulated distances to the
central pixel, where the trimmed sum of distances serves as
an indicator manifesting the corrupted extent of the current
pixel. Morillas et al. [7] utilize the local self-adaptive fuzzy
filter. Ananthi and Balasubramaniam [8] use the technique
of the interval-valued fuzzy set. Jin et al. [9] employ the
quaternion theory. Malinski and Smolka [10] use adaptive
switching technique. Particularly, after the concept of a peer
group is introduced, many schemes based on it have been
presented; for example, Morillas et al. [11] use the fuzzy
peer groups, and Malinski and Smolka [12] utilize the fast
averaging peer group.

Apart from the filters mentioned above, there exist a fam-
ily of variational and partial differential equations. This type
of methods usually adopts a variational energy minimization
model to obtain the solution, such as the well-known Rudin-
Osher-Fatemi (ROF) model [13], the hybrid model [14], the
modified total variation diffusion method [15], and the total
variation 𝐿1 model [16]. The main advantage for them is to
use the gradient of images to represent the model, and thus
they have the capability of edge-preserving. Unfortunately,
this type of methods has the drawback similar to the VMF;
that is, they only work well on the low density noise because
they do not distinguish between the corrupted and the
uncorrupted pixels.

Inspired by switching filters and variational methods,
in this paper a decision-based marginal diffusion method
is proposed to reduce impulsive noise for color images.
The proposed method, in contrast to vectorial methods
emphasizing the correlation between the channels, indepen-
dently treats each channel in a color image and implements
diffusion operations on every corrupted component rather
than every vector. In addition, the proposed method divides
components into different categories based on different noise
characteristics. If an image is corrupted by salt-and-pepper
noise, the components are divided into the corrupted and the
noise-free components; if the image is corrupted by random-
valued impulses, the components are divided into the cor-
rupted, noise-free, and the possibly corrupted components.
Components falling into different categories are processed
differently. If a component is corrupted, a modified total
variation diffusion is applied; if the component is possibly
corrupted, a scaled total variation diffusion is applied; other-
wise, the component is left unchanged. Experimental results
show that the proposed method is robust to different noise
strengths and suitable for different images, with strong noise
removal capability as shown by PSNR/MSSIM/FSIM results
as well as the visual quality of restored images.

The rest of this paper is organized as follows. In Section 2,
the details of noise removal are introduced. Section 3 reports
experimental results and comparisons, and conclusions for
this paper are drawn in Section 4.

2. The Proposed Denoising Method

In this section, the details of reducing salt-and-pepper
noise and random-valued impulses are described, containing
denoising structures, noisemodels, noise detection, andnoise
removal.

2.1. Noise Removal Structure. Two denoising structures are
devised based on two noise characteristics, respectively. As
shown in Figure 1, inset (a) is associated with salt-and-
pepper noise and inset (b) is associated with random-valued
impulses. Both structures consist of noise detection module
and noise removal module, corresponding to detection stage
and removal stage. For salt-and-pepper noise, a detector
divides components into the corrupted and the noise-free
components; for random-valued impulses, another detector
divides components into the corrupted, noise-free, and the
possibly corrupted components. Based on the two detection
results, two mask arrays are built where each entry is a label
indicating which category the corresponding component
belongs to. Components falling into different categories are
processed differently in separate channels. If a component
is corrupted, modified total variation (MTV) diffusion is
applied; if the component is possibly corrupted, scaled
total variation (STV) diffusion is applied; otherwise, the
component is left unchanged. To achieve better results,
diffusion operations are iteratively implemented following
the corresponding mask array instructions. Especially, for
random-valued impulses, a hierarchical scheme is adopted in
removal stage; the corrupted components are first processed
and then the possibly corrupted ones, as in inset (b).

2.2. Noise Model and Analysis. RGB images to be processed
are only considered in this paper, which contain three
channels, the red, green, and blue, and a color image is defined
as a two-dimensional matrix consisting of a certain number
of pixels. Let u𝑖,𝑗 = (𝑢1𝑖,𝑗, 𝑢2𝑖,𝑗, 𝑢3𝑖,𝑗) denote a pixel at the position(𝑖, 𝑗) in the matrix and components 𝑢𝑞𝑖,𝑗 for 𝑞 = 1, 2, 3 denote
the RGB channel intensity values; a contamination image can
be modeled as

𝑢𝑞𝑖,𝑗 = {{{
V𝑞𝑖,𝑗 with probability 𝜋
𝑜𝑞𝑖,𝑗 with probability 1 − 𝜋 , for 𝑞 = 1, 2, 3, (1)

where 𝑜𝑞𝑖,𝑗 and V𝑞𝑖,𝑗 denote the original component and the
contaminative component, respectively. In this model, the
intensity of component V𝑞𝑖,𝑗 is a random variable. If V𝑞𝑖,𝑗 takes
the value 0 or 255 with equal probability, it is salt-and-pepper
noise model, denoted by SPM; if V𝑞𝑖,𝑗 takes any value from
the range [0, 255], then it is random-valued impulsive noise
model, denoted by RDM, assuming 8-bit per channel image
representation.
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Figure 1: Two structures of the noise removal. The operations surrounded by the rectangle with dashed lines are repeated.

The probability of a noise-free component processed
incorrectly is analyzed in the vectorial and marginal meth-
ods. Assuming detectors can correctly judge whether every
component is corrupted or not, then the marginal methods
can correctly process all components in the removal stage.
The vectorial methods, however, may identify noise-free
components as noisy to process, because the processing is
based on the pixel unit rather than the component unit. If
a component is corrupted with probability 𝜋, then a pixel
is not corrupted with probability (1 − 𝜋)3 since a pixel may
have corrupted 1, 2, or all 3 channels. Therefore, in vectorial
methods a noise-free component is processed incorrectly
with probability

𝑝 (𝜋) = [1 − (1 − 𝜋)3] − 𝜋
1 − (1 − 𝜋)3 = 2 − 3𝜋 + 𝜋23 − 3𝜋 + 𝜋2 . (2)

As shown in Figure 2, with the increasing probability 𝜋, the
probability of a noise-free component processed incorrectly
is decreased. In an extreme case, only when all components
are corrupted, can every component be correctly processed.
Just from this viewpoint, the marginal methods are superior
to the vectorial methods.
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Figure 2: Illustration of the relationship between two probabilities,
where a component is corrupted and a noise-free component is
processed incorrectly, assuming a vectorial method is applied.

2.3. Noise Detection. Two detectors are used in the SPM and
RDM, respectively. Both work in separate channels, based
on the features of local neighborhood. In other words, a
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component is detected within the channel it lies in. Let 𝑢𝑞𝑥,𝑦
be a current component centered in the sliding window; its
neighborhood is defined as

𝑁𝑞𝑥,𝑦 (𝑅) = {(𝑖, 𝑗) : |𝑥 − 𝑖| ≤ 𝑅, 󵄨󵄨󵄨󵄨𝑦 − 𝑗󵄨󵄨󵄨󵄨 ≤ 𝑅} ,
for (𝑥, 𝑦) ∈ Ω𝑞, 𝑞 = 1, 2, 3, (3)

where 𝑅 is the neighborhood radius quantified into the
positive integer domain and Ω𝑞 denotes the 𝑞th channel
domain. Obviously, a neighborhood contains (2𝑅+1)×(2𝑅+1) samples.

The Detector Used in SPM. This detector takes components
with intensity 0 or 255 as the noisy candidates. Let 𝑢𝑞𝑥,𝑦 be
a candidate, the absolute differences of intensities between
it and every sample within the neighborhood are calculated,
and then the number of samples, whose absolute difference
is larger than a predefined threshold value, is determined,
expressed as

𝑚𝑞𝑥,𝑦 = # {𝑢𝑞𝑖,𝑗 : (𝑖, 𝑗) ∈ 𝑁𝑞𝑥,𝑦 (𝑅) , 󵄨󵄨󵄨󵄨󵄨𝑢𝑞𝑥,𝑦 − 𝑢𝑞𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 > 𝑇} , (4)

where 𝑇 is the predefined threshold value, # denotes the
cardinality of the set, and 𝑚𝑞𝑥,𝑦 is the number of the samples
that satisfy the threshold condition.

The number 𝑚𝑥,𝑦 is used to determine if a current
candidate is corrupted. The determining function is

𝑓 (𝑥, 𝑦) = {{{
1, if 𝑚𝑞𝑥,𝑦 > thr

0, otherwise. (5)

In this formula, if 𝑓(𝑥, 𝑦) = 1, then candidate 𝑢𝑞𝑥,𝑦 is
corrupted; otherwise, it is uncorrupted. When all candidates
are complete, a binary mask array can be built; each entry is
either 1 or 0.

The Detector Used in RDM. This detector takes all compo-
nents as the noisy candidates, which is devised based on the
Rank-Ordered Absolute Differences (ROAD) [19]. It assigns
an index to each candidate. Based on these indices, the
corresponding candidate is judged as noise-free, corrupted,
or possibly corrupted. Let 𝑢𝑞𝑥,𝑦 be the current candidate; the
ROAD of 𝑢𝑞𝑥,𝑦 is defined by

ROAD𝑞𝛼 (𝑥, 𝑦) = 𝛼∑
𝑘=1

𝑟𝑞
𝑘
(𝑥, 𝑦) , for 𝑞 = 1, 2, 3, (6)

where 2 ≤ 𝛼 ≤ (2𝑅 + 1) × (2𝑅 + 1) is a integer, and
𝑟𝑞
𝑘
(𝑥, 𝑦) = 𝑘th smallest 󵄨󵄨󵄨󵄨󵄨𝑢𝑞𝑥,𝑦 − 𝑢𝑞𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 ,

for (𝑖, 𝑗) ∈ 𝑁𝑞𝑥,𝑦 (𝑅) . (7)

Then, the index of 𝑢𝑞𝑥,𝑦 is
ℎ𝑞 (𝑥, 𝑦)

=
{{{{{{{{{{{

0, ROAD𝑞𝛼 (𝑥, 𝑦) ≤ 𝑇1
ROAD𝑞𝛼 (𝑥, 𝑦) − 𝑇1𝑇2 − 𝑇1 , 𝑇1 < ROAD𝑞𝛼 (𝑥, 𝑦) < 𝑇2,
1, ROAD𝑞𝛼 (𝑥, 𝑦) ≥ 𝑇2,

(8)

where 𝑇1 and 𝑇2 are predefined threshold parameters. The
index ℎ𝑞(𝑥, 𝑦), for (𝑥, 𝑦) ∈ Ω𝑞, is a determining function,
which divides candidates into three categories. If ℎ𝑞(𝑥, 𝑦) =0, then 𝑢𝑞𝑥,𝑦 is declared as noisy-free; if ℎ𝑞(𝑥, 𝑦) = 1, 𝑢𝑞𝑥,𝑦
is declared as the corrupted component; otherwise, it is a
possibly corrupted component.

2.4. Noise Removal. In the removal stage, diffusion opera-
tions are implemented in separate channels.Themain reason
is twofold. First, each channel in a color image is con-
taminated independently, and contaminative components
are independent and identically distributed. Second, in a
natural image the gradients of different components of a
pixel are similar to one another, where Figure 3 illustrates this
property.

Moreover, components falling into different categories
are processed in different diffusion ways. In SPM, the
components are divided into the corrupted and noise-free
components. If a component is corrupted, theMTV diffusion
is applied; otherwise, the component is left unchanged. Let𝑢𝑞 be the 𝑞th channel of the noise-free image, 𝑢𝑞0 be its
noisy version, and Θ𝑞 ⊂ Ω𝑞 be the 𝑞th distorted channel
domain where Ω𝑞 ⊂ Ω is the 𝑞th channel domain and Ω ={Ω1, Ω2, Ω3}; then the MTV diffusion is expressed as

MTV (𝑢𝑞) = ∬
Θ𝑞

󵄨󵄨󵄨󵄨∇𝑢𝑞󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦. (9)

Applying Euler-Lagrange to (9), the corresponding descent
flow is

𝜕𝜕𝑡𝑢𝑞 (𝑥, 𝑦, 𝑡) = div( 1|∇𝑢𝑞|𝛽 ⋅ ∇𝑢𝑞) ,
for (𝑥, 𝑦) ∈ Θ𝑞

𝑢𝑞 (𝑥, 𝑦, 0) = 𝑢𝑞0,
(10)

where 𝑡 and div are the time step and the divergence operator
and |∇𝑢𝑞|𝛽 = √|∇𝑢𝑞|2 + 𝛽, where 𝛽 is a positive lifting
parameter avoiding the |∇𝑢𝑞| vanishing.

In RDM, the components are divided into the corrupted,
noise-free, and the possibly corrupted components, and
a hierarchical scheme is adopted that first processes the
corrupted and then the possibly corrupted ones. As shown
in inset (b) in Figure 2, in the first stage, if a component
is corrupted, the MTV diffusion is applied; otherwise, the
component is left unchanged. In the second stage, if a com-
ponent is possibly corrupted, the STV diffusion is applied;
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Figure 3: Illustration of RGB three channels and gradients of component in separate channels.

otherwise, the component is left unchanged. LetΘ𝑞[V] denote
the corrupted domain of the 𝑞th channel; the descent flow of
MTV in RDM is as follows:

𝜕𝜕𝑡𝑢𝑞 (𝑥, 𝑦, 𝑡) = div( 1|∇𝑢𝑞|𝛽 ⋅ ∇𝑢𝑞) ,
for (𝑥, 𝑦) ∈ Θ𝑞[V]

𝑢𝑞 (𝑥, 𝑦, 0) = 𝑢𝑞0.
(11)

Let Θ𝑞[𝑝] denote the possibly corrupted domain of the 𝑞th
channel where Θ𝑞 = {Θ𝑞[V], Θ𝑞[𝑝]} and 𝑢𝑞V denotes the 𝑞th
estimated channel by the MTV diffusion; then the descent of
STV is

𝜕𝜕𝑡𝑢𝑞 (𝑥, 𝑦, 𝑡) = ℎ𝑞 (𝑥, 𝑦) div( 1|∇𝑢𝑞|𝛽 ⋅ ∇𝑢𝑞) ,
for (𝑥, 𝑦) ∈ Θ𝑞[𝑝]

𝑢𝑞 (𝑥, 𝑦, 0) = 𝑢𝑞V ,
(12)

where ℎ𝑞(𝑥, 𝑦) is the scaled parameter, and the parameter
value is obtained according to (8):

ℎ𝑞 (𝑥, 𝑦) = ROAD𝑞𝛼 (𝑥, 𝑦) − 𝑇1𝑇2 − 𝑇1 ,
𝑇1 < ROAD𝑞𝛼 (𝑥, 𝑦) < 𝑇2.

(13)

Discretization of the divergence div(∇𝑢𝑞/|∇𝑢𝑞|𝛽) must be
discussed. As shown in Figure 4, the techniques of central
finite difference and half-pixel resolution discretization are

used. Let 𝑢𝑞𝑖,𝑗 be a current component; the divergence at the
current 𝑢𝑞𝑖,𝑗 is expressed as

div( ∇𝑢𝑞|∇𝑢𝑞|𝛽) =
𝜕𝜕𝑥 ( 𝑢𝑞𝑥|∇𝑢𝑞|𝛽) +

𝜕𝜕𝑦 (
𝑢𝑞𝑦|∇𝑢𝑞|𝛽)

≃ [
[
( 𝑢𝑞𝑥|∇𝑢𝑞|𝛽)𝑖+1/2,𝑗 − (

𝑢𝑞𝑥|∇𝑢𝑞|𝛽)𝑖−1/2,𝑗]]
+ [
[
( 𝑢𝑞𝑦|∇𝑢𝑞|𝛽)𝑖,𝑗+1/2 − (

𝑢𝑞𝑦|∇𝑢𝑞|𝛽)𝑖,𝑗−1/2]]
,

(14)

where 𝑢𝑞𝑥 and 𝑢𝑞𝑦 are the first-order derivatives in the x and
y directions in the 𝑞th channel, respectively.

At the half-pixel (𝑖, 𝑗 + 1/2) in the 𝑞th channel, the
following three formulas hold:

(∇𝑢𝑞)𝑖,𝑗+1/2 = ((𝑢𝑞𝑥)𝑖,𝑗+1/2 , (𝑢𝑞𝑦)𝑖,𝑗+1/2)
(𝑢𝑞𝑦)𝑖,𝑗+1/2 = 𝑢𝑞𝑖,𝑗+1 − 𝑢𝑞𝑖,𝑗
(𝑢𝑞𝑥)𝑖,𝑗+1/2 = (𝑢𝑞

𝑖+1,𝑗+1/2
− 𝑢𝑞
𝑖−1,𝑗+1/2

)
2

= (𝑢𝑞𝑖+1,𝑗+1 + 𝑢𝑞𝑖+1,𝑗 − 𝑢𝑞𝑖−1,𝑗 − 𝑢𝑞𝑖−1,𝑗+1)4 .

(15)

In addition, |∇𝑢𝑞|𝛽 = √(𝑢𝑞𝑥)2 + (𝑢𝑞𝑦)2 + 𝛽; then
( 𝑢𝑞𝑦|∇𝑢𝑞|𝛽)𝑖,𝑗+1/2 =

(𝑢𝑞𝑦)𝑖,𝑗+1/2
√(𝑢𝑞𝑥)2𝑖,𝑗+1/2 + (𝑢𝑞𝑦)2𝑖,𝑗+1/2 + 𝛽

= 𝐶𝑞
1,(𝑖,𝑗)

(𝑢𝑞𝑖,𝑗+1 − 𝑢𝑞𝑖,𝑗) ,
(16)
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Figure 4: The representation of discretization at half-pixel resolution in a channel.

where

𝐶𝑞
1,(𝑖,𝑗)

= 1
√(𝑢𝑞𝑖+1,𝑗+1 + 𝑢𝑞𝑖+1,𝑗 − 𝑢𝑞𝑖−1,𝑗 − 𝑢𝑞𝑖−1,𝑗+1)2 /16 + (𝑢𝑞𝑖,𝑗+1 − 𝑢𝑞𝑖,𝑗)2 + 𝛽

.
(17)

Similarly, at the other three half-pixels,

( 𝑢𝑞𝑦|∇𝑢𝑞|𝛽)𝑖,𝑗−1/2 = 𝐶
𝑞

2,(𝑖,𝑗)
(𝑢𝑞𝑖,𝑗 − 𝑢𝑞𝑖−1,𝑗) ,

( 𝑢𝑞𝑥|∇𝑢𝑞|𝛽)𝑖+1/2,𝑗 = 𝐶
𝑞

3,(𝑖,𝑗)
(𝑢𝑞𝑖+1,𝑗 − 𝑢𝑞𝑖,𝑗) ,

( 𝑢𝑞𝑥|∇𝑢𝑞|𝛽)𝑖−1/2,𝑗 = 𝐶
𝑞

4,(𝑖,𝑗)
(𝑢𝑞𝑖,𝑗 − 𝑢𝑞𝑖−1,𝑗) ,

(18)

where

𝐶𝑞
2,(𝑖,𝑗)

= 1
√(𝑢𝑞𝑖+1,𝑗−1 + 𝑢𝑞𝑖+1,𝑗 − 𝑢𝑞𝑖−1,𝑗−1 − 𝑢𝑞𝑖−1,𝑗)2 /16 + (𝑢𝑞𝑖,𝑗−1 − 𝑢𝑞𝑖,𝑗)2 + 𝛽

,

𝐶𝑞
3,(𝑖,𝑗)

= 1
√(𝑢𝑞𝑖+1,𝑗+1 + 𝑢𝑞𝑖,𝑗+1 − 𝑢𝑞𝑖+1,𝑗−1 − 𝑢𝑞𝑖,𝑗−1)2 /16 + (𝑢𝑞𝑖+1,𝑗 − 𝑢𝑞𝑖,𝑗)2 + 𝛽

,

𝐶𝑞
4,(𝑖,𝑗)

= 1
√(𝑢𝑞𝑖,𝑗+1 + 𝑢𝑞𝑖−1,𝑗+1 − 𝑢𝑞𝑖,𝑗−1 − 𝑢𝑞𝑖−1,𝑗−1)2 /16 + (𝑢𝑞𝑖−1,𝑗 − 𝑢𝑞𝑖,𝑗)2 + 𝛽

.

(19)
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Substituting (16) and (18) to (14), the divergence div(∇𝑢𝑞/|∇𝑢𝑞|𝛽) at the current 𝑢𝑞𝑖,𝑗 can be discretized as

div( ∇𝑢𝑞|∇𝑢𝑞|𝛽)𝑖,𝑗 =
4∑
𝑘=1

[𝐶𝑞
𝑘,(𝑖,𝑗)

(𝑃𝑞
𝑘,(𝑖,𝑗)

− 𝑢𝑞𝑖,𝑗)] , (20)

where 𝑃𝑞
𝑘,(𝑖,𝑗)

, for 𝑘 = 1, 2, 3, 4, denote the 4-neighbors of 𝑢𝑞𝑖,𝑗
in the 𝑞th channel; that is,

𝑃𝑞
1,(𝑖,𝑗)

= 𝑢𝑞𝑖,𝑗+1;
𝑃𝑞
2,(𝑖,𝑗)

= 𝑢𝑞𝑖,𝑗−1;
𝑃𝑞
3,(𝑖,𝑗)

= 𝑢𝑞𝑖+1,𝑗;
𝑃𝑞
4,(𝑖,𝑗)

= 𝑢𝑞𝑖−1,𝑗.
(21)

Then, the explicit discrete schemes associated with (10), (11),
and (12) are, respectively, as follows:

(𝑢𝑞𝑖,𝑗)𝑛+1 = (𝑢𝑞𝑖,𝑗)𝑛 + (Δ𝑡)
⋅ 4∑
𝑘=1

[(𝐶𝑞
𝑘,(𝑖,𝑗)

)𝑛 ((𝑃𝑞
𝑘,(𝑖,𝑗)

)𝑛 − (𝑢𝑞𝑖,𝑗)𝑛)] ,
for (𝑖, 𝑗) ∈ Θ𝑞,

(22)

(𝑢𝑞𝑖,𝑗)𝑛+1 = (𝑢𝑞𝑖,𝑗)𝑛 + (Δ𝑡)
⋅ 4∑
𝑘=1

[(𝐶𝑞
𝑘,(𝑖,𝑗)

)𝑛 ((𝑃𝑞
𝑘,(𝑖,𝑗)

)𝑛 − (𝑢𝑞𝑖,𝑗)𝑛)] ,
for (𝑖, 𝑗) ∈ Θ𝑞[V],

(23)

(𝑢𝑞𝑖,𝑗)𝑛+1 = (𝑢𝑞𝑖,𝑗)𝑛 + (Δ𝑡)
⋅ 4∑
𝑘=1

ℎ𝑞 (𝑖, 𝑗) [(𝐶𝑞
𝑘,(𝑖,𝑗)

)𝑛 ((𝑃𝑞
𝑘,(𝑖,𝑗)

)𝑛 − (𝑢𝑞𝑖,𝑗)𝑛)] ,
for (𝑖, 𝑗) ∈ Θ𝑞[𝑝].

(24)

In these equations, Δ𝑡 is the time step-size, and the super-
script 𝑛 denotes the 𝑛th iteration.

3. Experiments

In this section, three metrics used to evaluate denoising per-
formance are first introduced containing Peak Signal toNoise
Ratio (PSNR), Mean Structural Similarity Index Measure
(MSSIM), and extended Feature Similarity index (FSIM𝑐),
then the setting parameters are discussed, and finally the
experimental results and comparisons are reported.

3.1.ThreeMetrics. PSNR, given in decibels (dB), is ameasure-
ment based onmean pixel intensity errors between the noise-
free and the restored images. Higher PSNR means better
denoising capability. Let 𝑢 and 𝑢̂ be the noise-free and the

restored images, respectively,𝑀 denote the number of pixels
in 𝑢, and ‖ ⋅ ‖F denote the Frobenius norm; the calculation of
PSNR is

PSNR = 20 log10( 255 × 3𝑀
∑3𝑞=1 ‖𝑢𝑞 − 𝑢̂𝑞‖2F) . (25)

MSSIM is a measure based on structural similarities [20]. It
is bounded in the range [0, 1], where the closer the value is
to 1, the better the denoising scheme is implied. MSSIM is
mean value of the structural similarities between the blocks
of the noise-free image 𝑢 and the restored image 𝑢̂.Therefore,
the computation involves two blocks, denoted by 𝑦1 and𝑦2, respectively. Let 𝜇𝑦1 , 𝜇𝑦2 be the mean values of 𝑦1 and𝑦2, respectively, 𝜎𝑦1 and 𝜎𝑦2 the variances, and 𝜎𝑦1𝑦2 the
covariance, and let 𝑐1 and 𝑐2 denote two stabilization variables;
then the calculation of SSIM is

MSSIM = 13𝑀 ∑
𝑘

SSIM (𝑦1, 𝑦2)

SSIM (𝑦1, 𝑦2) = (2𝜇𝑦1𝜇𝑦2 + 𝑐1) (2𝜎𝑦1𝑦2 + 𝑐2)(𝜇2𝑦1 + 𝜇2𝑦2 + 𝑐1) (𝜎2𝑦1 + 𝜎2𝑦2 + 𝑐2) .
(26)

FSIM𝑐 is a measurement based on feature similarities [21].
Similar to MSSIM, it is also bounded in the range [0, 1],
where the closer the value is to 1, the better the denoising
performance is implied.This index is a combination of Phase
Congruency (PC) and Gradient Magnitude (GM). Let x be
a pixel and 𝜆 > 0 be a parameter. 𝑆𝐿(x) = 𝑆PC(x)𝑆𝐺(x) and𝑆𝐶(x) = 𝑆𝐼(x)𝑆𝑄(x), where symbol 𝑆means similarity, and the
subscripts 𝐼 and𝑄 denote chromatic channels; the calculation
of FSIM𝑐 is

FSIM𝑐 = ∑x∈Ω 𝑆𝐿 (x) [𝑆𝐶 (x)]𝜆 PC𝑚 (x)∑x∈Ω PC𝑚 (x) . (27)

3.2. Parameter Setting

The Parameters in SPM. Five parameters are set in the pro-
posed SPM method; (𝑅, 𝑇, thr) are used in salt-and-pepper
noise detection, and (Δ𝑡,𝑁) are used in diffusion operations.
The parameters, 𝑇 and thr, are two thresholds where the
former judges the relationships between a component and
its neighbors and the latter decides whether the component
is corrupted or not. The influence of both on the PSNR
denoising results for different intensity noise is shown in
Figure 5. For all noise densities, 𝑅, 𝑇, thr, andΔ𝑡were set to 3,
25, 3, and 0.8, respectively. The parameter 𝑁 is the desirable
iterative time that depends on noise strength 𝜋 and the time
step-size Δ𝑡. Figure 6 illustrates that the PSNR and MSSIM
results for fixed strength noise depend on the number of
iterations when Δ𝑡 = 0.8. From inset (a) in Figure 6, as the
number of iterations 𝑛 increases, the growth of PNSR tends
to slow and ultimately achieves the stable value when 𝑛meets
or exceeds the desirable number 𝑁, for any fixed noise. The
same conclusion for the MSSIM measurement can be drawn
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Figure 5: Dependence of PSNR measures on the parameters 𝑇 and thr for various noise levels.
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Figure 6: Illustration of the dependence of PSNR and MSSIM results on the number of iterations.

from inset (b) in Figure 6. In our experiments, the values of𝑁 are shown in Table 1.

The Parameters in RDM. Seven parameters are set in the
proposed RDM method; (𝑅, 𝛼, 𝑇1, 𝑇2) are used in random-
valued impulse detection, and (Δ𝑡,𝑁V, 𝑁𝑝) are used in
diffusion operations. For all the noise densities, 𝑅, 𝛼, 𝑇1, 𝑇2,
and Δ𝑡 were set to 2, 14, 150, 320, and 0.5, respectively. The
parameter𝑁V is the desirable number of iterations that is used
in processing the corrupted pixels; the parameter 𝑁𝑝 is the
desirable number of iterations that is used in processing the

possibly corrupted pixels. Both parameters depend on noise
strength 𝜋 and the time step-size Δ𝑡. When Δ𝑡 = 0.5, the
values of two parameters used in our experiments are shown
in Table 2.

3.3. Experimental Results and Comparisons

Experimental Results and Comparisons in SPM. A test set,
denoted by Γ, was built to validate the proposed SPMmethod.
This set contained contaminative versions of seven images,
and each image was corrupted by ten different densities of
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Voit 256 × 256Balloon 256 × 256London 512 × 512Lena 256 × 256Boat 256 × 256Baboon 512 × 512Pepper 256 × 256

Figure 7: Seven noise-free images.

Table 1: The desirable number of iterations𝑁 for different density noise when Δ𝑡 = 0.8.
𝜋 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%𝑁 150 190 270 380 510 620 690 750 810 850

Table 2: The value of the parameter𝑁 used in RDM.

𝜋 5% 10% 20% 30% 40% 50% 60%𝑁V 115 130 160 190 210 270 510𝑁𝑝 4 6 10 15 20 30 45

Table 3: Comparison of the efficiency with those of other methods for the Lena image in SPM.

Measure Method Salt-and-pepper noise 𝜋
5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

PSNR

MMF 28.81 28.09 25.57 21.90 18.09 14.60 11.86 9.61 7.82 6.37
AMMF 28.81 28.09 25.03 22.09 21.11 19.35 18.47 16.91 15.04 11.30
VMF 28.52 27.81 24.92 20.69 16.89 13.66 11.21 9.28 7.68 6.37

TVL1 [17] 26.37 26.31 26.15 26.00 25.81 25.45 25.09 23.94 17.89 12.40
TVL1 [18] 27.44 27.38 27.18 23.74 11.00 5.35 3.57 3.16 3.01 3.01
Ours 41.16 38.03 34.99 33.04 31.35 30.07 28.58 27.21 25.66 23.15

MSSIM

MMF 0.83 0.82 0.78 0.66 0.45 0.25 0.13 0.06 0.03 0.01
AMMF 0.83 0.82 0.75 0.69 0.68 0.63 0.61 0.54 0.45 0.21
VMF 0.82 0.80 0.72 0.54 0.33 0.18 0.10 0.06 0.03 0.01

TVL1 [17] 0.72 0.72 0.72 0.71 0.70 0.69 0.68 0.64 0.42 0.18
TVL1 [18] 0.78 0.78 0.77 0.69 0.22 0.03 0.01 0.00 0.01 0.00
Ours 0.99 0.98 0.96 0.94 0.92 0.90 0.86 0.82 0.76 0.66

FSIM𝑐

MMF 0.95 0.94 0.93 0.88 0.79 0.65 0.53 0.43 0.37 0.33
AMMF 0.95 0.94 0.88 0.83 0.82 0.77 0.75 0.70 0.66 0.57
VMF 0.94 0.94 0.90 0.84 0.73 0.61 0.50 0.42 0.37 0.33

TVL1 [17] 0.85 0.85 0.84 0.84 0.83 0.82 0.81 0.79 0.71 0.59
TVL1 [18] 0.87 0.87 0.87 0.83 0.49 0.33 0.30 0.29 0.29 0.29
Ours 1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.92 0.89 0.82

salt-and-pepper noise.The sevennoise-free images are shown
in Figure 7, taken from the CVG-Granada database. Using
the values of parametersmentioned in SPM in Section 3.2, the
proposed SPM method was applied to the test Γ. The PSNR,
MSSIM, and FSIM results for the Lena image are reported in
Table 3, and the visual results for Lena, Pepper, and Baboon
are shown in Figures 8, 9, and 10, respectively.

To augment the evaluation, the proposed method is
compared with other five methods including MMF [22],
AMMF [23], VMF [1], TVL1 in [18], and TVL1 in [17].
The MMF filter used the sliding window of size 3 × 3.
In the AMMF, when the noise densities were 0.05, 0.1,

0.2, 0.3, 0.4, 0.5 0.6, 0.7, 0.8, and 0.9, the filtering window
radius values were set to 1, 1, 2, 3, 3, 4, 4, 5, 6, and 7,
respectively. The VMF used the sliding window of size 3 × 3.
The source codes of TVL1 in [18] and TVL1 in [17] were
taken from their authors, and the parameters used in the
experiments were those recommended by the authors. The
five methods were also applied to the same test set Γ. The
PSNR, MSSIM, and FSIM results for the Lena image are
also reported in Table 3. Visual comparison results for the
Pepper and Baboon images are shown in Figures 9 and
10, respectively, and the information about these images is
labeled sideways.
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Figure 8: Visual results from the proposed SPMmethod for the Lena image.

In addition, the mean PSNR, MSSIM, and FSIM results
for fixed noise are calculated for noisy images, the MMF,
AMMF, VMF, TVL1 in [18], TVL1 in [17], and the proposed
SPMmethod, respectively. The calculations are as follows:

PSNR𝜋 = 1󵄨󵄨󵄨󵄨Γ𝜋󵄨󵄨󵄨󵄨 ∑𝑘∈Γ𝜋PSNR𝜋 (𝑘) ,
MSSIM𝜋 = 1󵄨󵄨󵄨󵄨Γ𝜋󵄨󵄨󵄨󵄨 ∑𝑘∈Γ𝜋MSSIM𝜋 (𝑘) ,
FSIM𝜋 = 1󵄨󵄨󵄨󵄨Γ𝜋󵄨󵄨󵄨󵄨 ∑𝑘∈Γ𝜋FSIM𝜋 (𝑘) .

(28)

In the above three equations, Γ𝜋 denotes the noisy images
with the same density noise 𝜋 in the test Γ and PSNR𝜋(𝑘),
MSSIM𝜋(𝑘), and FSIM𝜋(𝑘) denote the PSNR, MSSIM, and
FSIM values of the 𝑘th image with the 𝜋 density noise,
respectively. For example, if the MMF is used, FSIM0.1
denotes the mean FSIM value of all the images with the 0.1
density noise that is associated with the MMF. The mean

values of the three metrics for different methods on different
noise densities are plotted in Figure 11.

Experimental Results and Comparisons in RDM. By using the
seven noise-free images in Figure 7, another test set was built
for the proposed RDM method, denoted by Ψ, where each
noise-free image was corrupted by different seven random-
valued impulses.Using the values of parametersmentioned in
RDM in Section 3.2, the proposed RDMmethod was applied
to the test Ψ. The PSNR, MSSIM, and FSIM results for the
London image are reported in Table 4, and the visual results
for the Pepper and Baboon images are shown in Figures 12
and 13, respectively.

For comparisons, other five methods, MMF, AMMF,
VMF, AVMF [24], and TVL1 [18], were applied on the test
set Ψ. Both of the MMF and VMF used the sliding window
of size 3 × 3. In both of the AMMF and AVMF, when the
noise densities were 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, the
filtering window radius values were set to 1, 1, 2, 2, 3, 3, and 4,
respectively. The source codes of TVL1 [18] are taken from
their authors, and the parameters used in the experiments
are those recommended by the authors. The PSNR, MSSIM,
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Figure 9: Visual zoom-in result comparison between different methods on the Pepper image.
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Figure 10: Visual zoom-in result comparison between different methods on the Baboon image.
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Figure 11: The mean PSNR/MSSIM/FSIM results from different methods in SPM.

and FSIM results for the London image are also reported in
Table 4. Visual comparison results for the Pepper and Baboon
images are also shown in Figures 12 and 13, respectively, and
the information about these images is labeled sideways.

Similar to the comparisons in SPM, the mean PSNR,
MSSIM, and FSIM results for fixed noise are calculated for
noisy images, MMF, AMMF, VMF, AVMF, TVL1 [18], and
the proposed RDM method, respectively, according to (28).
The mean values of the three metrics for different methods
on different noise densities are plotted in Figure 14.

Observations and Conclusions. The following observations
and conclusions can be drawn from the quantitative mea-
surements and visual comparison results. First, the proposed
method achieved the best results in every case tested. The
proposed SPMmethod achieved 14.05 dB, 10.68 dB, 14.72 dB,

17.93 dB, and 8.27 dB improvements over the MMF, AMMF,
VMF, TVL1 [18], and TVL1 [17] on average, respectively, in
the PSNR results, and achieved 0.472, 0.278, 0.519, 0.554,
and 0.293 improvements in the MSSIM results and achieved
0.254, 0.164, 0.274, 0.398, and 0.169 improvements in the
FSIM results. The proposed RDM method outperformed
MMF, AMMF, VMF, AVMF, and TVL1 [18] by 3.56 dB,
4.16 dB, 4.80 dB, 3.73 dB, and 2.45 dB on average, respectively,
in the PSNR results, and by 0.200, 0.182, 0.286, 0.231, and 0.135
in the MSSIM results and by 0.064, 0.097, 0.095, 0.102, and
0.071 in the FSIM results. Second, the proposed method has
a strong capability to preserve detail. The proposed method
reconstructedmore image details from noisy images than the
comparativemethods.Third, the proposedmethod wasmore
robust to different densities of noise than the comparative
methods. In summary, the proposed method shows strong
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Figure 12: Visual results from different methods on the Pepper image in RDM. (PSNR/MSSIM/FSIM).
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Figure 13: Visual results from different methods on the Baboon image in RDM (A/B/C = PSNR/MSSIM/FSIM).
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Figure 14: The mean PSNR/MSSIM/FSIM results from different methods in SPM.

capability of reducing noise not only in SPMbut also in RDM,
in terms of the PSNR/MSSIM/FSIM results, in addition to
producing a higher visual perception quality in restored
images, in comparison with results from other methods.

4. Conclusions

In this paper, a decision-based marginal total variation diffu-
sion is proposed for impulsive noise removal. In contrast to
vectorial methods, the proposedmethod only treats distorted
components rather than distorted vectors. Furthermore, the
proposed method divides components into different cate-
gories based on different noise characteristics. Components
are divided into the corrupted and noise-free components

in SPM and divided into the corrupted, noise-free, and
the possibly corrupted components in RDM. Components
falling into different categories are processed differently. If a
component is corrupted, modified total variation diffusion is
applied; if it is possibly corrupted, scaled total variation diffu-
sion is applied; otherwise, the component is left unchanged.
To achieve better results, a hierarchical scheme is adopted in
RDM; the corrupted components are first processed and then
the possibly corrupted ones. A total of 119 noisy images are
tested. Experimental results show that the proposed method
is robust to different noise strengths and suitable for different
images, with strong noise removal capability as shown by
PSNR/SSIM/FSIM results as well as the visual quality of
restored images.
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Table 4: Comparison of the efficiency with those of other methods for the London image in RDM.

Measure Method Random valued impulses 𝜋
5% 10% 20% 30% 40% 50% 60%

PSNR

MMF 33.70 32.92 30.89 27.86 24.71 21.72 19.29
AMMF 33.70 28.33 28.89 26.01 25.57 23.67 22.21
VMF 33.51 32.49 29.38 25.58 22.27 19.47 17.33
AVMF 33.51 32.49 28.61 27.13 24.70 22.76 20.58
TVL1 31.07 31.00 30.87 30.63 29.50 25.38 20.49
Ours 37.56 35.82 33.78 32.03 30.60 29.06 27.56

MSSIM

MMF 0.91 0.91 0.88 0.80 0.68 0.51 0.36
AMMF 0.91 0.83 0.80 0.75 0.71 0.67 0.62
VMF 0.91 0.90 0.82 0.67 0.49 0.32 0.21
AVMF 0.91 0.90 0.79 0.74 0.66 0.59 0.53
TVL1 0.85 0.85 0.84 0.84 0.82 0.77 0.66
Ours 0.98 0.97 0.95 0.92 0.89 0.85 0.80

FSIM𝑐

MMF 0.99 0.98 0.97 0.95 0.90 0.83 0.76
AMMF 0.99 0.93 0.94 0.88 0.86 0.80 0.76
VMF 0.98 0.98 0.96 0.92 0.86 0.78 0.71
AVMF 0.98 0.98 0.93 0.91 0.83 0.79 0.72
TVL1 0.97 0.97 0.97 0.96 0.95 0.90 0.81
Ours 1.00 0.99 0.99 0.98 0.97 0.95 0.92
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