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The use of global navigation satellite system (GNSS) is entering a new era of joint positioning based on the use of multifrequencies
and multimodes. Ensuring the correct weighting of observations from each system and satellite has become a key problem during
real-time positioning. This paper addresses the issue of weights of observations as well as the quality control of GPS/BDS
pseudoranges in the context of real-time relative positioning. Thus, in the first place, the Helmert variance component
estimation (VCE) is used to determine the relative weighting of observations from the two systems, and then, we introduce
robustness estimation theory and construct a new method. The method is resistant to the influence of outliers in the
observations by selecting weight iterations. To do this, we selected GPS/BDS observation data at baseline lengths of 40 km,
46 km, and 64 km for verification and analysis. Experimental results show that, in terms of the relative positioning of medium-
to-long baseline based on GPS/BDS pseudorange observations, when observed values incorporate large gross errors, our method
can reduce the weighting of suspicious or abnormal values and weaken their impact on positioning solutions, so that the
positioning results will not appear to have large deviation.

1. Introduction

In the application of global navigation satellite system
(GNSS), pseudorange differential positioning is widely used
in the civilian market. The advantages of this method are that
it takes less time and is more efficient and less complex than
carrier differential positioning. In particular, in the case of
single-frequency GNSS receivers, the use of pseudorange
differential positioning means that there is no need to solve
cycle slips and resolve ambiguity, as a simple difference func-
tion can be used to determine positioning. This also trans-
lates to a low cost; if it is also possible to ensure positioning
accuracy and reliability in real time, such a system would
have broad applications and marketable prospects. Thus,
correlated with the emergence of GNSS multisystem data,
numerous researchers have studied the use of GPS and

BDS, either standalone or integrated, to obtain rapid posi-
tioning, even instantaneously, for short baselines [1-4].

In the case of multisystem joint positioning, the issue of
how to reliably determine the weight of different observa-
tions will directly affect the final positioning. Thus, methods
to determine weight are divided into two categories in recent
studies, the first of which is referred to as the classic prior
fixed weight method. In these approaches, weights are deter-
mined according to the relationship between empirical values
or real-time observations, for example, based on the angle of
altitude [5, 6] or self-adaption with prior variance [7, 8] or
using a stochastic model based on the signal-to-noise ratio
[9, 10]. The second category of approaches includes the pos-
terior variance-fixed weight estimation method, also named
variance component estimation (VCE), which applies
correction information obtained after a preadjustment to
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the fixed weight. Examples of these approaches include
Helmert VCE, minimum norm quadratic unbiased estima-
tion method (MINQUE), best invariant quadratic unbiased
estimator (BIQUE), and least-squares variance component
estimation (LC-VCE). The LC-VCE was initially proposed
by Teunissen and Amiri-Simkooei, then improved and
applied to GPS geometry-based observation model by
Amiri-Simkooei et al. [11-14]. This method is based on
the well-known principle of least squares and is flexible
since it works with a user-defined weight matrix. Different
weight matrix classes can be defined which all automatically
lead to unbiased estimators of (co)variance components. A
number of studies have applied these kinds of fixed weight
methods to the combination of GPS/GLONASS positioning
[15, 16], GPS/BDS positioning [17, 18], and GPS/GLO-
NASS/BDS three-system joint positioning [19, 20]. The
results of these investigations show that the second category
of methods is superior to the first and that, in particular, the
use of the Helmert VCE most reliably guarantees the accu-
racy of positioning. However, although it is clear that the
Helmert VCE is the best weighting method to use in multi-
system joint positioning, this approach is based on the
principle of least squares, and so is more sensitive to gross
errors in the observed values. This will result in random
model deviations so that fixed weighting is not accurate,
and positioning results are distorted.

There are two commonly used methods of dealing with
gross errors. The first category is outlier detection, such as
data snooping, Tau, and t-tests. The outliers are detected
step-by-step using statistical tests. In every step, an observa-
tion is detected as an outlier and removed from the observa-
tion set. The second category is robust estimation, such as
Andrews’s M-estimation, Huber’s M-estimation, Tukey’s
M-estimation, and Yang’s M-estimation. The main objective
of robust estimation is to detect the normally distributed
observations in the observation set and at the same time
decreasing or moreover removing completely the bad effects
of the outlying observations on the normal observations with
respect to the degree of their discrepancy from the normal
distribution. Both of these methods have been studied in
depth and obtained a wide range of applications. Snow and
Schaffrin [21] discussed outliers detection based on Baarda’s
hypothesis-testing theory and applied the proposed approach
to the three-dimensional GPS baseline vectors. Gokalp et al.
[22] investigated the behavior of different outlier detection
methods for GPS network. Amiri-Simkooei and Jazaeri [23]
applied the data snooping procedure to the errors-in-
variables (EIV) models. In the application of robust estima-
tion, Xu [24] extended robust estimation methods to the case
of correlated observations with the help of bivariate func-
tions. Based on that, Wieser and Brunner [25] discussed the
application of this method in the GPS double difference loca-
tion. Yang et al. [26] proposed a robust Kalman filtering
(RKF) algorithm based on innovation vectors and an equiva-
lent weight matrix structure with outliers. After that, many
scholars had conducted in-depth study and application of
this method [27-29]. Guo and Zhang [27] put forward an
adaptive RKF algorithm for PPP processing to overcome
the difficulty of obtaining the prior information about the
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process noise and the updated measurement noise. Consider-
ing that the RKF is less effective in treating unequal precision
observations for PPP, Yao [29] introduced residual vectors to
RKEF, so as to effectively reduce the effects of a single outlier.

Overall, these two categories dealing with outliers have
different characters. According to some researches, loose
criterion for outlier detection may help little in eliminating
outliers completely in real-time navigation positioning.
Nevertheless, overstrict standard may result in lacking
observation and less reliability of the solution [30]. And
some statistical tests such as the t-test are not rigorously
valid for the case of correlated observations [31]. Thus,
to address this, we introduce a robust estimation method
in this paper that is based on the Helmert VCE theory.
Combining these two estimation theories and applying
them to the relative positioning of GPS/BDS pseudoranges
have enabled us to ensure both the accuracy and reliability
of positioning solutions in each epoch.

2. A Basic Model of GPS/BDS Pseudorange
Relative Positioning

In order to determine relative positioning, we chose the dou-
ble difference (DD) form of observed values as our basic
model, such that receiver and satellite clock errors are
completely eliminated. Thus, as the result of GPS, BDS
belongs in the code division multiple access (CDMA) signal
system, satellite frequency is the same throughout the system,
and receiver hardware delay can be considered to be the same
as the receiver clock error. This latter error can therefore be
completely eliminated due to the difference between satel-
lites, and pseudorange relative positioning in the basic model
can be expressed as follows:

K
VAP, =VAp+VA— + VAT + VAM + VAO + VAg,;, (1)
i f2 P

1

where VA is the DD operator, i refers to the ith frequency
(e.g., GPS L1, GPS L2, BDS B1, and BDS B2), f is the
frequency (Hz), P refers to pseudorange observations (m),
p is the geometric distance from satellite to receiver (m), K
is the parameter of the first-order ionospheric delay, K =
40.28 TEC, TEC denotes the total electron content, T is the
tropospheric delay (m), M denotes the multipath error (m),
O is the satellite orbit error (m), and ¢; refers to the mea-
surement noise of the pseudorange (m).

Thus, linearizing (1) leads to an error equation, as follows:

V=BX-L, (2)

where vector V is the residual of the observation, vector X
is an uncertain parameter related to the correction of
unfixed-point position approximations, X =[0x 8y dz],
while B refers to the corresponding coefficient matrix, L=V
AP, -~ VAp" = VA(K/f}) = VAT = VAM — VAO - VAe, p, and
p° is the geometric distance from the satellite to the receiver
based on an approximate calculation of the point to be deter-
mined. Thus, if we select P as the weight matrix of the
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observations, then (3) can be derived according to the least
squares principle

X = (B"PB) 'B'PL. (3)

In this expression, the weight of the observations denotes
the magnitude of the contribution of each observation to the
total solution, so the appropriateness of weight determina-
tion directly affects the positioning effect. Therefore, for the
same system, the scale of observation noise will vary along
with the satellite elevation, propagation path, and other
factors. This also means that the accuracy of each satellite
pseudorange observation will be different; moreover, for dif-
ferent GNSS, the code rates and the accuracy of pseudorange
observations will also vary. In cases where the weights are
unreasonable, the accuracy of multisystem fusion positioning
results may be lower than those derived from single-system
positioning and will not meet the basic requirements of data
fusion. In other words, irrespective of whether the single-
system or multisystem joint positioning is used, the question
of how to establish a random model to determine the optimal
weight in positioning is critical.

3. A Robust Method Based on the Helmert VCE

3.1. The Helmert VCE. The Helmert VCE is sometimes also
referred to as posterior variance stochastic model estimation.
The basic idea of this approach is to set the initial weight for
all kinds of observations prior to preadjustment and then
based on certain principles utilize the correction information
obtained from the preadjustment to estimate the pretest var-
iance and covariance for the various kinds of observations
and finally fix weight.

In GPS/BDS joint positioning, error (2) contains two
kinds of independent observations, L, and L, which are
derived from GPS and BDS, respectively. Similarly, the weight
matrixes are P, and P,, respectively, such that P;,=P,, =0.
Error equations can therefore be written as follows:

V,=B,X-L,
V,=B,X-L,.

(4)

However, in the first adjustment, those weights P, and P,

of the observations are inappropriate and the corresponding
unit weight variances og and o are also unequal. The pur-
pose of VCE is to use the square sum, V! P,V,, of each adjust-
ment correction to calculate the unit weight variance
estimate value, 63{, given each navigation system. Specific
steps for calculating G are presented in previous studies

[18, 19]. Thus, the relationship between unit weight variance
and fixed weight is as follows:

- C

P = (5)

iT 2510
O'OiPi

where c is constant and is usually selected from &7 . With this
weight matrix, the steps above are recalculated until the unit

weight variance of the two systems is equal or could be shown
to have a ratio approximately equal to one.

3.2. A Robust Method for Estimation Based on the Helmert
VCE. Although the Helmert VCE described above can be
used to obtain a better positioning solution, this method is
not resistant to gross errors, that is to say, if observations
contain gross errors and the positioning error will be large,
even leading to incorrect solutions. Thus, we outline the the-
ory of robust estimation in this paper on the basis of Helmert
VCE and discuss how the influence of outliers can be miti-
gated by selecting appropriate weight iteration.

On the basis of robust estimation theory, the least-
squares estimation can be expressed as follows:

A Tor \ln TH
X = (Bk PBk) B, PL,, (6)

where P denotes the equal weight matrix, while Huber
weight, Hampel weight, and Tukey are examples of equal
weight functions. However, taking the previous experimen-
tal analyses into account, we choose to use the Institute of
Geodesy and Geophysics weight function in this study
[32], the function is as follows:

P, |Vi| <k
2
> k (k= IVil
i= P’|VO’|<(k—k)2 ko < |Vi| <Ky, (7)
i 1 0
0, k<|Vi],

where V is the standard residual corresponding to V. Two
key issues remain unresolved, the first of which is weight
choice, P;, itself determined by Helmert VCE, while the sec-
ond is definition of k, and k;. In general, if the values of k,
and k, are too large, it will not be able to resist the impact
of some big errors, whereas too small will be easy to
weaken the effect of normal observations. In this paper, the
mean value for the number of redundant observations is used
to determine the values of k, and k;. When the number of
redundant observations is large, it means that more informa-
tion is observed, so that we can reduce the values of k, k; to
control the observations more strictly. On the contrary, if we
have less redundant observational information, we may
properly enlarge the value of k, and k; to avoid overcontrol
of the quality of observations. As the values of k, and k, are
too small, the weights of some observations may be reduced
to zero, which lead to too little observations and ultimately
affect the positioning result. Thus, if we consider the robust
equation for both the parameter matrix and the observation
space, the mean value for the number of redundant observa-
tions will be (n —m)/n, where n and m are the numbers of
observations and parameters, respectively. Thus, the values
of k, and k, should be k, =k, - k and k, =k, - k, respectively,
where ky€[1.0-1.5], k; € [3.0~6.0], and k= /n/(n—m).
These operations mean that the selection of k, and k, will
vary with different values of n and m, increasing the flexibil-
ity of robust estimation. In general, estimation of (7) will



usually involve an iterative method; such a solution of step
t+1 is as follows:

A+l

L
X = (AfP'A) A[P'L,. (8)
4. Experiments and Discussion

In order to test the effectiveness of the method outlined
above, real data were collected from two reference stations,
Taoy and Jint, within the Chinese Suzhou continuously oper-
ating reference station (CORS) network, which encompass a
40km baseline. Of these, the Taoy reference station is a
known point, while Jint occupies an as yet undetermined
location. Data were collected on December 18, 2014, and
20 minutes of observations at a 1sec sampling rate were
selected arbitrarily. At the same time, in order to highlight
the characteristics of the robust Helmert VCE, we selected
a satellite at random from GPS and BDS, respectively, at
the Jint point and artificially added 5m, 10m, and 20m
gross errors via Cl code observations in the 200th, 400th,
and 600th epochs. We then calculated relative positioning
using GPS/BDS pseudoranges with the two methods apply-
ing either conventional Helmert VCE (scheme 1) or our
robust Helmert VCE (scheme 2). This approach enabled us
to compare and contrast the estimation results from the
two different schemes.

As for the method of robust Helmert VCE, we used the
posterior value of unit weight mean square error (&) to con-
trol the number of iteration in the experiments. According to
the pseudorange observation error is generally about +0.3 m,
we took the double observation error as the threshold. That is
to say, the iteration will stop if |G| < 0.6m. Based on that, in
practical applications, we can limit the number of iterations
(i.e., no more than 10) to ensure the real-time performance
of the positioning. As some experiments showed that as
increasing the number of iteration the value of & changed
too small.

Figure 1 shows the final number of satellites used in each
of the two estimation approaches. The results show that due
to there is no quality control of satellite observations in
scheme 1, all the observations of 21 satellites are involved
in the positioning solution. However, in scheme 2, that num-
ber of satellites varies greatly in each epoch. As our robust
estimation method eliminates the effects of the outliers by
selecting weight iterations. The weights of some satellites
are reduced even to zero. That is to say, some satellites con-
sidered to have gross errors are removed, so as to reduce
the overall impact of gross errors on positioning results.

Positioning results compared with exact values for each
epoch are shown in Figures 2-4 (data in Figures 2(a), 3(a),
and 4(a) are from scheme 1 while those in Figures 2(b),
3(b), and 4(b) are from scheme 2). Data are also presented
from the north, east, and upward directions, while artificial
gross errors cause a variety of effects on each positioning
direction, those in the north direction are largest, followed
by the east and upward directions, respectively. Comparing
the positioning results from the two schemes, it is clear that
the conventional Helmert VCE is inevitably influenced by
gross errors, especially when these are incorporated in
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0 200 400 600 800 1000 1200
Epoch (s)
Scheme 1
—— Scheme 2

FiGuURE 1: Number of satellites used in each scheme.

observed values (i.e., 200th, 400th, and 600th epochs). At
the same time, large deviations are also seen in positioning
results, especially in the north direction, including deviations
of —1.3m, —1.8 m, and —3.2 m, respectively. However, when
our robust estimation approach is employed (scheme 2),
the epoch with the largest deviation (see Figures 2(a), 3(a),
and 4(a)) is no longer present in the north, east, and upward
directions (Figures 2(b), 3(b), and 4(b)). In other words, by
selecting an appropriate weight iteration, reducing the
weight of suspicious or abnormal values, and mitigating
the impact of the positioning calculation have enabled us
to obtain higher precision coordinate values. Combining
these results with the mean square error of unit weight
shown in Figure 5, the absolute value of the unit weight
mean error of scheme 2 can be controlled to within 0.6 m,
obviously a significant improvement on scheme 1. It is also
clear that our robust Helmert VCE can not only reasonably
determine the weight of GPS and BDS pseudorange obser-
vations but can also be used to effectively mitigate the influ-
ence of gross errors.

In order to further test the generality of our robust Hel-
mert VCE method, we conducted a series of experiments to
verify positioning solutions from different baseline lengths.
In combination with the experiment described above, we
selected four stations in Suzhou CORS encompassing the
baseline lengths of 40km, 46km, and 64 km, respectively.
The Taoy reference station was used as a known point, while
the other three were set as fixed points. We also selected 20
minutes of observation data at a 1 sec sampling rate and arti-
ficially added gross errors of 5m, 10m, and 20 m to C1 code
observations in the 200th, 400th, and 600th epochs.

Figure 6 shows the distribution of positioning errors in
the horizontal direction for the two schemes (Figure 6(a)
shows data for scheme 1, while Figure 6(b) shows data for
scheme 2). Comparing the two schemes shows that, for the
three different baseline lengths, the gross errors in scheme 1
(Figure 6(a)) translate to larger errors in individual points,
a maximum deviation of more than 3m. In contrast
(Figure 6(b)), when the effect of gross errors is rejected in
scheme 2, the overall distribution of points is more uniform,
and more than 99% of positioning errors are concentrated
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FIGURE 2: Positioning errors (north). (a) Helmert VCE. (b) Robust Helmert VCE.
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FIGURE 3: Positioning errors (east). (a) Helmert VCE. (b) Robust Helmert VCE.
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FIGURE 4: Positioning errors (upwards). (a) Helmert VCE. (b) Robust Helmert VCE.
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FIGURE 5: Absolute values of unit weight mean error. (a) Helmert VCE. (b) Robust Helmert VCE.
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FIGURE 6: Positioning errors in different baseline lengths. (a) Helmert VCE. (b) Robust Helmert VCE.
TaBLE 1: RMS and STD values for different length baselines (m).
Scheme 1 Scheme 2
N E U Position N E U Position
39 km 0.29 0.25 0.63 0.74 0.27 0.27 0.68 0.78
RMS 46 km 0.28 0.23 0.69 0.78 0.26 0.24 0.72 0.80
64 km 0.35 0.21 0.69 0.80 0.35 0.23 0.74 0.85
39 km 0.28 0.20 0.62 0.71 0.27 0.22 0.69 0.77
STD 46 km 0.27 0.20 0.67 0.75 0.26 0.21 0.70 0.77
64 km 0.27 0.21 0.67 0.75 0.26 0.23 0.72 0.80

within 1 m. The use of scheme 2 can therefore ensure that
positioning results do not deviate too far from reality.

To further analyze differences in overall positioning
between the two schemes across all observational epochs,
we incorporated root mean square (RMS) error and standard
deviation (STD) to our experiments. In this case, RMS error
mainly indicates the degree to which the positioning result
deviates from the exact value, while STD reflects the disper-
sion degree of positioning results for all the epochs. The
results of this aspect of the analysis are shown in Table 1,
which lists the overall RMS error as well as STD values for
the three baselines in north, east, and upward directions as
well as the final positioning (Table 1). These results show that
as distance increases so does relative positioning error in
both schemes. It is consistent with basic theory. Further

comparison of data from all directions in the two schemes
shows that both RMS and STD values of scheme 2 are
higher by between 1cm and 5cm than those of scheme 1.
In other words, when an observation incorporates no gross
error, or just a few epochs include gross errors, the overall
positioning accuracy recovered using scheme 2 is slightly
lower than that of scheme 1. The main reason for this differ-
ence is that scheme 2 provides a robust estimate; thus, the
estimated results of this scheme are not optimal in cases
where there is little or no gross observational error. The
main advantage of our robust method is that it incorporates
the ability to resist gross errors and can guarantee the valid-
ity and availability of the solution within a certain precision
range for each epoch whether, or not, observations include
gross errors.
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5. Conclusions

This paper focuses on the issue of combinatorial positioning,
how to reasonably determine the weights of observations for
each satellite system, and how to effectively avoid the influ-
ence of gross errors on positioning results. We applied the
Helmert VCE as well as robust estimation theory to the
relative positioning of GPS/BDS pseudoranges. There are
two main conclusions of this study.

First, given the combination relative positioning of GPS/
BDS pseudorange over medium-to-long baselines, conven-
tional Helmert VCE is well able to determine the observed
weight matrix for each system. At the same time, the average
plane accuracy using this approach can reach the submeter
scale, while elevation accuracy within 1 m. However, when
observed values incorporate gross errors, positioning results
deviate by a much larger amount.

Second, the results show that using our robust method
based on Helmert VCE is effective when observed values
do not incorporate gross errors (i.e., the model is correct),
and the estimation results obtained are not optimal. How-
ever, when observed values contain a large gross error, use
of our robust method can mitigate the influence of suspicious
or abnormal data by choosing an appropriate weight itera-
tion and reduces the influence on positioning solutions. In
other words, our robust method can guarantee the validity
and availability of the solution within a certain precision
range for each epoch whether, or not, observations include
gross errors.
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