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The accuracy of the magnetic core model is important to the analysis and design of the flux-gate sensor. The Jiles-Atherton model
(J-A model) is the mostly used model to describe the hysteresis characteristics of the flux-gate core. But the parameters of J-A
model are difficult to identify. In this paper, Fruit Fly Optimization Algorithm (FOA) is proposed to identify the parameters of the
J-A model. In order to enhance the performance of the identification, a Modified Fruit Fly Optimization Algorithm (MFOA) is
applied to extract the parameters of the flux-gate core.The effectiveness of MFOA is verified through five typical test functions.The
influence of variation factor ℎ on the performance of MFOA is discussed.The impact of variation factor ℎ on parameters extraction
of hysteresis loop is studied. It is shown that MFOA with appropriate selection of variation factor ℎ will get better performance in
the accuracy, stability, and simulation time compared to those of PSO and FOA.

1. Introduction

Flux-gate sensor is the best vector magnetic sensor with
integrated performance [1]. The magnetic property of iron
core material is an important factor that influences the
characteristics of flux-gate.The accuracy of the mathematical
model of the iron core material affects the accuracy of the
flux-gate analysis. Jiles-Atherton model (J-A model) [2] is
based on the physical process of hysteresis and has the merits
of less parameters and simplicity in expression, which makes
it mostly used in practice. But the parameters are sensitive to
the hysteresis loop, so they are difficult to be determined.

Many methods have been proposed to determine the J-
A model parameters, such as Genetic Algorithm (GA) [3],
Particle Swarm Optimization (PSO) [4], Artificial Neural
Network (ANN) [5], and Shuffled Frog Leaping Algorithm
(SFLA) [6].

Literature [7] has proposed using Fruit Fly Optimiza-
tion Algorithm (FOA) and Modified Fruit Fly Optimization

Algorithm (MFOA) to identify the J-A model parameters
and shows good performance. But it has not verified the
effectiveness of the algorithm and analyzed the influence of
the variation factor ℎ on the performance of the MFOA.
So the main contributions of this paper are as follows: (1)
proposing using dynamic variable step size to modify FOA;
(2) discussing the effectiveness of MFOA by tests on five
typical functions; (3) analyzing the influence of variation
factor ℎ on the performance of MFOA; (4) applying the
MFOA to extract the parameters of hysteresis loop and
analyze the simulation results compared with PSO and FOA.

2. J-A Hysteresis Model

J-A hysteresis model is a mathematical model for describing
the nonlinear characteristics of magnetic cores, which was
proposed by Jiles and Atherton in 1986 [2]. J-A model is
generated from the physical process of the magnetization 𝑀
which is divided into irreversible magnetization component
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𝑀irr caused by domain wall displacement and reversible
magnetization component𝑀rev caused by domainwall bend-
ing. According to (1), the relationship between 𝑀 and the
magnetic field strength𝐻 can be described as (2):

𝑀 = 𝑀rev +𝑀irr,
𝑀rev = 𝑐 (𝑀an −𝑀irr) ,
d𝑀irr
d𝐻𝑒 = 1𝛿𝑘 (𝑀an −𝑀) ,

𝐻𝑒 = 𝐻 + 𝛼𝑀,
𝑀an = 𝑀𝑠 ⋅ {coth(𝐻𝑒𝑎 ) − ( 𝑎𝐻𝑒)} ,

(1)

d𝑀
d𝐻 = (1 − 𝑐) (𝑀an −𝑀) + 𝑐𝑘𝛿 (d𝑀an/d𝐻)𝛿𝑘 − 𝛼 (1 − 𝑐) (𝑀an −𝑀) . (2)

Here, 𝑀an is the anhysteretic magnetization. 𝐻𝑒 is effec-
tive magnetic field. 𝛿 is +1 for d𝐻/d𝑡 > 0 and −1 for
d𝐻/d𝑡 ≤ 0. The five parameters that need to be identified
are as follows: pinning factor k, reversible magnetization
coefficient 𝑐, coupling factor between magnetic domains 𝛼,
form factor 𝑎, and saturation magnetization𝑀𝑠.
3. MFOA and Its Performance

3.1. MFOA. Fruit Fly Optimization Algorithm (FOA) was
put forward by Pan in 2012, which is described in detail
in literature [8]. FOA uses fruit fly group collaboration
mechanism and information sharing mechanism to search
for the optimal solution, which causes it to have good ability
of global optimization. Also the algorithm has the merits
of simplicity, less parameters, small amount of calculation,
and high precision, which makes it widely used in practical
problems [9–11]. But when it encounters complex high
dimension optimization problems, FOA may fall into local
convergence with slow search speed, low efficiency, and poor
stability.

In early stage of search, the fruit fly uses smell to search
for food, which can help them to search for the position with
greater concentration of fruit. In the later stage of search, it
has certain blindness and gambling to determine the position
of fruit fly, which results in awaste of resources, low efficiency,
and poor accuracy.

In order to solve this problem, the dynamic variable step
size is proposed. The direction of the movement of the fruit
fly is determined by

𝑋𝑘+1 = 𝑥-axis + Random Value ∗ 𝐷𝑘 ∗ ℎ𝑘,
𝑌𝑘+1 = 𝑦-axis + Random Value ∗ 𝐷𝑘 ∗ ℎ𝑘. (3)

Here, 𝐷𝑘 is the distance between the optimal position of
fruit fly for the 𝑘th iteration and the origin. Parameter ℎ is
variation factor which is in the range of [0.1, 10] according to
different optimization problems.

3.2. Simulation Experiments and Results Analysis. In order
to verify the effectiveness and advantages of the MFOA, five
functions are used to test the algorithm in this paper. Func-
tions 𝑓1 and 𝑓2 are the single-peak functions, and functions𝑓3–𝑓5 are multipeak functions. The five test functions are
shown in Section 3.2.1. The simulation results are compared
with those of the PSO algorithm and the original FOA.

3.2.1. Test Functions

(1) 𝑓1 – 𝑆𝑝ℎ𝑒𝑟𝑒 𝑀𝑜𝑑𝑒𝑙
𝑓1 (𝑥) = 𝑛∑

𝑖=1

𝑥2
𝑖
,

−100 ≤ 𝑥𝑖 ≤ 100, min𝑓1 (𝑥) = 𝑓1 (0, . . . , 0) = 0
(4)

(2) 𝑓2 – 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓2 (𝑥) = exp(0.5 𝑛∑

𝑖=1

𝑥𝑖) − 1,
−1.28 ≤ 𝑥𝑖 ≤ 1.28, min𝑓2 (𝑥) = 𝑓2 (0, . . . , 0) = 0

(5)

(3) 𝑓3 – 𝐴𝑐𝑘𝑙𝑒𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓3 (𝑥) = −20 exp[[−0.2√

1𝑛
𝑛∑
𝑖=1

𝑥2
𝑖
]]

− exp[1𝑛
𝑛∑
𝑖=1

cos 2𝜋𝑥𝑖] + 20 + 𝑒,
−32 ≤ 𝑥𝑖 ≤ 32, min𝑓3 (𝑥) = 𝑓3 (0, . . . , 0) = 0

(6)

(4) 𝑓4 – 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓4 (𝑥) = 14000

𝑛∑
𝑖=1

𝑥2
𝑖
− 𝑛∏
𝑖=1

cos( 𝑥𝑖√𝑖) + 1,
−600 ≤ 𝑥𝑖 ≤ 600, min𝑓4 (𝑥) = 𝑓4 (0, . . . , 0) = 0

(7)

(5) 𝑓5 – 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓5 (𝑥) = 𝑛∑

𝑖=1

[𝑥2
𝑖
− 10 cos (2𝜋𝑥𝑖) + 10] ,

−5.12 ≤ 𝑥𝑖 ≤ 5.12, min𝑓5 (𝑥) = 𝑓5 (0, . . . , 0) = 0.
(8)

3.2.2. Simulation Experiments and Results Analysis. In sim-
ulations, the dimension of the five test functions is 30, and
maximum number of iterations is 3000, variation factor ℎ
of MFOA is 2, and the inertia factor and the acceleration
constants of PSO are 𝜂 = 0.75, 𝑐1 = 2, and 𝑐2 = 2.5,
respectively.

The optimal value, the average value of 20 times, variance,
and running time are shown in Table 1.
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Table 1: Simulation results for three methods.

Function Method Optimal value Mean value Variance Time/s

𝑓1 PSO 1.535𝑒 − 5 8.729𝑒 − 5 7.584𝑒 − 9 1.549
FOA 2.177𝑒 − 6 2.418𝑒 − 1 1.196𝑒 − 1 4.164
MFOA 2.083𝑒 − 307 3.922𝑒 − 307 0 14.48

𝑓2 PSO 2.836𝑒 − 4 0.182 0.136 1.864
FOA 4.045𝑒 − 3 4.034𝑒 − 1 3.190 4.285
MFOA 0 0 0 12.08

𝑓3 PSO 3.191𝑒 − 4 7.484𝑒 − 4 5.902𝑒 − 8 2.611
FOA 1.081𝑒 − 3 6.061𝑒 − 1 4.777𝑒 − 1 4.617
MFOA 0 0 0 12.37

𝑓
4

PSO 1.920𝑒 − 4 2.182𝑒 − 2 5.253𝑒 − 4 2.964
FOA 1.446𝑒 − 7 4.819𝑒 − 2 5.311𝑒 − 3 5.057
MFOA 0 0 0 12.86

𝑓5 PSO 1.059 2.463𝑒 + 1 1.128𝑒 + 2 2.104
FOA 4.340𝑒 − 4 8.374𝑒 − 1 5.193𝑒 − 1 4.575
MFOA 0 0 0 12.35
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Figure 1: Optimization process of 𝑓
1
.

From Table 1, the following can be seen: (1) running time:
the running time of PSO algorithm is the shortest, and the
running time of MFOA is the longest which is about 6 times
that of PSO and about 3 times that of FOA; (2) the precision
of the algorithm: MFOA has the highest accuracy which is
far higher than the FOA and PSO algorithm; (3) variance: the
variance values of MFOA for the five test functions are all 0,
which states thatMFOAhas the best stability, FOA for single-
peak function also shows instability, and PSO for multipeak
function 𝑓5 is unstable. During operations, PSO algorithm
and FOA are easy to fall into local convergence, especially for
multipeak function 𝑓5.

The optimization process of the five test functions for
three algorithms is shown in Figures 1–5. Figure 1 shows
function value with iterations for function 𝑓1 with partially
enlarged detail. In order to see the process clearly, Figures
2–4 are the partially enlarged detail figures. From Figures
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Figure 2: Optimization process of 𝑓2.

1–5, it can be seen thatMFOA has best convergence precision
and stability. The optimization precision and stability of PSO
algorithm are higher than those of FOA expect 𝑓5 but much
lower than MFOA; PSO and FOA methods show instability
and low precision for complex multipeak function 𝑓5.

In the iterative process, the location search of fruit flies
using dynamic variable step size makes fruit flies search in
a wider range and improves the diversity and development
of fruit flies’ positions, which can help the algorithm escape
from local optimal and improve the precision of the algo-
rithm.

So MFOA has high convergence precision and strong
ability to jump out of local extreme value. To ensure the
capability of algorithm to jump out of the extreme, fruit flies
are needed to search the best position in a wider range, so the
simulation time for 3000 iterations of MFOA is longer than
that of FOA.
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Figure 3: Optimization process of 𝑓3.
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Figure 4: Optimization process of 𝑓4.

The factors that influence the performance of MFOA are
population size, the maximum number of iterations, and
the variation factor ℎ. In this paper, simulations have been
performed to study the influence of the parameter ℎ. For
each test function, the MFOA method is used to find the
optimal solutions at ℎ = [0.1, 0.3, 0.5, 0.7, 0.9, 1, 1.1, 1.3, 1.5, 2]
and the algorithm runs for 20 times for each ℎ. The curves
of average optimal value with ℎ for five test functions are
shown in Figure 6, the curves of variance with ℎ are shown
in Figure 7, and the curves of simulation time with ℎ are
depicted in Figure 8.

From Figure 6, the following is found: (1) the optimal
values decrease with the increase of h; (2) when ℎ ∈ [0.1, 0.9],
the algorithm has poor precision, and when h > 1, the
algorithm has better precision; (3) the bigger ℎ value is, the
better the precision is; (4) when ℎ achieves some value, the
optimal value changes little.
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Figure 5: Optimization process of 𝑓5.
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Figure 6: Optimal value with ℎ for five functions.

From Figure 7, the following is shown: (1) the variance
decreaseswith the increase ofℎ; (2)whenℎ > 1, the algorithm
has better stability; (3) the bigger ℎ value is, the better the
stability is; (4) when ℎ achieves some value, the variance tends
to 0.

From Figure 8, it can be seen that when ℎ ∈ [0.1, 1.1], the
simulation time is almost the same, but when ℎ > 1.3, the
simulation time is increasing quickly with ℎ.

From the analysis above, the following is stated: (1) whenℎ = 1.1, the algorithm has better precision, better stability,
and better convergence rate; (2) bigger ℎ has better precision
and stability, but the simulation time increases at the same
time when ℎ > 1.3.
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4. Parameters Extraction of J-A Model

The fitness function in this paper is as follows:

fitness = 1𝑁√ 𝑁∑
𝑖=1

(𝐵cal𝑖 − 𝐵𝑖)2. (9)

Here, 𝐵cal𝑖 is the calculated value of 𝐵(𝐻𝑖) and 𝐵𝑖 is
experimental data at𝐻𝑖.

4.1. Diagram. Figure 9 is the diagram of the parameters
extraction of J-A model applying MFOA.

4.2. Parameters Extraction of J-A Model

4.2.1.The Influence of Factor ℎ on the Extraction Result. From
Section 3.2.2, it can be seen that the factor ℎ influences the
performance of the MFOA. Therefore, the influence of the
factor ℎ on the extraction performance has been discussed
in this section. Here, h = [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 2,
3, 4, 5, 6, 7, 8, 9, 10]. Figures 10–12 show the curves of fitness
value, variance, and simulation time with ℎ, respectively.

From Figure 10, the following can be found: (1) whenℎ ∈ [0.1, 0.7], the fitness value decreases with the increase
of ℎ; (2) when ℎ > 1.1, the fitness value increases; (3) whenℎ = 0.9, the fitness value (0.005 T) is the best. From Figure 11,
the following can be seen: (1) when ℎ = 0.7, ℎ = 0.9, andℎ = 1.1, the variances are the smallest, which are 3.44 × 10−6,2.59 × 10−6, and 2.55 × 10−6, respectively; (2) when ℎ > 1.3,
the variance is increased with the increase of ℎ. Figure 12
shows the following: (1) when ℎ ∈ [0.1, 0.9], the simulation
time increases with the increase of ℎ; (2) when ℎ > 2, the
simulation time changes in a small way, which is about 130 s.
So it is stated that when ℎ = 0.9, the MFOA has good
extraction performance in accuracy, stability, and simulation
time.

4.2.2. Parameters Setting. MFOA, FOA, and PSO are used to
identify the parameters of J-A model according to the exper-
imental hysteresis loop of the nonoriented steel V3250-50A
taken from literature [3]. The parameters of PSO algorithm
are set according to literature [12]: swarm size 100, inertial
factor 0.75, and acceleration constants 𝑐1 = 2 and 𝑐2 = 2.5.



6 Journal of Sensors

Start

Initialization
the maximum iteration number maxgen, the population

size sizepop, the initial fruit fly location (x-axis, 
y-axis), the range of the identified parameters

Set gen = 0

Calculate fitness function value according to Eq. (9)

Find and keep the minimum smell concentration value and update 
(x-axis, y-axis)

Obtain the optimal 
parameters values

finding of an individual fruit fly

Fruit flies swarm fly 
towards the location 

(x-axis, y-axis) using 

End

Y

N

Give the random flight direction and distance (Xi, Yi) for food

Calculate Di and Si

Put Si into Eq. (2) and solve the differential function
with 4th/5th-order Runge-Kutta

vision, gen = gen + 1

gen ≦ maxgen

Figure 9: The implementation procedure of MFOA.

The swarm size of FOA and MFOA is also set to 100. The
variation factor ℎ of MFOA is 0.9 according to Section 4.2.1.
The maximum iterations for three methods are all 50.

4.2.3. Simulation Results and Analysis. The parameters of J-A
model obtained by three methods are as follows:

(1) MFOA:𝑀𝑠 = 1.2426× 106, 𝑎 = 63.86,𝛼 = 11.79×10−5,𝑐 = 0.77, 𝑘 = 60.97.
(2) FOA:𝑀𝑠 = 1.2446 × 106, 𝑎 = 51.26, 𝛼 = 9.076 × 10−5,𝑐 = 0.34, 𝑘 = 66.70.
(3) PSO: 𝑀𝑠 = 1.2312 × 106, 𝑎 = 71.55, 𝛼 = 11.89 × 10−5,𝑐 = 0.53, 𝑘 = 69.22.
Figure 13 depicts the hysteresis loops according to the

parameters obtained.The errors between calculated data and

measured data for three methods are shown in Figure 14,
which gives the part when d𝐻/d𝑡 > 0. The blue dot
line (obtained by PSO) shows the error is small when the
hysteresis loop is becoming saturated, and the biggest error−0.205 T is obtained at 𝐻 = 100A/m. The green line
(obtained by FOA) shows the biggest error is −0.1507 T at𝐻 = 6.75A/m and the error is bigger than that of MFOA and
PSOwhen𝐻 is becoming saturated.The red line (obtained by
MFOA) shows the biggest error is 0.09 T at 𝐻 = −100A/m
and the error is bigger than that of PSO when𝐻 is becoming
saturated.

Table 2 shows convergence values of fitness function (the
best, worst, and mean), variance, and simulation time. From
Table 2, it can be observed that the fitness value achieved by
MFOA is better than the minimum fitness values achieved
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Table 2: The results of convergence values.

Methods Best Worst Mean Variance Time/s
PSO 0.0125 0.0589 0.0279 2.976𝑒 − 4 4932
FOA 0.0060 0.0286 0.0086 4.973𝑒 − 5 150
MFOA 0.0039 0.0079 0.0050 2.590𝑒 − 6 137
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Figure 10: Fitness value with ℎ for parameters extraction of J-A
model.
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by PSO and FOA. The precision of MFOA is the best of the
three methods.The variance of the convergence values for 20
times obtained byMFOA is 2.590×10−6 which is the smallest
of the three methods. The smaller the variance is, the better
the stability of the algorithm is. So the stability of MFOA is
much better than that of FOA and PSO. The simulation time
for PSO is much longer than that of FOA and MFOA.
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Figure 12: Simulation time with ℎ for parameters extraction of J-A
model.
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5. Conclusions

In this paper, a modified FOA is proposed and the effects
of the variation factor ℎ of MFOA are studied through five
test functions. The results show that the variation factor ℎ of
MFOAhas important influence on the accuracy, stability, and
simulation time of the algorithm. The reasonable selection
of ℎ can improve the comprehensive performance of the
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Figure 14: Error curves of three methods when d𝐻/d𝑡 > 0.
algorithm. FOA and MFOA are applied to optimize the
parameters of J-A model. The simulation results show that
MFOA with reasonable selection of ℎ is better than PSO and
FOA in precision and stability.

In this paper, the parameters of J-A model are extracted
from static hysteresis loop. But the hysteresis loop varies
with the changes of temperature and the frequency of the
excitation magnetic field. So more work should be done
on the following: (1) the improvement of J-A model with
temperature and frequency; (2) parameters extraction of the
improved J-A model.
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