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Unmanned aerial vehicle (UAV) cloud can greatly enhance the intelligence of unmanned systems by dynamically unloading the
compute-intensive applications to cloud. For the uncertain nature of UAV missions and fast-changing environment, different
UAV applications may have different quality of service (QoS) requirements. This paper proposes a mixed QoS ensurance and
energy-balanced (MQEB) architecture for UAV cloud from a view of control theory, which can support both hard and soft QoS
ensurance with the consideration of energy saving. The hard and soft QoS requirements are decoupled by being normalized into
a two-level cascaded feedback loop. The former is time slot loop (TS-Loop) to enforce the absolute QoS ensurance for real-time
applications, and the latter is contention window loop (CW-Loop) to enforce the plastic QoS ensurance for non-real-time
applications. Finally, the back propagating (BP) neuron network is used for parameters’ self-tuning and controller design. The
hardware experiments demonstrate the feasibility of MQEB. In heavy load, MQEB has greater throughput and better energy
efficiency, and in light load, MQBE has lower total power consumption.

1. Introduction

In the networked unmanned aerial vehicle (UAV) system,
UAVs, also known as drones, share the information and
cooperate with each other by a decentralized wireless
network, which enhances the performance and mission
effectiveness. Nevertheless, UAVs’ intelligence is still limited
by the aerial platform carriage. Cloud robotics, as the combi-
nation of cloud and robotics [1, 2], provides a novel concep-
tion that breaks the limitations of high complexity of UAV
cluster and low intelligence of individual UAV. By means
of paralleled computing, storage, and communication, the
compute-intensive applications on UAVs can be unloaded
to cloud dynamically. This operation mode brings out the
new conception of UAV cloud [3].

As shown in Figure 1, compute-intensive applications
like SLAM (simultaneous localization and mapping) are
divided into a series of task flows and then are dispatched
to the cloud hosts for fast processing. In the process of task
flow transmission, as an outgoing transmission passes down

through the stack, each layer repacks the actual data with
its own header information and then passes down to the
lower layer. The unloaded tasks are finally encapsulated into
MAC frames at the datalink. In wireless ad hoc network
(WANET), UAVs share the same link and contend for com-
munication channel in carrier sense multiple access/collision
avoidance (CSMA/CA) mode.

Generally, UAVs differ in processing capacity, mission
environment, and task emergency, and thus the correspond-
ing transmission flows may be the mixture of real-time and
non-real-time traffics. They have different quality of service
(QoS) requirements in terms of bandwidth, delay, losing rate,
and so on. For real-time traffic, QoS metrics must be within
the “hard” of “inelastic” QoS constraints, while for non-
real-time traffic, a preferred QoS metric can be some flexible,
that is, “soft” or “elastic” QoS [4].

Initially, real-time flows should be treated preferen-
tially. It is better to arrange more resources to them at the
datalink and network. Unfortunately, as UAVs’ movement
intensifying the wireless link’s uncertainty and traffic’s
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unpredictability, it is very hard to arrange precise resource
that just meet the QoS constraints. The overprovision for
one class of traffic will deteriorate the QoS of other traffics
because the total channel resource is limited, and the short
provision for real-time traffic may induce the failure of the
UAV application.

To support native massive machine-to-machine commu-
nications in high-density wireless networks [5, 6], contention
resolution protocols, for example, contention resolution
diversity slotted ALOHA (CRDSA) and its variants [7], have
contributed to a drastic throughput improvement comparing
with CSMA/CA [8]. The principle is each packet contains the
header information about the location of the replicas within
the frame, which can be used for successive interference
cancellation (SIC) and retransmission avoidance. Neverthe-
less, QoS support is still out of consideration in contention
resolution approaches.

To the best of our knowledge, for both contention-based
and contention-free MAC protocols, there are improvements
of QoS support with multiqueueing architecture. The
methods of QS-MAC [9], PRIN-MAC [10], AS-MAC [11],
RF-MAC [12], CACC [13] and DARS [14] are typical
contention-based protocols with priority queues. QoS is
controlled by assigning different queues with different
resources or different CSMA/CA parameters, such as conten-
tion window size [9], interframe space [10], active time [11],
transmission power [12], TCP congestion window [13] and
data rate [14].

Contention-free approach, for example, frequency divi-
sion multiple access (FDMA), that assigns channel to only
one node at any given frequency can also provide high
throughput. However, it is a centralized approach that needs
base stations for frequency synchronization and dedicated
control channel to exchange control messages, which makes
FDMA is unfeasible for aerial drones and adds a high com-
munication overhead [15]. Some researches have also pro-
posed the multichannel MAC in vehicular network. Time
slots on subchannel can be arranged according to the priority
of transmission [16, 17]. Other resources like data rate and

power allocation can be adaptive with both time-varying
channel and user’s quality requirement [18].

Actually, these approaches have the common feature of
QoS metric feedback. But most of them focus on the
architecture realization and performance evaluation without
theoretically analyzing the system stability. Feedback-based
Diff-MAC (FD-MAC) [19] has solved the converged prob-
lem by a less-step controller to provide proportional delay-
differentiated (PDD) QoS support. But it has the following
problems. First, in a self-autonomous unmanned system,
duty cycling is always implemented for energy saving. So
energy efficiency must be considered when QoS support is
provided. Second, FD-MAC only controls the relative QoS,
which is not suitable for hard QoS constraints of real-time
applications. Third, the control model should not be a linear
system due to the load burst from the upper layer and the
network topology. It is inconvincible to use the linear model
for system identification.

For resource allocation in cloud and wireless communi-
cation, most researches commonly formulate the issue into
optimization problems with the subjects of resource limita-
tions, for example, energy consumption [18, 20, 21], band-
width [22], financial cost [23], processing time [24], utility
function [25], secrecy outage probability [26], and caching
[27] The assumption of these approaches is that the resource
requirements of different clients or traffic should be explicit,
while the summation of total resource is beyond the limita-
tion. In the circumstance of UAV cloud, these approaches
are not suitable anymore because the model is different. It
exists a random process in the model that breaks the inter-
connection between preferred QoS metrics and resource
quantization. Transmission traffic always changes with the
UAV mission and environment. It is impossible to predict
the mount of resource to meet the QoS requirements.

This paper, from a renewed view of control theory and
back propagating (BP) neural network, develops an all-in-
one mixed QoS ensurance and energy-balanced (MQEB)
architecture that can support the common mixture of soft
and hard QoS traffic. For the energy-saving feature of
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Figure 1: The schematic of UAV cloud.
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self-autonomous system, the energy consumption is also
under consideration. The hard and soft QoS constraints are
decoupled by normalized into a two-level cascaded feedback
loop. The former is time slot adaptive loop (TS-Loop) to
enforce the hard QoS ensurance for real-time application,
and the latter is contention window loop (CW-Loop)
to enforce the soft QoS ensurance for non-real-time traf-
fic. The hardware experiments demonstrate the feasibility
of the MQEB architecture. Comparing with FD-MAC,
MQEB-MAC has a new feature of absolute QoS ensurance
and further develops following two advantages. In the condi-
tion of heavy load, MQEB has a great throughput and a better
energy efficiency; and in light load, MQEB has lower total
power consumption.

The rest of the paper is organized as follows. Section 2
presents the initial ideas of MQEB. The hard QoS ensurance
with time slot isolation and BP self-tuning control is for-
mulated in Section 3, and soft QoS ensurance with acces-
sing probability optimization is described in Section 4. In
Section 5, the hardware experiments show the performance
evaluations of MQEB, including dynamic performance,
energy efficiency and power consumption, static perfor-
mance, and robust verification.

2. Overview of Mixed QoS
Ensurance and Energy-Balanced (MQEB)
Architecture

Figure 2 shows the architecture of MQEB. The basic idea
is dynamic time slot isolation for hard QoS (HQ) and
accessing probability optimization for soft QoS (SQ). Both
hard and soft QoS can be ensured in a manner of a two-

cascaded feedback control architecture. TS-Loop ensures
the HQ with the dynamic time slot isolation, and CW-Loop
balances the QoS satisfaction of SQ and energy saving by
multiobjective optimization.

The symbol definitions are summarized in Table 1 and
the detailed concepts in MQEB are as follows.

2.1. Dynamic Time Slot Isolation. In IEEE 802.11 distrib-
uted coordination function (DCF), the node which has
buffered MAC frames starts carrier sense with a random
back-off in the range of 0,Wmin . Once the collision is
detected, the node performs another longer random back-
off in the range of Wτ =min 2τWmin,Wmax . This is
known as binary exponential back-off (BEB). The more
intensive that node attempts to transmit frames, the higher
probability collision and retransmission occur, which will
not only cause the unnecessary energy wasting but also
induce a higher frame delay. As shown in Figure 3, there
are S time slots in total in a duty cycling. For hard QoS
traffic, different types of traffic contend for channel medium
in the class-specified time slots si, which is actually a kind
of resource reservation mechanism avoiding the across-
class contention.

2.2. Energy Balancing. For the inherent feature of energy sav-
ing in self-autonomous unmanned system, the nodes always
work periodically and go dormant to enlarge the lifetime.
Therefore, the time slots tend to be used for dormancy to save
energy. In this paper, MQEB trades off the energy-saving and
soft QoS satisfaction by multiobjective optimization (MOP)
to get the optimized accessing probability as well as the
number of slots s for soft QoS traffic.
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Figure 2: Dynamic time slot and accessing provability assignment for mixed QoS ensurance.
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2.3. Accessing Probability Optimization. The remaining
time slots S −∑si can be arranged to SQ. They contend
for channel medium in the same time duration with s
slots. Their QoS constraints are elastic and different with
the traffic types, so the accessing probability of them
should be precisely selected to balance the energy and pre-
ferred QoS. Therefore, the arrangement of the accessing
probability is a network utility maximization (NUM)
model, which takes the utility function to quantify the
“satisfaction” of traffic’s QoS [22, 25, 28].

3. Time Slot Isolation Adaption for
HQ Ensurance

Supposing there are N = I + J types of traffic, that is, I types
of HQ and J types of SQ (best effort can be treated as a special
SQ), and there are M nodes in the network. The constraints
for HQ can be expressed as follows:

ℓi ≤ Li, i = 1,… , I 1

The average QoS metrics, such as average node-to-node
delay, throughput, and frame loss rate, can be denoted by

ℓi k , and Li denotes the corresponding QoS constraints. In
general, we mainly take the node-to-node delay as the QoS
metric, so the smaller value of ℓ, the better QoS for delay.

3.1. Feedback for HQ Time Slot Assignment. HQ should be
priority ensured. The paper proposed the mechanism of time
slot isolation for HQ. HQ frames of the same class are trans-
mitted in specified time slots. Let si k , i = 1,… , I, denote the
number of slots reserved for the ith HQ. In the duration of
these slots, all the nodes only transmit frames of the ith HQ
and the transmissions of other HQ are blocked. As shown
in Figure 2, time slot isolation and dynamic adaption actually
make up a feedback control loop (TS-Loop for short). The
vector S k = s1 k , s2 k ,… , sI k acts as the output of
the controller, which can be adjusted according to the devia-
tion of the actual traffic delay L k to the preferred QoS met-
rics Lr , that is,

E k = Lr − L k ,
L k = ℓ1 k , ℓ2 k ,… , ℓ1 k ,
Lr = Li,… , LI

2

TS controller operates by responding to the deviation
E k , that is, adjusting the set of time slots S k distributed
to every type of HQ. Thus, the delay ℓi = Li is sustained.
Despite the uncertainty of medium accessing, the inherent
self-stabilization of feedback mechanism liberates us from
calculating the time slot assignment for every traffic precisely.
For the coherent nonlinearity approximating features, the
paper develops a BP neural network-based self-tuning PID
controller for TS-Loop.

3.2. BP-Based Self-Adaptive Control. This paper takes a 3-
layered BP neural network for PID parameters’ self-tuning
for two reasons. First, theoretically, a 3-layered neural net-
work is able to learn any function [29], and the computation
amount would increase exponentially as more hidden layers
are added; Second, F-test is used to prove that under 5% sig-
nificance level, the 3-layered and more than 3-layered neural
networks have no significant difference.

There are 4, q, 3 neurons in the input layer, the hidden
layer and the output layer, respectively. PID parameters of
every type are trained independently. So there are actually
an I-set of neural networks as shown in Figure 2.

The classic PID controller of (3) can be rewritten as (4)

si k = si k − 1 + KPi
ei k − ei k − 1 + KIi

ei k

+ KDi
ei k − 2ei k − 1 + ei k − 2 ,

3

si k = h si k − 1 , KPi, KIi, KDi, ei k , ei k − 1 , ei k − 2 ,
4

where h · is a nonlinear function related to all the variables.
Take the ith HQ traffic for example. The learning process

is composed of forward propagation and back propagation.
The details are as follows [29]:

(1) Forward propagation: compute the network output.

Table 1: Nomenclature.

I Types of HQ in the network

J Types of SQ in the network

M Number of WSN nodes in the network

S Total number of time slots in a duty cycling

si Number of time slots assigned for ith HQ

s Number of time slots assigned for all SQ

Li Preferred average delay of HQ

Lj Preferred average delay of SQ

ℓi Actual average delay of traffic i

λm PHY transmission rate of node m

nj,m Queueing length of traffic j on node m

ρj,m Accessing probability of the medium contention

vj
Scale factor for the initial up boundary

of back-off time

Elen Mathematical expectation of frame length

Wmin,Wmax
Minimum and maximum of initial up

boundary of CW

τ Time that medium is consecutively sensed to be busy

S1 Si SI S
~

Active time

S Time slots in a duty cycling

Figure 3: Dynamic time slot mechanism.
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The output of input layer is as follows:

O 1
j = xj l , j = 1,… , 4 5

x1 = ei k − ei k − 1 ,
x2 = ei k ,
x3 = ei k − 2ei k − 1 + ei k − 2 ,
x4 = si k − 1

6

The input and output of hidden layer are as follows:

net 2
l k = 〠

4

j=1
ω

2
l,j O

1
j ,

O 2
l k = f net 2

l k ,

  l = 1, 2,… , q,

7

where ω 2
l,j is the weight factor from the jth neuron of the

input layer to the lth neuron of the hidden layer. The
superscript (1), (2), and (3) represent the input layer, hid-
den layer, and output layer. f · is the activating function,
f · = tanh · .

The input and output of output layer are as follows:

net 3
m k = 〠

q

l=1
ω

3
m,lO

2
l ,

O 3
m k = g net 3

m k ,

 m = 1, 2, 3,

8

O 3
1 k = KPi,

O 3
2 k = KIi,

O 3
1 k = KDi ;

9

where g · = 1/2 1 − tanh ·

(2) Backward propagation: adapt the weight factors.

Suppose the performance index function is

J = 1
2 Li − ℓi k + 1 = 1

2 e
2 k + 1 10

According to gradient descent method, the learning pro-
cess of weight is as follows:

Δω 3
m,l k + 1 = −η

∂J

∂ω 3
m,l

+ γΔω 3
m,l, 11

where η > 0 is the learning rate and 0 < γ < 1 is the inertia
factor to accelerate the convergence speed. Since there are

∂si k

∂Q 3
1 k

= ei k − ei k − 1 ,

∂si k

∂Q 3
2 k

= ei k ,

∂si k

∂Q 3
2 k

= ei k − 2ei k − 1 + ei k − 2

12

The weight of output layer is

Δω 3
m,l k + 1 = ηδ 3

m O 2
l k + γΔω 3

m,l k ,

δ 3
m = e k + 1 sgn ∂ℓi k + 1

∂si k
si k

O3
m k

g net 3
m k

13

The weight of hidden layer is

Δω 2
l,j k + 1 = ηδ

2
l O 1

j k + γΔω 2
l,j k ,

δ
2
l = f net 2

l k 〠
3

m=1
δ 3
m ω

3
m,l k

14

The BP neural network calculates the self-tuning param-
eters KPi, KIi, KDi based on pretrained weights, which is
simultaneous trained by back propagating the derivation to
weights. The detailed algorithm of BP for self-tuning PID
control is shown in Algorithm 1. All parameters in the BP
will be settled down, and we can feed the neural network with
raw data and use its output for further work. Therefore, the
TS controller is able to handle a system with dynamic traffic
arriving rate by adjusting the time slots si k .

4. Accessing Probability Adaption for
SQ Ensurance

The remained time slots can be assigned to SQ. On the one
hand, constraints for SQ are noncompulsory; for example,
“the actual delay is better to be smaller than L,”which implies
that it is better to deploy more time slots for a smaller delay.
On the other hand, in self-autonomous unmanned system,
the nodes always work periodically to save energy. So more
dormancy time is also expected. To solve this contradiction,
the nodes should balance the energy efficiency and the QoS
requirements.

4.1. Utility Function. The quantized satisfaction with given
value of QoS metrics can be described by the utility function
U j · , a nonincreasing function with respect to the give
metrics ℓj, j = 1,… , J .

Lj denotes the preferred average delay of each type of SQ.
The value of utility functions is normalized in the range of
[0,1]. The marginal utility can be expressed as u ℓ =U′ ℓ .
It is not straightforward to obtain the exact expression of
the function for traffic. However, the characteristic of the
utility function can be summarized as follows [28]:
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u ℓ < 0, u′ ℓ ≥ 0, ℓ ∈ 0, L

u ℓ < 0, u′ ℓ ≥ 0, ℓ ∈ L,∞
u 0 ≈ 1, u ∞ ≈ 0

15

Without a loss of generality, the paper assumes the
unified utility functions as sets of universal antisigmoid
functions [28], which have different characteristics with
different parameters.

Uj ℓ = 1
1 + eCj ℓ j−Lj

16

The parameter Lj is the inflexion of Uj ℓ . When the

average delay is smaller than Lj, the utility function is con-
cave, which implies that the traffic expects a shorter delay
strongly. While the average delay is larger than Lj, the utility
function is convex, which implies that the traffic expects a
shorter delay not so strong.

The parameter Cj is used to adjust the slope of the utility

curve around Lj, which reflects the sensitiveness to the pre-
ferred delay. The larger Cj, the steeper the slope of the utility

curve around Lj, so that the traffic requires a lower delay
ℓ more strongly, and verse versa. Figure 4 shows the utility
functions changing with Cj. As best effort (BE) is a special

SQ with preferred delay L = 0 (Lj =10ms for normal SQ),
SQ and BE can be uniformly analyzed and modeled in the
following.

4.2. Accessing Portability and Equivalent Transmission Rate.
It should be noticed that during the remaining slots, all kinds
of SQ frames contend for channel in the same time span
of s slots, where s ≤ S − ∑si, i = 1,… , I. Let ρj,m denote the
accessing probability of the jth SQ on the node m, the
equivalent time slot assigned to class j is ρj,m · s, and

∀m, 〠
J

j=1
ρj,m = 1 17

Generally, the average delay can hardly be formalized
into a closed-form expression because it is a multivariate
random process related to the transition power, channel
fading, intensity of traffic load, and the BEB parameters.
For every node, supposing PHY transmission ratio is λm,
m = 1,… ,M, the equivalent transmission ratio for traffic j is

λm
ρj,m · s

S
, 18

and the average delay for class j in node m (including queue-
ing delay and transmission delay) is

ℓj,m =
nj,m · Elength

λm ρj,m · s/S
Bj,m =

nj,m · Elength · S
ρj,m · s · λm

Bj,m 19

Elength is the average frame length, and nj,m is the queue-
ing length of traffic class j on the node m, which can be

(1) k k = 0, initialize weight factor for each layer ω 2
l,j , ω

3
m,l ; learning rate η and inertial factor γ.

(2) Sample the actual ith HQ delay ℓi k , si k and get ei k = Li − ℓi k .
(3) Normalize Li k , ℓi k , si k − 1 and construct the training set for BP as (6).
(4) According to (5), (7), and (8), calculate the forward propagation of BP.
(5) The output of output layer is the adapted values of KPi, KIi, KDi.
(6) Calculate the PID controller output si k as (4), which will be used for control loop.
(7) Calculate the performance index J k as (10).
(8) If J k ≤ J threshold or k > Kmax, stop the iteration; else, continue the loop.

(9) According to (13), refresh the weight factor ω 3
m,l for the output layer.

(10) According to (14), refresh the weight factor ω 2
l,j for the hidden layer.

(11) k k = k + 1, go to step 2.

Algorithm 1: Algorithm of BP for self-tuning PID control.
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sampled by the node itself. Bj,m is a slow changing parameter
related to the practical network condition. Q factor is defined
as follows:

Qj,m =
nj,mElengthSBj,m

λj
, 20

and submit (19) into (16), the utility functionU ℓ can be
rewriten as follows:

U j,m ρj, s = 1

1 + eCj Qj/ρ js −Lj

, 21

Uj,m ρj, s > 0 holds for all ρj. Because MQEB is actually
a topology-transparency approach, and every UAV node can
operate independently, so in the following discussion, the
node number m is omitted.

4.3. Multiobjective Optimization. Accessing probability
assignment can be modeled as an optimal problem. The opti-
mization objective is to maximize the summation of utility
functions of all SQ on the node, while minimize the time slots
s assigned for it. The multiobjective optimization problem
(MOP) is

F R =
max〠UJ

j=1 ρj, s ,

min s,
22

s t  〠
j

j=1
ρj,m,

0 ≤ ρj,m ≤ 1,

0 < s ≤ S − 〠
J

j=1
sj,

 j = 1,… , J

23

It can be equivalent to a single-object optimization prob-
lem (SOP) by the multiply-divide method as follows:

min H R = s

〠UJ
j=1 ρj, s

, 24

and particle swarm optimization (PSO) is used to solve
the SOP. Supposing D is the swarm volume, Rd ∈ RJ+1. Let
Rd = ρj,… , ρJ , s , d = 1, 2,… ,D, be the location of particle

d. νd ∈ RJ+1 is the corresponding speed. The symbol ∘ is
Hadamard product operator. The detailed algorithm of solv-
ing SOP by PSO is shown in Algorithm 2.

The output of PSO is R = Pr , s , where Pr = ρ1, ρ2,… ,
ρJ is a feasible solutionofMOP in (22) and indicates theacces-
sing probability ρj for every SQ and the time slots s for them.
However, the channel contention is a random process that
can hardly be controlled directly. In order to provide an
exact accessing probability control for every SQ, a linear-
differ binary exponential back-off (LD-BEB) scheme is
introduced. The accessing probability is controlled by

adjusting the initial up boundary of back-off time in CW-
Loop dynamically.

The initial back-off time is randomly chosen in the range
of 0, vj k Wmin − 1 , 1 ≤ v ≤Wmin/Wmax. 1]. Once the initial
back-off time is set, the frame starts contention for medium
accessing. If a collision is detected, the back-off time is reset
in the range of 0,Wτ − 1 .

0,Wτ − 1 ,Wτ =min vi k · 2τWmin,Wmax , 25

where vj k is a scale factor that regulates the initial up
boundary of back-off time for the jth SQ. Generally, a smaller
vj will have a high accessing probability ρj, because it tends to
try to access medium more impatiently and vice versa. As
shown in Figure 2, the vector V k = v1 k , v2 k ,… , vJ k
acts as the output of CW controller, which can be adapted
by operating to the deviation of Pr to the actually accessing
probability P k . The controller is also a BP-based self-
tuning PID controller that is similar to that in Section 3.2.

5. Experiment and Results

5.1. Hardware Configuration. UAVs take ZigBit™ 900 as the
communication module, which is a 784/868/915MHz IEEE
802.15.4 OEM product with AtmelR AVR2025 software
package. The module contains an ATmega1281V microcon-
troller and an AT86RF212 RF transceiver in it. AtmelR

AVR2025 is a developer’s kit with fundamental MAC API
for hardware operation. Thanks to these API callback func-
tions, once a frame is transmitted, a callback function will
generate a software interruption. Therefore, the node-to-
node delay can be measured by sender node.

20 UAV nodes with ZigBit 900 are uniformly distributed
in the radius of 100 meters. Every node randomly sends data
packets to the other 19 nodes. At MAC, packets are encapsu-
lated into MAC frames, and frame traffic is generated by con-
tinuously sending packets. The interval of frames obeys the
normal distribution with the average of −Tt/log 1 −G . G 0
<G < 1 is the offered traffic, which is normalized by trans-
mission data rate; that is, G = Tt/R. Tt (bit) is the average
MAC frame length and R (bps) is the data rate. The frame
length follows Pareto distribution with the shape parameter
of 1.1 and average of 105∗ 8 bit.

Simultaneous with traffic generation, every node runs
MQEB independently. The detailed algorithm of MQBE is
shown in Algorithm 3. Ad hoc on-demand distance vector
(AODV) routing protocol is realized at the application layer,
and a specific thread processes the routing maintenance and
routing discovery. In the experiments, the transmitted power
is set to be 1mW, Wmin = 23,Wmax = 28, and τmax = 3.

5.2. Dynamic Performance. The dynamic performance
mainly concerns the QoS metrics changing with time. Sup-
posing that there are 4 types of frame traffic, two are HQ
(HQ 1 and HQ 2) carrying real-time applications, and the
other two are SQ (SQ 1 and SQ 2) carrying non-real-time
applications.

In the consideration of typical working condition of UAV
cloud, the paper develops two groups of comparison
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experiments. The former is strong time condition (STC), in
which the preferred QoS metrics are better than the general
case. The latter is weak time condition (WTC), which means
the actual performance has been oversupplied.

MQEB is actually a double-looped control model. The
paper takes a novel off-and-then-on model to test the
dynamic performance, which is an equivalence of a step-
function signal. The experiments last 600 s both in STC and
WTC. 0~200 s, no controller acts in the loop and, thus, it is
the original IEEE 802.15.4 MAC; 200~400 s, the controller
which dynamically adjusts the contention windows size
(FD-MAC) [19] starts to operate; 400~600 s, MQEB takes
over to control the transmission. The consequences are
shown in Figures 5 and 6. For clarity, only 5 nodes out of
20 are shown in the experiment results.

(1) Figures 5(a) and 6(a) show the average delay in STC
and WTC. In the first 200 s (802.15.4 MAC), there

is no significant difference among the traffic. During
200–400 s, FD-MAC operates to distinguish the aver-
age delay of different priorities. But the delay of HQ is
larger than STC preset value and smaller than WTC
preset value. FD-MAC can guarantee the delay
rations of different classes be constants, also known
as PDD. It is effective for SQ but not feasible to HQ;
after 400 s (MQEB-MAC), the average delay is still
distinguished and delay of HQ is also converged to
the preset preferred value.

(2) Figures 5(b) and 6(b) show the corresponding
throughput in STC and WTC. In the first 400 s, the
throughput nearly has no change, which is identical
to the results in our previous work [19]. However,
when MQEB works on the system, a new feature
emerges after 400 s. Throughput gets larger as delay
decreases in STC and vice versa in WTC. It is very

(1) k k = 0, initialize the location vector R 0
d for d swarms and their speed ν 0

d , p 0
d ≐R

0
d , d = 1, 2,… ,D. Let

g 0 = arg min
R∈ R

0
1 ,…,R 0 d

H R

(2) For d = 1, 2,… ,D, generate two random vectors rd k , t k
d ∈ RJ+1 in the range of [0,1] with uniform distribution.

v k+1
d = ωv k

d + c1r
k
d ∘ p k

d −R
k
d + c2t

k
d ∘ g k

d −R
k
d ,

R
k+1
d =R

k
d + v k+1

d

(3) For d = 1, 2,… ,D, if H R
k+1
d <H p k

d , p k+1
d =Rd

k+1 ; else, p k+1
d = pd

k .

(4) If ∃d make H R
k+1
d <H g k

d , let d∗ = arg mindH R
k+1
d , g k+1

d =Rd∗
k+1 ; else, g k+1

d = gd
k .

(5) If H g k+1
d ≤Hthreshold or k > Kmax, stop the iteration; else, continue the loop.

(6) k k = k + 1, go to step 2.

Algorithm 2: Algorithm of solving SOP by PSO.

(1) k k = 0, initialize Li, Lj, i = 1, 2,… , I , j = 1, 2,… , J .
(2) Start TS-LOOP.
(3) For i = 1, 2,… , I.
(4) Sample the actually ith HQ delay ℓi k .
(5) According Algorithm 1, get the KPii¢§i¢§KI ii¢§i¢§KDi and the number of time slots si k .
(6) Distribute si k slots for ith HQ.
(7) End For.
(8) End TS-LOOP.
(9) Start CW-LOOP.
(10) Sample the actual jth SQ delay ℓj k , the accessing probability ρ j k , and queueing length nj k .

(11) Construct P k and SOP H R k as (24).
(12) Solve SOP according to Algorithm 2, and get the solution R k = Pr k , s .
(13) Distribute s slots for all SQ.
(14) For j = 1, 2,… , J .
(15) Sample the actual accessing probability ρj k and scale factor vj k − 1 as inputs. According to Algorithm 1, get KP j, KI j, KDj

and the scale factors vj k .
(16) Adjust scale factor vj k for jth SQ.
(17) End For.
(18) End CW-LOOP.
(19) k k = k + 1, go to step 1.

Algorithm 3: Algorithm of MQEB.
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clear in Figure 5(b) that throughputs of HQ and SQ
are greatly improved compared with the original
802.15.4 MAC and FD-MAC.

5.3. Energy Efficiency and Power Consumption. Energy effi-
ciency and power consumption are two important factors
for WANET. Energy efficiency is used to evaluate the effi-
ciency of data transmission to the cost of energy [30]; the
larger the better. In the experiment, valid data is the total
length in bits of frame sent successfully, and energy is in unit
of Joule. So the energy efficiency is measured by bits/Joule
(bits/J), which is also known as bits/second/Watt.

Power consumption indicates the lifetime of UAV node;
the smaller power consumption, the longer working time.
Power consumption is in unit of milliwatt (mW).

Ef f iciency = 〠N
i leni

energy = 〠N
i leni/t

energy/t

≈
ElenN/t
power = Elenthroughput

power

26

Supposing during the interval t, there are N frames with
length of leni are sent successfully by a node, the energy effi-
ciency can be estimated as (28).
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Figure 5: STC: L1 = 4ms, L2 = 5ms; L1 = 7ms, L2 = 8ms
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(1) Figures 5(c) and 6(c) show the energy efficiency in
STC and WTC. During 200–400 s (FD-MAC), what-
ever STC or WTC, the energy efficiency is smaller
than that in the first 200 s (802.15.4 MAC). In chan-
nel contention, energy is consumed once nodes
transmit no matter whether or not data is correctly
received. FD-MAC making small CW size for high
priority increases the collision probability, which will
induce unwanted retransmitting and energy wasting.

(2) Comparing with 200–400 s (FD-MAC), the energy
efficiency during 400–600 s (MQEB-MAC) enhances
greatly in STC (Figure 5(c)), while remains nearly

same in WTC (Figure 6(c)). The phenomenon can
be explained by (24). In STC, the enlarged through-
put (Figure 5(b)) goes further than the power wasting
caused by collision. But in WTC, low throughput
(Figure 6(b)) offsets the power saving.

(3) Figures 5(d) and 6(d) show the total power con-
sumption on every nodes. During 400–600 s
(MQEB-MAC), the total power consumption is dif-
ferent in STC and WTC. In STC, the total power
consumption changes little compared with that of
200–400 s (Figure 5(d)) but decreased greatly in
WTC (Figure 6(d)). The reason is MQEB can
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reduce the unnecessary active time to avoid circuit
power consumption when the QoS performance
is overprovided.

(4) It is worth mentioning that MQEB has a better
energy efficiency in STC, because time slot isolation
avoids the across-classes collision and retransmission
energy wasting. Meanwhile, MQEB also has a lower
power consumption and a longer lifetime in WTC
because it can reduce the unnecessary active time.

5.4. Static Performance.MQEB performs a better throughput
but sacrifices the lifetime in STC (Figures 5(b) and 5(d))
compared with that inWTC. Actually, STC is more common
in UAV cloud. So the paper analyzes the static performance
of MQEB in STC, which concerns the QoS metrics changing
with the offered traffic. The experiment results are shown in

Figure 7. x-axis presents different control approaches, which
are original IEEE 802.15.4, FD-MAC and MQEB-MAC,
respectively. The offered traffic is increased along with y-axis
(logarithm scale). z-axis (vertical axis) represents the delay
(Figure 7(a)), throughput (Figure 7(b)), energy efficiency
(Figure 7(c)), and total power consumption (Figure 7(d)).
The experiments indicate the comprehensive superiority
of MQEB.

(1) In Figure 7(a), comparing with original 802.15.4
MAC, both FD-MAC and MQEB-MAC can support
differentiated delay QoS. But MQEB-MAC can fur-
ther control the delay fixed to the preset value of
4ms for HQ 1 and 5ms for HQ 2.

(2) In Figure 7(b), MQEB-MAC could not only support
the differentiated service in delay but also greatly
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enhance the throughput (both HQ and SQ). It is
because in STC, active time is tend to increase with
offered traffic. The more working time obviously
enlarges the throughput.

(3) In Figure 7(c), the energy efficiency of MQEB-MAC
is better than that of FD-MAC. Especially for HQ,
the energy efficiency even increases with offered traf-
fic. It is because throughput goes much faster than
power consumption. This shows the advantage of
time slot isolation again can void the transmission

failure as well as enlarge the throughput of HQ. By
measurement, the power wasting of one frame colli-
sion (about 10mW) is at least ten times of (about
1mW) circuit power consumption.

(4) In Figure 7(d), FD-MAC can support differentiated
QoS but sacrifice the total power consumption. The
reason is mainly the frame collision and retransmis-
sion that have been discussed before. For MQEB-
MAC, the total power consumption is nearly the
same (a litter smaller) with original 802.15.4 MAC.
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The possible reason is that the saved energy of colli-
sion avoidance by time slot isolation just compen-
sates the energy cost of enlarged working time.

5.5. Robust Verification. The above experiments concern
the effectiveness of MQEB without considering the traffic
burst. Robust verification is enforced when the traffic arriving
rate varies dynamically. Figures 8(a) and 8(b) are the arriving
rate and average delay changing with time. Figure 8(c) is
the condition of node 1 for clarity. The arriving rates
(traffic load) of HQ 1 and SQ 2 are changing in turns with
the interval of 300 s. The maximum and minimum load
are approximately 250 frames/s and 50 frames/s. The other
two flows, that is, HQ 2 and SQ 1, are constant near 230
frames/s and 170 frames/s.

Considering the analysis in Section 5.4, we only discuss
STC for simplification. The preferred QoS metrics are identi-
cal to that of STC in Figure 5, that is, L1 = 4ms, L2 = 5ms and
L1 = 7ms, L2 = 8ms. MQEB controller starts at 1000 s.

(1) In the first 1000 s (original 802.15.4 MAC), the delay
of all types varies along with the load and the delays
of HQ 1 and HQ 2 are larger than the preferred value.
When the arriving rate of HQ 1 bursts at 600 s, the
delay is even larger than that of SQ 1 and SQ 2, which
is not a desired phenomenon.

(2) After 1000 s, MQEB works on the system. The delays
of HQ 1 and HQ 2 converge to the preferred value,
which benefits from the BP-based self-tuning feed-
back control.

(3) Although the delays of SQ 1 and SQ 2 get some
improvement, they could not always converge to
the preset value, and there exist a little jitter with
the load fluctuation. This is because the QoS ensur-
ance of SQ is actually a discount of preferred QoS
metric with balance of queueing length as well as
energy saving.

(4) Because of load changing as a gating function, both
the up edge and down edge are step impulses, which
are the most serious conditions for controller. So
the experiment shows that BP-based self-tuning
controller in MQEB is robust stability.

6. Conclusion

To ensure the performance of compute-intensive applica-
tions unloaded to cloud, the paper proposes a BP-based
self-tuning PID controller for mixed QoS ensurance archi-
tecture, which can support both real-time and non-real-
time traffic. By time slot isolation for hard QoS and acces-
sing probability optimization for soft QoS, the back prop-
agating (BP) neuron network-based PID control is used
for parameters’ self-tuning. The hardware experiments
demonstrate the feasibility of MQEB-MAC. Comparing
with FD-MAC, MQEB has new feature of hard QoS ensur-
ance and soft QoS equilibrium with energy saving. It has

further developed two advantages. In the condition of heavy
load (STC), MQEB has greater throughput and better energy
efficiency; and in light load (WTC), MQEB has lower power
consumption.
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